
Physica D 448 (2023) 133728

c
V
a

b

n
n
s
f
a
t
t
t
b
(
i
l
c
p

d
i
i
t
b

s

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

TheN-vortex problem in a doubly periodic rectangular domainwith
onstant background vorticity
ikas S. Krishnamurthy a,∗, Takashi Sakajo b

Department of Mathematics, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
Department of Mathematics, Kyoto University, Kitashirakawa Oiwake-cho, Kyoto 606-8502, Japan

a r t i c l e i n f o

Article history:
Received 26 August 2022
Received in revised form 10 March 2023
Accepted 13 March 2023
Available online 21 March 2023
Communicated by Dmitry Pelinovsky

Keywords:
Point vortex dynamics
Lattice equilibria
Doubly-periodic domain
Hydrodynamic Green’s function
Schottky–Klein prime function

a b s t r a c t

We formulate the N point vortex problem in a doubly-periodic rectangle with a constant background
vorticity using the hydrodynamic Green’s function. We derive an explicit formula for the hydrodynamic
Green’s function and the velocities of the point vortices in terms of the Schottky–Klein prime function
using a conformal mapping approach. The sum of vortex strengths can be arbitrary, and when it
is zero we recover previous known results including the integrability of the two and three-vortex
problems. A non-zero sum of vortex strengths leads to a constant background vorticity. We derive
a Hamiltonian structure for the equations and show that the two-vortex problem is integrable,
and classify all possible vortex motions. In addition, for general N , we obtain several fixed lattice
equilibrium configurations including single-layered and double-layered equilibria. In the latter case,
we also obtain lattice configurations with defects consisting of point vortices with inhomogeneous
strengths. We find equilibria arranged in doubly-periodic rectangular and parallelogram lattices
consisting of N = 1, 2, 3, 4 vortices per fundamental lattice.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Doubly-periodic boundary conditions are commonly used in
umerical studies of two-dimensional, incompressible, homoge-
eous and isotropic turbulent fluid flows. It is observed in such
imulations that a lattice of coherent vortices dominates the
low at intermediate time scales [1,2]. To understand the inter-
ction of these coherent vortex structures, we can approximate
hem as point vortices. The relation between the Euler equa-
ion, point vortices, and statistical theories of two-dimensional
urbulence on the flat torus is discussed in the recent article
y Geldhauser and Romito [3]. On the other hand, Feynman’s
and Onsager’s) prediction of the presence of quantized vortices
n superfluid Helium [4] inspired Tkachenko [5] to study rotating
attice structures. The review by Newton and Chamoun [6] dis-
usses the relation between vortex lattices and different physical
henomena such as superconductivity and superfluidity.
The equations of motion for point vortices in a doubly periodic

omain have been derived by many authors. Tkachenko [5] stud-
ed rotating vortex equilibria by considering a single point vortex
n a period window and studied the minimum energy vortex lat-
ice. Benzi and Legras [7] discuss the interaction of a continuous
ackground vorticity field with point vortices in a doubly periodic
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domain. O’Neil [8] derives the equations of motion for N point
vortices in a period parallelogram and shows that the equations
admit a Hamiltonian structure. He further gives a count of the
number of relative equilibria in the case of some special domains
with particular symmetry; also see O’Neil [9]. The equations of
motion for N point vortices in a square doubly periodic domain
were derived in terms of elementary functions by Weiss and
McWilliams [10]. They also discuss the Hamiltonian structure of
the equations and study the ergodicity properties of the dynamics
of six-point vortices. Kilin and Artemova [11] discuss two, three
and four vortex motion in a square domain using the formulas
from Weiss and McWilliams [10].

In order to derive the equations of motion for the point vor-
tices in a doubly-periodic domain, one can start with the Weier-
strass zeta-function [12]. Tkachenko [5] then considers a rotating
lattice, which requires the point vortex velocities to be quasi-
periodic, and a special point has to be chosen as the origin
of coordinates. The velocity of the point vortices is expressed
in terms of the Weierstrass zeta-function by noting that this
function is analytic in the period window except for a simple
pole singularity. This gives the velocity field due to a single
point vortex in the period window up to an arbitrary analytic
function which is determined based on the requirement that the
point vortex velocity is quasi-periodic. O’Neil [8] considers N
point vortices in the period window with arbitrary circulations
and in order to have doubly-periodic point vortex velocities, he
introduces a rotating frame of reference whose angular velocity
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s coupled to the sum of vortex strengths. The velocity field
tself is then found to be doubly periodic only if the sum of
he vortex strengths vanishes. Stremler and Aref [13] start with
he Weierstrass zeta-function, but instead of moving into a ro-
ating frame of reference, they assume that the sum of vortex
trengths is zero, and then use a mathematical argument to
btain a doubly-periodic velocity field, and hence doubly-periodic
oint vortex velocities. Crowdy [14] specializes in a rectangular
omain and uses a conformal mapping approach together with
he Schottky–Klein prime function [15] to derive the equations
f motion.
The sum of the N point vortex circulations in a period window,

=

N∑
k=1

Γk, (1)

plays an important role in the theory. Stremler and Aref [13] de-
rive the equations of motion for N point vortices with vanishing
otal circulation (γ = 0), and show that the three-vortex problem
s integrable in this case. Stremler [16] discusses the equilibria
nd integrable dynamics of two and three point vortices. For
he two-vortex problem with γ ̸= 0, the phase portraits of an
ppropriate Hamiltonian are given for a few chosen lattices, as
iewed from a rotating frame of reference. The dynamics of the
wo vortices is non-trivial but integrable when γ ̸= 0, whereas
nly relative equilibrium solutions exist when γ = 0. Crowdy

[14] considers γ = 0 in his derivation of the equations in a
rectangular doubly-periodic domain. Modin and Viviani [17] dis-
cuss the integrability of the N-vortex problem in various domains
using symplectic reduction theory.

In this paper, we start by considering the hydrodynamic
Green’s function for a doubly-periodic rectangular domain con-
taining N point vortices with arbitrary strengths and without
any constraints on their sum (Section 2). Due to the compact
nature of the doubly-periodic domain, a constant background
vorticity naturally arises in the Green’s function on such a domain
when γ ̸= 0. The previous papers consider a rotating frame of
reference in the general case when γ ̸= 0. We simply write
down the expression for this Green’s function in terms of the
Schottky–Klein prime function employing the same conformal
mapping approach as used by Crowdy [14]. In Section 3, we use
standard methods [18,19] to derive the Hamiltonian for the N
vortex problem, and hence the equations of motion for the point
vortices. The velocity field as well as the equations of motion for
the point vortices naturally come out to be doubly periodic in all
cases, even when γ ̸= 0. We also discuss the integrability of the
Hamiltonian system and compare our equations with previous
results [8,13,14], finding that our equations are consistent with
them when γ = 0. We discuss the two-vortex problem in detail
in Section 4 and describe several classes of stationary lattice
configurations for general N in Section 5. We summarize our
results and present a discussion of future work in Section 6.

2. Hydrodynamic Green’s function and stream function

Consider a doubly-periodic rectangular domain in the com-
plex z-plane with the lattice defined by the fundamental pair
of periods 2π and − log ρ for ρ ∈ R, 0 < ρ < 1. Let us
denote the planar Laplacian operator by ∇

2
= 4 ∂2zz , where

n overbar denotes the complex conjugate. The Hydrodynamic
reen’s function G(z, w; z, w) on this domain is defined as the

unique real-valued function for arguments z, w ∈ C such that
the following three conditions hold.

1. G(z, w; z, w) has a logarithmic singularity at z = w and
satisfies the equation

4 ∂2zzG = δw −
1

, (2)

area(Dz)

2

where δw is the Dirac measure and area(Dz) = −2π log ρ >
0 is the area of the fundamental domain Dz of the rect-
angular lattice. The area term in (2) is required by the
Gauss divergence theorem due to the compact nature of
the domain. Equivalently, this implies the existence of a
function Ĝ(z, w; z, w) regular in Dz :

Ĝ(z, w; z, w) = G(z, w; z, w) −
1
2π

log |z − w|, (3)

and which satisfies

4 ∂2zz Ĝ =
1

2π log ρ
. (4)

2. G(z, w; z, w) is doubly-periodic in both arguments, i.e.

G(z + 2mπ − in log ρ,w; z + 2mπ + in log ρ,w)

= G(z, w; z, w), (5a)
G(z, w + 2mπ − in log ρ; z, w + 2mπ + in log ρ)

= G(z, w; z, w), (5b)

for all m, n ∈ Z.
3. G(z, w; z, w) satisfies the reciprocity property

G(z, w; z, w) = G(w, z;w, z). (6)

Next, we introduce an auxiliary ζ -plane and a conformal map

z(ζ ) = −i log ζ (7)

from the ζ -plane to the z-plane (see Fig. 1). The annulus Dζ =

{ζ ∈ C : ρ < |ζ | ≤ 1, 0 ≤ arg(ζ ) < 2π} maps to the fundamental
domain Dz . The Laplacian transforms according to

4 ∂2zz =
4

|z ′(ζ )|2
∂2
ζ ζ

= 4|ζ |2∂2
ζ ζ
.

We denote the hydrodynamic Green’s function in the annulus by
G(ζ , ν; ζ , ν), where ζ , ν ∈ Dζ are the pre-images of z, w ∈ Dz

espectively. G(ζ , ν; ζ , ν) satisfies the conditions

4 |ζ |2∂2
ζ ζ

G = δν +
1

2π log ρ
, (8a)

G(ρnζ , ρmν; ρnζ , ρmν) = G(ζ , ν; ζ , ν) for all n,m ∈ Z, (8b)

and G(ζ , ν; ζ , ν) = G(ν, ζ ; ν, ζ ). (8c)

Note that under ζ ↦→ ρnζ = ρnei 2mπζ , we have z ↦→ z + 2mπ −

n log ρ. We can define a regular function Ĝ(ζ , ν; ζ , ν) by

G(ζ , ν; ζ , ν) = G(ζ , ν; ζ , ν) −
1
2π

log |ζ/ν − 1|, (9)

where we have used

log |z − w| = log |z(ζ ) − z(ν)| = log |z ′(ν)(ζ − ν)| + O(|ζ − ν|)
= log |ζ/ν − 1| + O(1)

o identify the singular part of G(ζ , ν; ζ , ν). Then the regular
unction Ĝ(ζ , ν; ζ , ν) satisfies

4 |ζ |2∂2
ζ ζ

Ĝ =
1

2π log ρ
. (10)

We now construct a hydrodynamic Green’s function
(ζ , ν; ζ , ν) in terms of the Schottky–Klein prime function for an

annulus. This latter function is essentially the P-function defined
by (60). A function G(ζ , ν; ζ , ν) which satisfies the conditions (8)
and (10) is

G(ζ , ν; ζ , ν) =
1
2π

log |P(ζ/ν,
√
ρ)| −

1
4π

log |ζ/ν|

+
1

(log |ζ/ν|)2 . (11)

4π log ρ
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Fig. 1. The conformal map z(ζ ) = −i log ζ takes the cut annulus in the ζ -plane to the fundamental domain Dz in the z-plane.
H
N
i

f

w
−
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he hydrodynamic Green’s function is then given up to an ar-
itrary harmonic function by (11). Note that G depends only
n the ratio ζ/ν; using (7) we have ζ/ν = ei(z−w), showing
hat the hydrodynamic Green’s function (11) is independent of
he definition of the origin in the z-plane. Although the Green’s
unction has been derived for the ζ -plane, we can write it for the
-plane by simply making the substitution ζ/ν = ei(z−w).
From the definition of the P-function (60), it is clear that

(ζ , ν; ζ , ν) has a logarithmic singularity at ζ = ν and is regular
n Dζ \ {ν}. In fact, the expression

1
2π

log |P(ζ/ν,
√
ρ)| −

1
4π

log |ζ/ν| −
1
2π

log |ζ/ν − 1|

s harmonic in Dζ with respect to ζ . We therefore calculate

|ζ |2∂2
ζ ζ

Ĝ = 4 |ζ |2∂2
ζ ζ

(
1

4π log ρ
(log |ζ/ν|)2

)
=

1
2π log ρ

, (12)

howing that (10) is satisfied. The reciprocity property
(ζ , ν; ζ , ν) = G(ν, ζ ; ν, ζ ) is easily verified, since using (63) we
ave
1
2π

log |P(ν/ζ ,
√
ρ)| −

1
4π

log |ν/ζ |

=
1
2π

log | − ν/ζ · P(ζ/ν,
√
ρ)| −

1
4π

log |ν/ζ |

=
1
2π

log |P(ζ/ν,
√
ρ)| −

1
4π

log |ζ/ν|.

he doubly-periodic nature (8b) of G(ζ , ν; ζ , ν) is confirmed in
Appendix B.

2.1. The stream function

If u − iv is the complex velocity field for an incompressible
flow in the z-plane, then a stream function ψ(z, z) exists and the
velocity field is defined via

u − iv = 2i
∂ψ

∂z
. (13)

he vorticity ω(z, z) and the stream function are related through

= −∇
2ψ. (14)

f the flow consists of a set of N point vortices in Dz located
at wk with circulations Γk together with a constant background
vorticity 2Ω , then the stream function satisfies the equation

∇
2ψ = −

N∑
Γk δwk − 2Ω. (15)
k=1

3

The double-periodicity of the flow coupled with the fact that Dz
is a compact domain means that the area integral of the total
vorticity in Dz vanishes. This translates into a condition between
the background vorticity and the sum of point vortex strengths:

ℜ

∮
∂Dz

ξ dz = 0 H⇒

∫∫
Dz

ω dA = 0 H⇒ Ω =
γ

4π log ρ
.

(16)

ere dA is an area element in Dz and ∂Dz is the boundary of Dz .
ote that the background vorticity vanishes if and only if γ = 0,
.e. the sum of point vortex strengths vanishes.

Under the conformal map (7), (15) transforms into an equation
or the stream function in the ζ -plane, ψ(ζ , ζ ),

4|ζ |2∂2
ζ ζ
ψ = −

N∑
k=1

Γk δνk − 2Ω, (17)

here νk are the pre-images of the point vortices: wk = z(νk) =

i log νk, k = 1, . . . ,N . The solution to (17) is given in terms of
the hydrodynamic Green’s function (11),

ψ(ζ , ζ ) = −

N∑
k=1

Γk G(ζ , νk; ζ , νk). (18)

t is easily verified by direct substitution that ψ(ζ , ζ ) satisfies (17)
under the condition (16). The solution (18) is unique up to an
arbitrary harmonic stream function.

The velocity field (13) transforms under (7) into

u − iv = −2ζ
∂ψ

∂ζ
. (19)

Substituting (18) and using (11) in (19), we find the velocity field
to be

u − iv =
1
2π

N∑
k=1

Γk K (ζ/νk,
√
ρ) +

γ

2π
log |ζ/

√
ρ|

log ρ

−
1

2π log ρ

N∑
k=1

Γk log |νk|. (20)

We note (using (64)) that the above velocity field is loxodromic,
i.e., unchanged under ζ ↦→ ρζ , and it is therefore doubly-periodic
even when γ ̸= 0.
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. Hamiltonian structure and equations of motion

The equations of motion for the point vortices in (15) admit a
amiltonian structure with the Hamiltonian H(ν, ν) given by

(ν, ν) = −

N∑
j,k=1
j<k

ΓjΓk G(νj, νk; ν j, νk) −
1
2

N∑
k=1

Γ 2
k Ĝ(νk, νk; νk, νk).

(21)

ere we use ν as a shorthand for ν1, . . . , νN and ν for ν1, . . . , νN .
ote that due to the presence of the background vorticity, the
amiltonian (21) is not the real part of an analytic function of ν;
nlike the case of N-point vortices in an unbounded plane.
The Hamiltonian (21) is obtained using the standard proce-

ure. That is to say, we define the N modified stream functions

ψ̂j(ζ , ζ ) = ψ(ζ , ζ )+
Γj

2π
log |ζ/νj − 1|, for j = 1, . . . ,N; (22)

ach ψ̂j(ζ , ζ ) is regular at ζ = νj. The equations of motion for the
oint vortices then follow from (19):

dwj

dt
= −2ζ

∂ψ̂j

∂ζ

⏐⏐⏐⏐
ζ=νj

= 2ζ
∂

∂ζ

[
N∑

′

k=1

ΓkG(ζ , νk; ζ , νk) + ΓĵG(ζ , νj; ζ , ν j)

] ⏐⏐⏐⏐
ζ=νj

(23)

here in the second step we have used (9) and (18), and the
rime on the sum means that we omit the term k = j. Now, if the
amiltonian is given in the z-plane, then the equations of motion

for the point vortices are

Γj
dwj

dt
= 2i

∂H
∂wj

, for j = 1, . . . ,N. (24)

nder the conformal map (7), these equations can be written in
erms of variables in the ζ -plane as

Γj
dwj

dt
= −2 νj

∂H
∂νj
, for j = 1, . . . ,N. (25)

ubstituting (21) into (25), and comparing with (23), we can
erify that (21) is indeed the Hamiltonian.
The regular function of one-variable Ĝ(ζ , ζ ; ζ , ζ ) in (21) is

known as the Robin function [20]. We now show that the Robin
function in our case is a constant independent of its argument.
Using (11) in the definition (9), along with the definition (60) of
the P-function, we get

G(ζ , ν; ζ , ν) =
1
2π

log

⏐⏐⏐⏐⏐
∞∏
k=1

(1 − ρkζ/ν)(1 − ρkν/ζ )

⏐⏐⏐⏐⏐
−

1
4π

log |ζ/ν| +
1

4π log ρ
(log |ζ/ν|)2 , (26)

hich leads to

(ζ , ζ ; ζ , ζ ) =
1
2π

log

⏐⏐⏐⏐⏐
∞∏
k=1

(1 − ρk)2
⏐⏐⏐⏐⏐ . (27)

Substituting (21) into (25) and using (27), we get

dwj

dt
= 2

N∑
′ Γk νj

∂

∂ν
G(νj, νk; ν j, νk) for j = 1, . . . ,N. (28)
k=1 j

4

Using (11), and after some algebra, we obtain the equations of
motion for the point vortices:

dwj

dt
=

1
2π

N∑
′

k=1

Γk K (νj/νk,
√
ρ) −

1
4π

N∑
′

k=1

Γk

+
1

2π log ρ

N∑
′

k=1

Γk log |νj/νk| for j = 1, . . . ,N. (29)

The point vortex velocities depend only on the ratios νj/νk, and
thus only on the inter-vortex distances. The derivative operator
νj
∂
∂νj

is loxodromic, i.e., invariant under ζ ↦→ ρζ . This means that
the velocities are loxodromic; it can also be verified directly that
(29) are invariant under νk ↦→ ρνk and νj ↦→ ρνj.

3.1. Conserved quantities and integrability

The Hamiltonian system (29) has three conserved quantities
in general. These are the Hamiltonian (21) itself, and the two
components of the linear impulse

Q + iP =

N∑
j=1

Γjwj = −i
N∑
j=1

Γj log νj. (30)

e show that Q − iP =

N∑
j=1

Γjwj is conserved. From (29) we have

N∑
j=1

Γj
dwj

dt
=

1
2π

N∑
′

j,k=1

ΓjΓk K (νj/νk,
√
ρ) −

1
4π

N∑
′

j,k=1

ΓjΓk

+
1

2π log ρ

N∑
′

j,k=1

ΓjΓk log |νj/νk|. (31)

he first sum on the right hand side of (31) consists of pairs of
erms like

jΓk K (νj/νk,
√
ρ) + ΓkΓj K (νk/νj,

√
ρ) = ΓjΓk, (32)

where we have used (64). The last sum on the right hand side of
(31) consists of pairs of terms that add up to zero:

ΓjΓk log |νj/νk| + ΓkΓj log |νk/νj| = 0. (33)

Thus (31) simplifies to

N∑
j=1

Γj
dwj

dt
=

1
2π

N∑
j,k=1
j<k

ΓjΓk −
1
4π

N∑
′

j,k=1

ΓjΓk = 0. (34)

We now turn to a discussion of Liouville integrability for the
N-vortex system considered here. Let the cartesian coordinates
of the vortices in the z-plane be given by wj = xj + iyj. Then the
canonically conjugate variables for the point vortex system are xj
and Γjyj for j = 1, . . . ,N . For two arbitrary functions f and g , the
Poisson bracket is defined as

{f , g} =

N∑
j=1

1
Γj

(
∂ f
∂xj

∂g
∂yj

−
∂g
∂xj

∂ f
∂yj

)
. (35)

mploying the change of variables (xj, yj) ↦→ (wj, wj), this Poisson
bracket can be rewritten (after some algebra) as

{f , g} = 2i
N∑ 1
Γj

(
∂ f
∂wj

∂g
∂wj

−
∂g
∂wj

∂ f
∂wj

)
, (36)
j=1



V.S. Krishnamurthy and T. Sakajo Physica D 448 (2023) 133728

f
−

{

t

S

{

f

g

{

F
{

Q
a
I
t
i
v
r
i

3

f

T
o

r

K

U

w
[

T

urther, in terms of the coordinates νj in the ζ -plane (using wj =

i log νj) we get

f , g} = 2i
N∑
j=1

ν jνj

Γj

(
∂ f
∂ν j

∂g
∂νj

−
∂g
∂ν j

∂ f
∂νj

)
. (37)

The time evolution of any function f is governed by the equa-
ion

df
dt

= {f ,H}. (38)

ince Q and P are constants of motion, we immediately get

Q ,H} = {P,H} = 0. (39)

Thus we always have at least two integrals in involution, and
hence the two-vortex problem is always integrable. A qualitative
analysis of the two-vortex problem is provided in Section 4. When
the background vorticity vanishes, i.e., γ = 0, we find that only
relative equilibrium solutions are possible. But when γ ̸= 0,
we find relative equilibria as well as non-equilibrium solutions.
We provide a complete characterization of the trajectories of the
point vortices based on the Hamiltonian phase portrait for N = 2.

Turning to the three-vortex problem, we first note that the
conserved quantities Q and P are not always in involution. From
(30) we get

2Q = −i
N∑
j=1

Γj log νj + i
N∑
j=1

Γj log ν j

and 2iP = −i
N∑
j=1

Γj log νj − i
N∑
j=1

Γj log ν j,

rom which we compute

∂Q
∂ν j

=
i
2
Γj

ν j
,

∂Q
∂νj

= −
i
2
Γj

νj
,

∂P
∂ν j

= −
1
2
Γj

ν j
,

∂P
∂νj

= −
1
2
Γj

νj
,

iving us

Q , P} = γ . (40)

or the case of γ = 0 when the background vorticity vanishes,
Q , P} = 0. Hence we have three integrals in involution, namely
, P and H. The three-vortex problem in this case is integrable
nd has been discussed in detail by Stremler and Aref [13].
n the general case when the background vorticity is non-zero,
he motion may not be integrable since we do not have three
ntegrals in involution. Kilin and Artemova [11] investigate three-
ortex motion in a square domain with γ ̸= 0 (as viewed from a
otating frame of reference) and provide numerical evidence that
t is not integrable.

.2. Comparison with previous results

The equations of motion (29) can be rewritten in different
orms. We have
N∑

′

k=1

Γk = γ − Γj,

N∑
′

k=1

Γk log |νj/νk| =

N∑
k=1

Γk log |νj/νk|

= γ log |ν | + P, (41)
j

5

using which (29) can be written as

dwj

dt
=

1
2π

N∑
′

k=1

Γk K (νj/νk,
√
ρ) +

Γj

4π
+
γ

2π
log |νj/

√
ρ|

log ρ

+
P

2π log ρ
. (42)

hese equations take on a particularly simple form when the sum
f circulations vanishes (γ = 0):

dwj

dt
=

1
2π

N∑
′

k=1

Γk K (νj/νk,
√
ρ) +

Γj

4π
+

P
2π log ρ

. (43)

Let Z(z) be the Weierstrass zeta-function in the z-plane; it is
elated to the K -function in the ζ -plane via the identity [14]

(ζ/ν,
√
ρ) =

1
2

− i
(
Z(z − w) −

Z(π )
π

(z − w)
)
. (44)

sing this identity in (43), we obtain after some algebra

dwj

dt
=

1
2π i

N∑
′

k=1

Γk Z(wj −wk)+
Z(π )
2π2i

(Q + iP)+
P

2π log ρ
, (45)

hich is identical to the equation (2.19) in Stremler and Aref
13] when we remember that area(Dz) = −2π log ρ. Eq. (43)
is identical to the equation (19) in Crowdy [14] except for the
important term Γj/4π . We have naturally obtained this term
using the hydrodynamic Green’s function approach. We will show
later in Section 5 that the presence of this constant term captures
important equilibrium configurations that are otherwise left out
of the theory.

4. Two-vortex problem

In the planar (non-periodic) two-vortex problem, the only pos-
sible solutions are rotating or translating equilibria. Translating
equilibria are obtained when the sum of vortex strengths is zero;
rotating equilibria are obtained otherwise. Notably, no stationary
equilibrium configuration of two point vortices exists. Non-trivial
dynamics of the vortices is first seen in the three-vortex problem,
which is integrable due to the presence of three integrals in
involution, namely, the two components of linear impulse and the
Hamiltonian.

When we consider the two-vortex problem in a doubly-
periodic rectangular domain with vanishing background vorticity
(γ = 0), we find that the vortices can form translating equilibria
as well as stationary equilibria. In the presence of a background
vorticity (γ ̸= 0), the two vortices undergo non-trivial but inte-
grable dynamics. A qualitative discussion of solutions is provided
here, based on the Hamiltonian phase portrait for the two-vortex
problem. See Stremler [16] for a previous discussion of the two-
vortex problem using the Weierstrass zeta-function, including
the two-vortex problem in a parallelogram domain, which is not
included in our formulation.

The Hamiltonian (21) for the two-vortex problem simplifies to

H = −Γ1Γ2 G(ν1, ν2; ν1, ν2) + const., (46)

since the Ĝ’s in (21) are constants. Thus the following function of
η ≡ ν1/ν2 (and η) is a constant of motion:

f (η, η) =
1
2π

log |P(η,
√
ρ)| −

1
4π

log |η| +
1

4π log ρ
(log |η|)2 .

(47)

he other constant of motion, Q + iP , can be written as (using
ν1 = ην2)

Q + iP = −iγ log ν − iΓ log η. (48)
2 1
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If the sum of circulations vanishes, then from (48) we get
η = const., which then implies that f = const.; the only possible
solutions are therefore relative equilibria. Since both |η| and
arg(η) are constant, rotating equilibria are ruled out in our model.
The velocities of the point vortices are given by (29), which in this
case simplify to
dw1

dt
=
Γ2

2π
K (η,

√
ρ) −

Γ2

4π
+
Γ2

2π
log |η|

log ρ
,

dw2

dt
=
Γ1

2π
K (1/η,

√
ρ) −

Γ1

4π
+
Γ1

2π
log |1/η|
log ρ

.

Using γ = Γ1 + Γ2 = 0 and (64), we can show from the second
quation above, that dw2

dt =
dw1
dt as expected from the preceding

rguments. Stationary equilibria are obtained by solving for the
eros of

(η, η) := K (η,
√
ρ) −

1
2

+
log |η|

log ρ
= 0.

Although the domain of η is the annulus ρ < |η| < 1/ρ, since we
have g(η, η) = −g(1/η, 1/η), we only need to consider zeros of g
in the fundamental domain ρ < |η| ≤ 1. Further, if η = ν1/ν2 is
a zero of g , then 1/η = ν2/ν1 represents the same zero but with
the vortices relabeled. It is readily verified using (68) that there
are three solutions, η = −1,±

√
ρ, in the fundamental annulus.

hese are the only three possible solutions. For all other values
f η ∈ Dζ , we obtain translating equilibria.
When there is a non-zero background vorticity, the two vor-

ices need not necessarily be in relative equilibrium. In this case,
rom the conservation of linear impulse, we get
dw2

dt
= −

Γ2

Γ1

dw1

dt
. (49)

he stationary equilibria for this system is the same as in the case
f γ = 0, i.e., η = −1,±

√
ρ. It is clear from (49) that there cannot

be any translating equilibria in this case since Γ1 ̸= −Γ2. The
Hamiltonian is given by (47), and a contour plot of the function
f (η, η) in the W -plane, where W = w1 − w2 and W = −i log η,
s shown in Fig. 2. The stationary equilibria in the W -plane are
W = π , W = −

i
2 log ρ, and W = π −

i
2 log ρ. Here we

ave chosen two values of ρ, first, ρ = exp(−2π ) which results
n a square domain (Fig. 2(a)), and second, ρ = exp(−3π/2)
hich results in a rectangular domain (Fig. 2(b)). In the case of
he square domain, there is a heteroclinic separatrix connecting

= π with W = −
i
2 log ρ, and W = π−

i
2 log ρ is a center. The

remaining three heteroclinic orbits seen in Fig. 2(a) are the same
by the double-periodicity. Thus, there are two regimes of motion,
the corresponding vortex trajectories are shown in Fig. 3.

In the case of the rectangular domain, there are three ho-
moclinic orbits, one connecting W = π with itself, and two
connecting W = −

i
2 log ρ with itself. There is also a center at

= π −
i
2 log ρ. There are thus three regimes of motion in

this case, and the corresponding vortex trajectories are shown in
Fig. 4.

5. Stationary equilibrium lattice configurations

A stationary equilibrium of N point vortices is a configuration
in which each vortex is completely stationary. In this case, the N
conditions

N∑
′

k=1

Γk K (νj/νk,
√
ρ) −

1
2

N∑
′

k=1

Γk +
1

log ρ

N∑
′

k=1

Γk log |νj/νk| = 0

for j = 1, . . . ,N, (50)

btained from (29), need to be satisfied. It is clear from (50)
hat the vortex strengths can be scaled freely. In what follows,
6

we consider equilibria with integer vortex strengths. We find
equilibria both with and without background vorticity. The sum
of vortex strengths vanishes when the background vorticity is
zero, i.e. γ =

∑N
k=1 Γk = 0, and the N conditions to be satisfied

can be written in a simpler form using (43):
N∑

′

k=1

Γk K (νj/νk,
√
ρ) +

Γj

2
+

P
log ρ

= 0 for j = 1, . . . ,N. (51)

Given the vortex positions, the constant of motion P can be ob-
tained from (30). We will use both forms of these conditions (50)
and (51).

Consider N point vortices located at the vertices of a polygon
in the annulus Dζ . The vortex positions can be written as νk =

r e2π i(k−1)/N , 1 ≤ k ≤ N , with ρ < r ≤ 1. For k = 1, there is a
vortex situated at ν1 = r . If N = 2m is even (m ∈ N>0), then there
is a vortex at νm+1 = −r and there are m− 1 pairs of vortices on
the circle |ζ | = r , appearing as complex conjugate pairs. On the
other hand, if N = 2m − 1 is odd (m ∈ N>0), then there are
simply m − 1 pairs of vortices on the circle |ζ | = r , appearing
as complex conjugate pairs. The properties (65), (66), (67), and
(68) of the K -function can then be applied to prove that various
configurations of vortices are in equilibrium, as we will show in
this section. These properties can be applied to pairs of vortices
with identical circulations and at complex conjugate positions,
because then the sums in (50) and (51) consist of pairs of terms
of the form K (ζ ,

√
ρ) + K (ζ ,

√
ρ) with |ζ | = 1, |ζ | =

√
ρ or

|ζ | = 1/
√
ρ.

It is important to note the difference between the shape of
the domain and the lattice structure of a vortex equilibrium. The
former is fixed to be a rectangular domain whereas we find both
rectangular and parallelogram lattices. Increasing the number of
vortices in the fundamental domain may be thought of as being
equivalent to rescaling the size of the domain. Here, we present
results valid for any number of vortices in a fundamental domain
of fixed size, while also pointing out the particular cases which
are equivalent to rescaling the domain. In our formulation, we
can rescale the domain multiple times horizontally, but only once
vertically.

5.1. Single-layered lattices

Consider N vortices of identical strength +1 arranged on a
polygon in Dζ as discussed above. The stationary conditions (50)
for this case are

N∑
′

k=1

K (νj/νk,
√
ρ) −

N − 1
2

= 0 for j = 1, . . . ,N. (52)

It must be noted that the first term in (52) arises from the mutual
interaction of the point vortices, whereas the second term is the
contribution of the background vorticity. Due to the rotational
symmetry of the polygon in Dζ , to show that the configuration
is stationary, it is sufficient to confirm that the point vortex at ν1
is stationary.

We consider the cases when N is even and when N is odd
separately. When N is even, i.e. N = 2mwithm ∈ N>0, there exist
m − 1 point vortices on both sides of the circle |ζ | = r between
ν1 and νm+1. The condition (52) for j = 1 is then satisfied since
using ν1 = r, νm+1 = −r , and νN−(k−2) = νk we get

m∑
k=2

[
K (r/νk,

√
ρ) + K (r/νk,

√
ρ)

]
+ K (−1,

√
ρ) −

2m − 1
2

= (m − 1) +
1
2

−
2m − 1

2
= 0,
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a
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Fig. 2. Phase portraits for the Hamiltonian given by (47) in the two-vortex problem. (a) A square domain results from choosing ρ = exp(−2π ). The red contours
re the heteroclinic separatrices that divide the square into two regimes, marked I and II. The corresponding point vortex trajectories are shown in Fig. 3. (b) A
ectangular domain resulting from the choice ρ = exp(−3π/2). There are three homoclinic separatrices, marked in red, which separate the rectangle into three
domains, marked I, II, and III. Regime II is further divided into IIA and IIB, but the only difference between these two regimes is that the direction of the vortex
motion is reversed between them. The corresponding point vortex trajectories are shown in Fig. 4. Note that the origin is a singularity (along with the three other
corners) corresponding to w1 = w2 .
Fig. 3. Vortex trajectories in a square domain with the Hamiltonian phase portrait given by Fig. 2(a). The blue and red trajectories correspond to the two vortices,
whose initial positions are marked by the disks. The arrows mark the direction of motion. (a) The two vortices chase each other in a counter-clockwise direction
on the same path in the case of the trajectories of regime I. (b) The trajectories of regime II follow distinct paths, with both the vortices moving in a clockwise
direction in this case.
on using (65) and (68) and keeping in mind that |r/νk| = |r/νk| =

1. See Figure Fig. 5(a) for the case of N = 4. For odd N =

m− 1 (m ∈ N>0), there are m− 1 point vortex pairs at complex
onjugate positions on the circle |ζ | = r , along with the vortex
t ν1 = r . We can show using (65) that (52) is again satisfied for
= 1:

m+1∑
k=2

[
K (r/νk,

√
ρ) + K (r/νk,

√
ρ)

]
− (m − 1)

= (m − 1) − (m − 1) = 0.

Thus the right hand side of (52) vanishes for any N , and the
polygonal ring configuration is a stationary equilibrium. Since
wk = −i log νk = 2π (k− 1)/N − i log r , the N point vortices form
a single-layered lattice configuration in Dz , equally spaced along
the line Im z = − log r .
7

Next, consider an alternating ring of N = 2m point vortices,
m ∈ N>0, such that m vortices have strengths +1 and m vortices
have strengths −1. Let the N vortices be equally spaced along the
circle |ζ | = r in Dζ , ρ < r ≤ 1, with alternating positive and
negative strengths. That is to say, the locations and strengths of
the point vortices are given by

ν2k−1 = r e2π i(k−1)/m, Γ2k−1 = +1, ν2k = r e2π i(2k−1)/2m,

Γ2k = −1, k = 1, . . . ,m. (53)

The total circulation vanishes, i.e., γ = 0, and hence the back-
ground vorticity also vanishes. By the rotational symmetry of
the configuration in Dζ and the invariance of the equations of
motion (29) with respect to t ↦→ −t and {Γj} ↦→ −{Γj}, it is
sufficient to confirm that the point vortex at ν1 with strength
Γ = +1 is stationary. The point vortices of strength, +1 as well
1
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t
l

a
a

Fig. 4. Vortex trajectories in a rectangular domain with the Hamiltonian phase portrait given by Fig. 2(b). Trajectories of regimes I (panel (a)) and III (panel (c))
show similar behavior as in the case of the square domain (Fig. 3). Trajectories of regime II are shown in panel (b). In this case, the two vortices move on open
paths and in opposite directions, further, there is a vortex exchange with a neighboring period window when either vortex reaches the boundary of the rectangle.
Fig. 5. Single-layered lattice equilibria of point vortices shown here for N = 4 in the fundamental rectangle. The cross represents a point vortex of strength +1, while
he filled disk represents a point vortex of strength −1. (a) Homogeneous equal strengths with γ ̸= 0, and (b) mixed strengths ±1 with γ = 0. The fundamental
attice is marked by solid lines.
s −1, appear in complex conjugate pairs. When m is even, there
re m−2 pairs of vortices off the real axis at complex conjugate
2

8

positions with strength +1, m
2 pairs of vortices off the real axis at

complex conjugate positions with strength −1, and one vortex at
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r with strength +1. The condition (51) is satisfied since (note
that P = −γ log r = 0):

m − 2
2

−
m
2

+ K (−1,
√
ρ) +

1
2

= 0.

ee Figure Fig. 5(b) for the case of m = 2. Similarly for odd
, there are m−1

2 vortices at complex conjugate positions with
strength +1, m

2 vortices at complex conjugate positions with
trength −1, so that for the point vortex at ν1 we have (us-
ng (51))
m − 1

2
−

m
2

+
1
2

= 0.

ence, the configuration (53) is a fixed equilibrium. In Dz , the
oint vortices with the strengths ±1 are arranged alternately
long the line Im z = − log r with the equal distance π/m be-
ween successive vortices, forming an alternating single-layered
attice.

.2. Double-layered lattices

Let us now arrange N = 2m point vortices equally along two
ircles in Dζ , such that there are m point vortices with strengths
1 along |ζ | = r1,

√
ρ < r1 ≤ 1, and m vortices with strengths

1 along |ζ | = r2, ρ < r2 ≤
√
ρ. We take the ratio between

he two radii to be fixed according to r2/r1 =
√
ρ. The reason

for choosing this value of the ratio is that |ζ | =
√
ρ is a circle of

ymmetry and appears in the second argument of the Schottky–
lein prime function, thus allowing us to use the properties in
ppendix A to describe equilibria. The locations of these point
ortices are specified by
(1)
2k−1 = r1e2π i(k−1)/m, Γ

(1)
2k−1 = 1, ν

(2)
2k = r2e2π i(k−1)/m,

Γ
(2)
2k = 1, k = 1, . . . ,m. (54)

ere the superscript (1) refers to vortices on the circle |ζ | = r1
nd the superscript (2) refers to vortices on the circle |ζ | = r2.
ue to the rotational symmetry in Dζ , it is sufficient to show that
he point vortices at ν1 = r1 and ν2 = r2 are stationary. Note that
he two layers of vortices are unstaggered with respect to each
ther.
The left hand side of (50) for the vortex at ν1 is

m∑
′

k=1

K (ν1/ν2k−1,
√
ρ) +

m∑
k=1

K (ν1/ν2k,
√
ρ)

−
N − 1

2
+

1
log ρ

m∑
k=1

log(r1/r2), (55)

nd for the vortex at ν2 is
m∑

k=1

K (ν2/ν2k−1,
√
ρ) +

m∑
′

k=1

K (ν2/ν2k,
√
ρ)

−
N − 1

2
+

1
log ρ

m∑
k=1

log(r2/r1). (56)

he arguments for equilibria are similar to those in Section 5.1.
e proceed by separating the cases of even m and odd m. Let

m = 2p, p ∈ N>0. For the vortex at ν1, we find from (55)

p − 1) + K (−1,
√
ρ) + 2(p − 1) + K (1/

√
ρ,

√
ρ)

+ K (−1/
√
ρ,

√
ρ) −

4p − 1
2

− p = 0,

n using (65), (67) and (68). For the vortex at ν2, Eq. (56) becomes

p · 0 + (p − 1) +
1

−
4p − 1

+ p = 0,

2 2 ν

9

on using (65), (66) and (68). Turning to the case of odd m, for
m = 2p − 1, p ∈ N>0, Eqs. (55) and (56) respectively give

(p − 1) + 2(p − 1) + 1 −
4p − 3

2
−

2p − 1
2

= 0

and (p − 1) −
4p − 3

2
+

2p − 1
2

= 0,

where we have used (65)–(68). The N point vortices in config-
uration (54) are thus in a stationary equilibrium. They form a
two-layered configuration in Dz with m vortices in one layer
arranged on the line Im(z) = − log r1 and m other vortices
arranged on the line Im(z) = − log r2 , as shown in Fig. 6(a). The
wo layers of vortices are unstaggered with respect to each other,
nd successive vortices in each layer are separated by 2π/m.
Let us now arrange N = 2m point vortices along two circles in

Dζ but with the strength of the vortices on the second circle all
qual to −1. The locations and strengths of these point vortices
re
(1)
2k−1 = r1e2π i(k−1)/m, Γ

(1)
2k−1 = 1, ν

(2)
2k = r2e2π i(k−1)/m,

Γ
(2)
2k = −1, k = 1, . . . ,m. (57)

n this case, the sum of the vortex strengths vanishes, i.e., γ = 0.
ue to the rotational symmetry in Dζ , it is sufficient to show that
he point vortices at ν1 = r1 and ν2 = r2 are stationary. We first
calculate
P

log ρ
= −

m
log ρ

(log r1 − log r2) =
m
2
.

The left hand side of condition (51) for ν1 and ν2 then takes the
respective forms of

m∑
′

k=1

K (ν1/ν2k−1,
√
ρ) −

m∑
k=1

K (ν1/ν2k,
√
ρ) +

1
2

+
m
2
,

−

m∑
′

k=1

K (ν2/ν2k,
√
ρ) +

m∑
k=1

K (ν2/ν2k−1,
√
ρ) −

1
2

+
m
2
.

When m = 2p, p ∈ N>0, these sums give

(p − 1) +
1
2

− 2(p − 1) − 1 − 1 +
1
2

+ p = 0

and − (p − 1) −
1
2

−
1
2

+ p = 0,

as desired. When m = 2p − 1, p ∈ N>0, the counting gives

(p − 1) − 2(p − 1) − 1 +
1
2

+
2p − 1

2
= 0

and − (p − 1) −
1
2

+
2p − 1

2
= 0,

again, as desired. Thus the vortices form a stationary equilibrium.
The configuration (57) in Dζ is equivalent to a double-layered
lattice in Dz , in which m point vortices with strength +1 are
equally spaced along the line Im z = − log r1, andm point vortices
with strength −1 are equally spaced along Im z = − log r2, such
hat the two layers are not staggered with respect to each other,
s shown in Fig. 6(b).
We can also arrange N = 2m = 4p point vortices with

trengths ±1 alternately on each circle, so that we have two
oncentric single-layered alternating layers (see Section 5.1). The
ortex strengths and positions in this case are

ν
(1)
2k−1 = r1e2π i(k−1)/p, Γ

(1)
2k−1 = 1, ν

(1)
2k = r1e2π i(2k−1)/2p, Γ

(1)
2k = −1,

(2)
2k−1 = r2e2π i(k−1)/p, Γ

(2)
2k−1 = ±1, ν

(2)
2k = r2e2π i(2k−1)/2p, Γ

(2)
2k = ∓1,

(58)

or k = 1, . . . , p. There is a vortex with strength Γ (1)
1 = 1 at

(1)
= r ; we can either have a vortex of strength Γ (2)

= 1 at
1 1 1
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Fig. 6. Double-layered lattice equilibria with (a) homogeneous equal strengths with γ ̸= 0, and (b), (c), (d) mixed strengths with γ = 0. The cross represents a point
ortex of strength +1 while the filled disk represents a point vortex of strength −1. The fundamental lattice is marked by solid lines.
(2)
1 = r2 or a vortex of strength Γ (2)

1 = −1 there. The sum of
ortex strengths on each circle is zero and we thus have γ = 0,
hich leads to P = 0. When p = 2n, n ∈ N>0, we count the
ontributions from (51) for the vortex at ν(1)1 as

1
2

+ (−1) ·n+1 · (n−1)+1 ·2 · (n−1)−1 ·2 ·n+1+1+
1
2

= 0,

hen Γ (2)
1 = +1, and

1
2

+ (−1) ·n+1 · (n−1)−1 ·2 · (n−1)+1 ·2 ·n−1−1+
1
2

= 0,

hen Γ (2)
1 = −1. The calculations for the vortex at ν(2)1 as well

s for the case p = 2n − 1, n ∈ N>0, are similar and we omit
he details. In all these cases the conditions (51) are satisfied.
ence, the alternate double-layered lattice is a fixed equilibrium
or any N and r1, r2 with r2 =

√
ρr1. These configurations are

quivalent to two layers of 2m point vortices with alternating
trengths ±1 arranged along the lines Im z = − log r1 and − log r2
n Dz , as shown in Figs. 6(c) and (d). The fundamental lattice is a
ectangular lattice in (a), (b), and (d), and a parallelogram lattice
n (c). The lattices in (a) and (b) can be interpreted as the lattices
n Fig. 5 but on a domain of reduced size [0, 2π )×[0,− 1

2 log ρ). In
act, lattices with N = 2m identical vortices on Dz can be thought
f as lattices with a single vortex on the domain [0, π/m) ×

0,− 1
2 log ρ). We thus see that the fundamental lattice in (a)

contains one point vortex. The fundamental lattices in (b), (c),
10
and (d) contain two point vortices; these are the three two-vortex
equilibria obtained in Section 4 for the case γ = 0.

We also consider staggered double-layered lattices in each of
the four types of equilibria studied above. If each layer in Dz
contains m point vortices, and further if the stagger between
the two layers is π/m, then we can show that the configura-
tion is an equilibrium configuration. In the examples shown in
Figs. 7(a) and (b), the fundamental lattices are parallelogram
lattices, whereas in Figs. 7(c) and (d), they are taken to be rect-
angular lattices containing interior vortices. In these examples,
there is one vortex in (a), and two vortices of equal and opposite
sign in (b) and (d), contained in the fundamental domain. These
two-vortex equilibria are discussed in Section 4 (the case γ = 0).
The example in (c) consists of a four-vortex equilibrium in the
fundamental domain.

5.3. Double-layered lattices with defects

Consider the following configuration consisting of N = 3m,
m ∈ N>0 point vortices in Dζ .

ν
(1)
k = r1e2π i(k−1)/2m, Γ

(1)
k = 1, k = 1, . . . , 2 m,

ν
(2)
k = r2e2π i(k−1)/m, Γ

(2)
k = −2, k = 1, . . . ,m,

(59)

where ρ < r2 ≤
√
ρ,

√
ρ < r1 ≤ 1 with r2 =

√
ρr1. In the funda-

mental domain Dz , 2m point vortices with strength +1 each are
arranged along the line Imz = − log r , with successive vortices
1
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eparated by π/m, whereas m point vortices with strength −2
ach are arranged along the line Imz = − log r2, with successive
ortices separated by 2π/m. The resulting configuration is a
ouble-layered lattice structure but with point vortices absent
rom the sites ζ = r2e2π i(2k−1)/2m for k = 1, . . . ,m along the line
mz = − log r2, in other words the lattice structure has periodic
‘defects’’.

Since the total circulation vanishes, the vortices need to satisfy
51) to be in equilibrium. We can calculate the last term in (51)
o be

P
log ρ

= −
1

log ρ
(2m log r1 − 2m log r2) = m.

Consider the vortex at ν1 = r1. There are always an even
umber of vortices on |ζ | = r1, so that the contribution to the
eft hand side of (51) from these vortices is 1

2 + (m − 1). The
emaining vortices contribute −4·(p−1)−2−2 whenm = 2p, and

−4 · (p− 1)− 2 when m = 2p− 1, p ∈ N>0. Accordingly, Eq. (51)
gives

1
2

+ (2p − 1) − 4 · (p − 1) − 2 − 2 +
1
2

+ 2p = 0

when m is even, and when m is odd we get

1
+ (2p − 2) − 4 · (p − 1) − 2 +

1
+ 2p − 1 = 0,
2 2 (

11
which shows that the vortex at ν(1)1 is stationary. A similar calcula-
tion shows that the vortex at ν(2)1 is also stationary. By rotational
ymmetry in Dζ , the double-layered lattice with defects at ζ =

2e2π i(2k−1)/2m, k = 1, . . . ,m is a fixed equilibrium. An example
onfiguration is shown in Fig. 8(a). The fundamental lattice here is
face-centered rectangular lattice, in which two vortices of equal
trengths +1 and one vortex of strength −2 are contained.
We can also consider two other configurations of N = 3m vor-

ices in a double-layered configuration with defects. These con-
igurations consist of an alternating layer of vortices of strength
and −2 on |ζ | = r1 and a layer with defects on |ζ | = r2. The

ayer with defects can be either staggered or unstaggered. The
ortex locations and circulations for the two configurations are
(1)
2k−1 = r1e2π i(k−1)/m, Γ

(1)
k = 1, ν

(1)
2k = r1e2π i(2k−1)/2m, Γ

(1)
k = −2,

(2)
k = r2e2π i(k−1)/m, Γ

(2)
k = 1, k = 1, . . . ,m,

nd
(1)
2k−1 = r1e2π i(k−1)/m, Γ

(1)
k = 2π, ν

(1)
2k = r1e2π i(2k−1)/2m, Γ

(1)
k = −2,

(2)
k = r2e2π ik/m, Γ

(2)
k = 1, k = 1, . . . ,m.

here ρ < r2 ≤
√
ρ < r1 ≤ 1 with r2 =

√
ρr1. In both cases,

he total circulation vanishes. The proof that these configurations
re equilibria has similar counting as before and we omit the
etails here. Example configurations are shown in Figs. 8(b) and
c) with the fundamental lattices being face-centered and face-
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Fig. 8. Double-layered lattice equilibria with defects and γ = 0. A point vortex with strength +1 is represented by a cross, and a point vortex with strength −2 is
represented by a gray disk. The fundamental lattice is marked by solid lines.
and body-centered rectangular lattices respectively. Each of these
is an equilibrium consisting of three vortices in the fundamental
lattice with γ = 0.

6. Summary and future directions

We have derived the equations of motion for N point vortices
in a rectangular doubly-periodic domain using the hydrodynamic
Green’s function. All of our equations are found to be consistent
with previously known results in the literature when the sum
of vortex strengths vanishes. The effect of a non-zero-sum of
vortex strengths appears as a constant background vorticity in
our theory. Previous authors [5,8] have invoked a rotating frame
of reference in which the background vorticity term disappears.
In our formulation there is no preferred origin and hence a
lack of rotational symmetry in the physical plane, which in
particular means that rigidly rotating lattice equilibria are not
covered here. We have explicitly shown that the two-vortex
problem is Liouville integrable for any sum of vortex strengths,
and provide a classification of dynamics based on the Hamiltonian
phase portrait. We also show that the three-vortex problem is
Liouville integrable when the sum of vortex strengths is zero,
but it may not be integrable when the sum of vortex strengths
is non-zero. We find several equilibrium lattice structures for
12
arbitrary N , including lattices with defects and inhomogeneous
vortex strengths. Although the conformal mapping we use maps
the annulus to a rectangular domain, the lattice structure need
not be rectangular and we find parallelogram as well as face and
body centered rectangular lattices. The lattices for larger N can be
rescaled and hence interpreted as lattices with N = 1, 2, 3, 4 in
a domain of reduced size. In particular, the N = 4 example that
we present in Fig. 7(c) appears to be new. The lattice equilibria
obtained here are all fixed equilibria.

Vortex equilibria and dynamics on a curved torus can be
considered by means of a stereographic projection to an annulus
where a Green’s function can be constructed [21]. In order to
obtain the hydrodynamic Green’s function which satisfies the
reciprocity condition on this domain, it is found that an additional
term is required [22]. A numerical method is used to obtain rela-
tive equilibria on a curved torus with a constant background vor-
ticity in Sakajo [23]. The hydrodynamic Green’s function obtained
in the present paper differs from all these preceding Green’s
functions.

We can consider a non-constant background vorticity in the
doubly-periodic domain. Recent work suggests that a Liouville-
type vorticity, which is exponentially related to the stream func-
tion, is a good candidate for such a background vorticity. Large
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amilies of solutions called ‘Liouville chains’ have been con-
tructed recently in the case of the unbounded plane [24,25]. A
ne-way interaction model with point vortices in a Liouville-type
ackground on a curved torus was studied recently by Sakajo
23],Sakajo and Krishnamurthy [26]. To the best of the authors’
nowledge, no previous work has considered a Liouville-type
quation in a doubly-periodic domain, although there are results
n vortices described by the sinh-Poisson equation [27].
O’Neil [28] numerically investigated the collapse of point vor-

ex lattices in a rotating frame of reference. Although there are
everal papers dealing with finite-time collapse in the unbounded
lane, collapse in a doubly-periodic domain is much less studied.
he equations of motion derived here could be used to study
ollapsing orbits of point vortices with a constant background
orticity. Another future direction is to consider the dynamics
f vortex patches in the doubly-periodic domain and to derive
he contour dynamics for the Euler equations making use of the
xplicit Green’s function available here [29,30].
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ppendix A. Schottky–Klein prime functions

The Schottky–Klein prime function is a special function de-
ined on multiply-connected circular domains [15]. The prime
unction defined on the annulus Dζ = {ζ ∈ C | ρ < |ζ | ≤ 1},
s essentially the P-function given by the infinite product

P(ζ ,
√
ρ) = (1 − ζ )

∞∏
k=1

(1 − ρkζ )(1 − ρk/ζ ). (60)

ote that P(ζ ,
√
ρ) has a simple zero at ζ = 1 in Dζ . The

K -function defined in terms of the logarithmic derivative of
P(ζ ,

√
ρ) is

(ζ ,
√
ρ) =

ζP ′(ζ ,
√
ρ)

P(ζ ,
√
ρ)

. (61)

ere, the prime denotes the derivative with respect to the first
rgument, thus P ′(ζ ,

√
ρ) =

dP(ζ ,
√
ρ)

dζ . We can deduce the infinite
series formula

K (ζ ,
√
ρ) =

ζ

ζ − 1
+

∞∑
k=1

(
−ρkζ

1 − ρkζ
+

ρk/ζ

1 − ρk/ζ

)
=

1
ζ − 1

+ O(1) as ζ → 1, (62)

howing that K (ζ ,
√
ρ) has a simple pole singularity at ζ = 1.

The P-function satisfies the following properties

(ρζ ,
√
ρ) = −(1/ζ )P(ζ ,

√
ρ)

and P(1/ζ ,
√
ρ) = −(1/ζ )P(ζ ,

√
ρ). (63)
13
It can be verified from the above definitions that the K -function
satisfies the useful identity:

K (ρζ ,
√
ρ) = K (ζ ,

√
ρ) − 1 = −K (1/ζ ,

√
ρ). (64)

consequence of the second equality in (64) is

(ζ ,
√
ρ) + K (ζ ,

√
ρ) = 1 on |ζ | = 1, (65)

since on |ζ | = 1 with ζ = 1/ζ . We also have

K (ζ ,
√
ρ) + K (ζ ,

√
ρ) = 0 on |ζ | =

√
ρ, (66)

K (ζ ,
√
ρ) + K (ζ ,

√
ρ) = 2 on |ζ | = 1/

√
ρ. (67)

o prove (66), note that Eq. (64) can also be written as K (ρ/ζ ,
√
ρ)

= −K (ζ ,
√
ρ). Similarly, it can also be written as K (ρ2ζ ,

√
ρ) =

K (ρζ ,
√
ρ)− 1 = K (ζ ,

√
ρ)− 2 = −K (1/ρζ ,

√
ρ), which leads to

(67). Setting ζ = 1 in (65), ζ = ±
√
ρ in (66), and ζ = ±1/

√
ρ in

67) gives us the useful formulae:

(−1,
√
ρ) = 1/2, K (±

√
ρ,

√
ρ) = 0,

and K (±1/
√
ρ,

√
ρ) = 1. (68)

We finally mention that for numerical computations, the above
pecial functions are all evaluated using a rapidly convergent
aurent series for the prime function in the annulus, see Crowdy
15,31] for details.

ppendix B. Double periodicity of the Green function
(ζ, ν; ζ, ν)

We first check the following formulae of P(ζ ,
√
ρ) for n ≥ 1

by induction.

P(ρnζ ,
√
ρ) = (−1)n

1
ρn(n−1)/2

1
ζ n

P(ζ ,
√
ρ), P(ζ/ρn,

√
ρ)

= (−1)n
ζ n

ρn(n+1)/2 P(ζ ,
√
ρ).

or n = 1, from the definition, it is easy to see that

(ρζ ,
√
ρ) = (1 − ρζ )

∏
n≥1

(1 − ρn+1ζ )(1 − ρn−1(1/ζ ))

=
(1 − 1/ζ )
(1 − ζ )

P(ζ ,
√
ρ) = −

P(ζ ,
√
ρ)

ζ
,

P(ζ/ρ,
√
ρ) = (1 − ζ/ρ)

∏
n≥1

(1 − ρn−1ζ )(1 − ρn+1(1/ζ ))

= −
ζ

ρ
P(ζ ,

√
ρ).

ssume that they hold for n − 1. Then we have

P(ρ · (ρn−1ζ ),
√
ρ) = −

1
ρn−1ζ

P(ρn−1ζ ,
√
ρ)

= −
1

ρn−1ζ
· (−1)n−1 1

ρ(n−1)(n−2)/2

1
ζ n−1 P(ζ ,

√
ρ)

= (−1)n
1

ρn(n−1)/2

1
ζ n

P(ζ ),

P
(
1
ρ

·

(
ζ

ρn−1

)
,
√
ρ

)
= −

ζ

ρn P
(

ζ

ρn−1 ,
√
ρ

)
= −

ζ

ρn · (−1)n−1 ζ n−1

ρn(n−1)/2 P(ζ ,
√
ρ)

= (−1)n
ζ n

ρn(n+1)/2 P(ζ ,
√
ρ).

They are expressed in one formula for n ∈ Z.

P(ρnζ ,
√
ρ) = (−1)n

1 1
P(ζ ,

√
ρ). (69)
ρn(n−1)/2 ζ n
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F
w

=

=

F

H
p

=

=

or convenience, we introduce a parameter A = −
1
2π log ρ in

hat follows. It follows from (69) that we obtain

1
2π

log
⏐⏐⏐⏐P (

ρn ζ

ν
,
√
ρ

)⏐⏐⏐⏐
1
2π

log
⏐⏐⏐⏐(−1)n

1
ρn(n−1)/2

(
ν

ζ

)n

P
(
ζ

ν
,
√
ρ

)⏐⏐⏐⏐
n(n − 1)

2
A −

n
2π

log
⏐⏐⏐⏐ζν

⏐⏐⏐⏐ +
1
2π

log
⏐⏐⏐⏐P (

ζ

ν
,
√
ρ

)⏐⏐⏐⏐ . (70)

or n ∈ Z, it is easy to confirm that

1
4π

log
⏐⏐⏐⏐ρn ζ

ν

⏐⏐⏐⏐ = −
n
2
A +

1
4π

log
⏐⏐⏐⏐ζν

⏐⏐⏐⏐ , (71)

1
4π log ρ

(
log

⏐⏐⏐⏐ρn ζ

ν

⏐⏐⏐⏐)2

= −
1

8π2A

(
−2πnA + log

⏐⏐⏐⏐ζν
⏐⏐⏐⏐)2

= −
1

8π2A

(
4π2n2A2

− 4πnA log
⏐⏐⏐⏐ζν

⏐⏐⏐⏐
+

(
log

⏐⏐⏐⏐ζν
⏐⏐⏐⏐)2

)

= −
n2

2
A +

n
2π

log
⏐⏐⏐⏐ζν

⏐⏐⏐⏐
+

1
4π log ρ

(
log

⏐⏐⏐⏐ζν
⏐⏐⏐⏐)2

. (72)

ence, owing to (69), (71) and (72) yield, we have the doubly-
eriodic nature (8b). For n,m ∈ Z and ζ , ν ∈ Dζ ,

G(ρnζ , ρmν; ρnζ , ρmν) =
1
2π

log
⏐⏐⏐⏐P (

ρn−m ζ

ν
,
√
ρ

)⏐⏐⏐⏐
−

1
4π

log
⏐⏐⏐⏐ρn−m ζ

ν

⏐⏐⏐⏐ +
1

4π log ρ

(
log

⏐⏐⏐⏐ρn−m ζ

ν

⏐⏐⏐⏐)2

(n − m)(n − m − 1)
2

A −
n − m
2π

log
⏐⏐⏐⏐ζν

⏐⏐⏐⏐
+

1
2π

log
⏐⏐⏐⏐P (

ζ

ν
,
√
ρ

)⏐⏐⏐⏐ +
n − m

2
A

−
1
4π

log
⏐⏐⏐⏐ζν

⏐⏐⏐⏐ −
(n − m)2

2
A +

n − m
2π

log
⏐⏐⏐⏐ζν

⏐⏐⏐⏐
+

1
4π log ρ

(
log

⏐⏐⏐⏐ζν
⏐⏐⏐⏐)2

G(ζ , ν; ζ , ν).

References

[1] J.C. Mcwilliams, The emergence of isolated coherent vortices in turbulent
flow, J. Fluid Mech. 146 (1984) 21–43.

[2] J. Jiménez, A. Guegan, Spontaneous generation of vortex crystals from
forced two-dimensional homogeneous turbulence, Phys. Fluids 19 (8)
(2007) 085103.

[3] C. Geldhauser, M. Romito, The point vortex model for the Euler equation,
AIMS Math. 4 (3) (2019) 534–575, http://dx.doi.org/10.3934/math.2019.3.
534.

[4] R.P. Feynman, Chapter II application of quantum mechanics to liquid
helium, in: Progress in low temperature physics, Elsevier, 1955, pp. 17–53.
14
[5] V. Tkachenko, On vortex lattices, Sov. Phys. JETP 22 (6) (1966) 1282–1286.
[6] P.K. Newton, G. Chamoun, Vortex lattice theory: A particle interaction

perspective, SIAM Rev. 51 (3) (2009) 501–542.
[7] R. Benzi, B. Legras, Wave-vortex dynamics, J. Phys. A: Math. Gen. 20 (15)

(1987) 5125–5144.
[8] K.A. O’Neil, On the Hamiltonian dynamics of vortex lattices, J. Math. Phys.

30 (6) (1989) 1373–1379.
[9] K.A. O’Neil, Symmetric configurations of vortices, Phys. Lett. A 124 (9)

(1987) 503–507, http://dx.doi.org/10.1016/0375-9601(87)90053-3.
[10] J.B. Weiss, J.C. McWilliams, Nonergodicity of point vortices, Phys. Fluids A:

Fluid Dynamics 3 (5) (1991) 835–844.
[11] A.A. Kilin, E.M. Artemova, Integrability and chaos in vortex lattice

dynamics, Regul. Chaotic Dyn. 24 (2019) 101–113.
[12] M. Abramowitz, I.A. Stegun (Eds.), Handbook of mathematical functions,

Dover Books on Mathematics, Dover Publications, Mineola, NY, 1965.
[13] M. Stremler, H. Aref, Motion of three point vortices in a periodic par-

allelogram, J. Fluid Mech. 392 (1999) 101–128, http://dx.doi.org/10.1017/
S002211209900542X.

[14] D. Crowdy, On rectangular vortex lattices, Appl. Math. Lett. 23 (1) (2010)
34–38.

[15] D. Crowdy, Solving Problems in Multiply Connected Domains, in: CBMS-
NSF Regional Conference Series in Applied Mathematics, Society for
Industrial & Applied Mathematics, New York, NY, 2020.

[16] M.A. Stremler, On relative equilibria and integrable dynamics of point
vortices in periodic domains, Theor. Comput. Fluid Dyn. 24 (1–4) (2010)
25–37.

[17] K. Modin, M. Viviani, Integrability of point-vortex dynamics via symplectic
reduction: A survey, Arnold Math. J. 7 (3) (2020) 357–385, http://dx.doi.
org/10.1007/s40598-020-00162-8.

[18] C.C. Lin, On the motion of vortices in two dimensions: I. existence of
the Kirchhoff-Routh function, Proc. Natl. Acad. Sci. USA 27 (12) (1941)
570–575.

[19] C.C. Lin, On the motion of vortices in two dimensions: II. Some further
investigations on the Kirchhoff-Routh function, Proc. Natl. Acad. Sci. USA
27 (12) (1941) 575–577.

[20] P.K. Newton, The N-Vortex Problem: Analytical Techniques, in: Applied
Mathematical Sciences, Springer New York, 2001, http://dx.doi.org/10.
1007/978-1-4684-9290-3.

[21] C.C. Green, J.S. Marshall, Green’s function for the Laplace–Beltrami operator
on a toroidal surface, Proc. Roy. Soc. A 469 (2149) (2013) 20120479.

[22] T. Sakajo, Y. Shimizu, Point vortex interactions on a toroidal surface, Proc.
Roy. Soc. A (2191) (2016) 20160271.

[23] T. Sakajo, Vortex crystals on the surface of a torus, Philos. Trans. Roy. Soc.
A 377 (2158) (2019) 20180344.

[24] V.S. Krishnamurthy, M.H. Wheeler, D.G. Crowdy, A. Constantin, Steady
point vortex pair in a field of Stuart-type vorticity, J. Fluid Mech. 874
(2019) R1, http://dx.doi.org/10.1017/jfm.2019.502.

[25] V.S. Krishnamurthy, M.H. Wheeler, D.G. Crowdy, A. Constantin, Liouville
chains: new hybrid vortex equilibria of the two-dimensional Euler equa-
tion, J. Fluid Mech. 921 (2021) A1, http://dx.doi.org/10.1017/jfm.2021.
285.

[26] T. Sakajo, V.S. Krishnamurthy, Quantized point vortex equilibria in a one-
way interaction model with a Liouville-type background vorticity on a
curved torus, J. Math. Phys. 63 (6) (2022) 063101, http://dx.doi.org/10.
1063/5.0062659.

[27] B.N. Kuvshinov, T.J. Schep, Double-periodic arrays of vortices, Phys. Fluids
12 (12) (2000) 3282–3284, http://dx.doi.org/10.1063/1.1321262.

[28] K.A. O’Neil, Collapse of point vortex lattices, Physica D 37 (1–3) (1989)
531–538.

[29] N.J. Zabusky, M. Hughes, K. Roberts, Contour dynamics for the Euler
equations in two dimensions, J. Comput. Phys. 30 (1) (1979) 96–106,
http://dx.doi.org/10.1016/0021-9991(79)90089-5.

[30] D. Crowdy, A. Surana, Contour dynamics in complex domains, J. Fluid
Mech. 593 (2007) 235–254, http://dx.doi.org/10.1017/s002211200700866x.

[31] D. Crowdy, The Schottky-Klein prime function on the Schottky double of
planar domains, Comput. Methods Funct. Theory 10 (2) (2010) 501–517,
http://dx.doi.org/10.1007/bf03321778.

http://refhub.elsevier.com/S0167-2789(23)00082-9/sb1
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb1
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb1
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb2
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb2
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb2
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb2
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb2
http://dx.doi.org/10.3934/math.2019.3.534
http://dx.doi.org/10.3934/math.2019.3.534
http://dx.doi.org/10.3934/math.2019.3.534
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb4
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb4
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb4
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb5
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb6
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb6
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb6
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb7
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb7
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb7
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb8
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb8
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb8
http://dx.doi.org/10.1016/0375-9601(87)90053-3
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb10
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb10
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb10
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb11
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb11
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb11
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb12
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb12
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb12
http://dx.doi.org/10.1017/S002211209900542X
http://dx.doi.org/10.1017/S002211209900542X
http://dx.doi.org/10.1017/S002211209900542X
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb14
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb14
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb14
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb15
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb15
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb15
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb15
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb15
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb16
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb16
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb16
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb16
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb16
http://dx.doi.org/10.1007/s40598-020-00162-8
http://dx.doi.org/10.1007/s40598-020-00162-8
http://dx.doi.org/10.1007/s40598-020-00162-8
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb18
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb18
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb18
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb18
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb18
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb19
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb19
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb19
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb19
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb19
http://dx.doi.org/10.1007/978-1-4684-9290-3
http://dx.doi.org/10.1007/978-1-4684-9290-3
http://dx.doi.org/10.1007/978-1-4684-9290-3
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb21
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb21
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb21
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb22
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb22
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb22
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb23
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb23
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb23
http://dx.doi.org/10.1017/jfm.2019.502
http://dx.doi.org/10.1017/jfm.2021.285
http://dx.doi.org/10.1017/jfm.2021.285
http://dx.doi.org/10.1017/jfm.2021.285
http://dx.doi.org/10.1063/5.0062659
http://dx.doi.org/10.1063/5.0062659
http://dx.doi.org/10.1063/5.0062659
http://dx.doi.org/10.1063/1.1321262
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb28
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb28
http://refhub.elsevier.com/S0167-2789(23)00082-9/sb28
http://dx.doi.org/10.1016/0021-9991(79)90089-5
http://dx.doi.org/10.1017/s002211200700866x
http://dx.doi.org/10.1007/bf03321778

	The N-vortex problem in a doubly periodic rectangular domain with constant background vorticity
	Introduction
	Hydrodynamic Green's function and stream function
	The stream function

	Hamiltonian structure and equations of motion
	Conserved quantities and integrability
	Comparison with previous results

	Two-vortex problem
	Stationary equilibrium lattice configurations
	Single-layered lattices
	Double-layered lattices
	Double-layered lattices with defects

	Summary and future directions
	Declaration of Competing Interest
	Data availability
	Acknowledgment
	Appendix A. Schottky–Klein prime functions
	Appendix B. Double periodicity of the Green function G(ζ, ν; ζ, ν)
	References


