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Abstract

In this work, we study the existence of (restricted) Chebyshev centers and the set-valued generaliza-

tion of strong proximinality in Banach spaces. We mainly explore the concepts above in L1-predual

spaces and their subspaces.

Although it is well-known that a Chebyshev center exists for compact subsets of an L1-predual

space, we approach this problem differently. Interestingly, this approach leads us to an explicit

description of the Chebyshev centers of the compact subsets of the spaces in question. Furthermore,

we establish the validity of a geometric identity in terms of the (restricted) Chebyshev radius in

L1-predual spaces and characterize L1-predual spaces using it. This identity was first established

in 2000 by R. Esṕınola, A. Wísnicki and J. Wośko for the space of real-valued continuous functions

on a compact Hausdorff space S, denoted by C(S), which forms a major subclass of the L1-predual

spaces. We also yield a few geometric characterizations of the ideals in L1-predual spaces. In

particular, we obtain characterizations for a compact convex subset of a locally convex topological

space to be a Choquet simplex.

The study of strong (ball) proximinality gained momentum in the recent years and the main

motivation to study this property is it results in some “nice” continuity properties of the metric

projections. With the same motivation, we extend the study of the set-valued generalization of

strong proximinality, which was initiated by J. Mach in the literature. This generalization is termed

as property-(P1) by Mach. For a non-empty closed convex subset V of a Banach space X and a

family F of non-empty closed bounded subsets of X, property-(P1) is defined for a triplet (X,V,F ).

We study the interconnnection between property-(P1) of a subspace and that of its closed unit ball

in a Banach space in detail. Expanding on some of the works by C. R. Jayanarayanan and S.

Lalithambigai, we establish the equivalence of strong ball proximinality and property-(P1) of the

closed unit ball of the finite co-dimensional subspaces of the L1-predual spaces. For a general

subspace of a Banach space, we prove that property-(P1) of the closed unit ball of the subspace

implies property-(P1) of the subspace itself. We also establish a similar implication in the case of

the Hausdorff metric continuity of the restricted Chebyshev-center map of the subspace and that of

its closed unit ball.

We further investigate property-(P1) and the continuity properties of the restricted Chebyshev-

center maps in vector-valued continuous function spaces. We derive that if Y is a proximinal finite

co-dimensional closed linear subspace of c0 then the closed unit ball of Y satisfies property-(P1)

for the non-empty closed bounded subsets of ℓ∞ and the restricted Chebyshev-center map of the

closed unit ball of Y is Hausdorff metric continuous on the class of non-empty closed bounded

subsets of ℓ∞ with equi-bounded restricted Chebyshev radii. We also prove a few stability results

of property-(P1) and the continuity of the restricted Chebyshev-center maps in ℓ∞-direct sum of

Banach spaces. Finally, we discuss a few positive results on the existence of restricted Chebyshev

centers and property-(P1) of an ideal in an L1-predual space and in particular, of an L1-predual

space in its bidual.
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Chapter 0

List of Notations

N the set of natural numbers

R the set of real numbers

X a Banach space over the field R

X∗ the dual space of X

X∗∗ the bidual of X or in other words, the set (X∗)∗

BX [x, r] the closed ball in X centered at x ∈ X and radius r > 0

BX(x, r) the open ball in X centered at x ∈ X and radius r > 0

BX the unit ball of X, that is, the set BX [0, 1]

SX the unit sphere of X, that is, the set {x ∈ X : ∥x∥ = 1}

ker(f) the kernel of a linear function f : X → Z, for Banach spaces X and Z.

Y ⊥ the annihilator of a closed linear subspace Y of X, that is, the set {x∗ ∈ X∗ :

x∗(y) = 0, for each y ∈ Y }

span (A) the linear span of a set A

X ∼= Z X is isometric and linearly isomorphic to Z, for Banach spaces X and Z

x+A the set {x+ a : a ∈ A}, for an element x ∈ X and subset A of X

λA the set {λa : a ∈ A}, for a subset A of X and λ > 0

conv(K) the convex hull of a set K

ext(K) the set of all extreme points of a set K

S(µ) the support of a regular Borel measure µ on a compact Hausdorff space

CV(X) the set {V ⊆ X : V ̸= ∅, V is closed and convex.}

CB(V ) the set {B ⊆ V : B ̸= ∅, B is closed and bounded.}, for each V ∈ CV(X)

K(V ) the set {F ⊆ V : F ̸= ∅ and F is compact.}, for each V ∈ CV(X)

F(V ) the set {F ⊆ V : F ̸= ∅ and F is finite.}, for each V ∈ CV(X)
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F4(V ) the set {F ⊆ V : F ̸= ∅, F is a four-point set.}, for each V ∈ CV(X)

S(V ) the set {{x} : x ∈ V }, for each V ∈ CV(X)

d(x,A) the distance of a point x ∈ X and a non-empty bounded subset A of X, defined

as the number inf{∥x− a∥ : a ∈ A}

d(A,B) the distance between two non-empty bounded subsets A and B of X, defined as

the number inf{∥a− b∥ : a ∈ A, b ∈ B}

Cb(T,X) the Banach space of X-valued bounded continuous functions on a topological space

T , equipped with the supremum norm

C(S) the Banach space of real-valued continuous functions on a compact Hausdorff space

S, equipped with the supremum norm

C0(T ) the Banach space of real-valued continuous functions on a locally compact Haus-

dorff space T vanishing at infinity, equipped with the supremum norm

A(K) the Banach space of real-valued affine continuous functions on a compact convex

subset K of a locally convex topological vector space (in short, lctvs), equipped

with the supremum norm
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Chapter 1

Introduction

In approximation theory, the concept of best simultaneous approximation, also called restricted

Chebyshev center, in normed linear spaces is of great interest and significance. This concept is

the root of one of the classical problems in this field of study: the restricted Chebyshev center

problem. From a geometric standpoint, this problem deals with the existence of a ball of minimal

radius, among those centered at the points in a given closed convex subset of a normed linear space,

to cover another given bounded set of data points in the space. The recent article [3] is a survey

dedicated to understanding the current state of this problem.

In this thesis, we study the restricted Chebyshev center problem and a stronger notion, namely

property-(P1), related to restricted Chebyshev centers for the class of all Banach spaces and its

specific subclasses. In the following sections, we define some basic notions and notations apart from

those defined in Chapter 0 relevant to this work. Moreover, we provide an overview of the existing

literature, this work’s motivation and objectives and the thesis’s structural outline.

1.1 Basic definitions and notations

In this thesis, we consider Banach spaces over R and all the subspaces considered are assumed to be

linear and norm-closed.

Let X be a Banach space. We consider X as a subspace of X∗∗ under the canonical embedding. If

Y is a subspace of X then the unit ball of Y , defined as BX ∩Y , is denoted by BY . For each element

x ∈ X, V ∈ CV(X) and non-empty bounded subset A of X, we define r(x,A) = sup{∥x−a∥ : a ∈ A}.
The quantity radV (A) := infv∈V r(v,A) is called the restricted Chebyshev radius of A in V . The

elements in the set centV (A) := {v ∈ V : A ⊆ BX [v, radV (A)]} are called the restricted Chebyshev

centers of A in V . If V = X, then radX(A) is called the Chebyshev radius of A in X and the

elements in centX(A) are called the Chebyshev centers of A in X.

Let V ∈ CV(X) and A be a non-empty bounded subset of X. Let A denote the norm-closure of

A. It is easy to observe that radV (A) = radV (A). Indeed, radV (A) ≤ radV (A) and for each ε > 0,

radV (A) ≤ radV (A) + ε.

Definition 1.1.1 ([48]). Let X be a Banach space, V ∈ CV(X) and F ⊆ CB(X).

(i) We say X admits centers for F if for each F ∈ F , centX(F ) ̸= ∅.
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(ii) The pair (V,F ) is said to satisfy the restricted center property (in short, r.c.p.) if for each

F ∈ F , centV (F ) ̸= ∅.

(iii) Let (V,F ) have r.c.p.. The set-valued function on F , denoted by centV (.), which maps

each F ∈ F to the set centV (F ) is called the restricted Chebyshev-center map on F .

In particular, if V = X, then the map centX(.) is called the Chebyshev-center map on F .

Remark 1.1.2 ([31]). Consider the notations as in Definition 1.1.1.

(i) If (V,S(X)) satisfies r.c.p., then V is said to be proximinal in X. In this case, it is easy to

see that for each x ∈ X, the number radV ({x}) = d(x, V ). For each x ∈ X, we denote the set

centV ({x}) by PV (x).

(ii) Let V be proximinal in X. In this case, the map centV (.) is called the metric projection

from X onto V and is denoted by PV .

Given a set V ∈ CV(X), the continuity properties of the map centV (.) is discussed with respect

to the Hausdorff metric. Given a Banach space X, the Hausdorff metric, denoted by dH , is defined

as follows: For each B1, B2 ∈ CB(X),

dH(B1, B2) = inf{a > 0: B1 ⊆ B2 + aBX , B2 ⊆ B1 + aBX}.

Let T be a topological space. Let Φ be a set-valued map from T into CB(X). We say Φ is lower

Hausdorff semi-continuous (l.H.s.c.) at t ∈ T if for each ε > 0, there exists a neighbourhood N (t, ε)

of t such that for each s ∈ N (t, ε) and z ∈ Φ(t),

Φ(s) ∩BX(z, ε) ̸= ∅.

The map Φ is upper Hausdorff semi-continuous (u.H.s.c.) at t ∈ T if for each ε > 0, there exists a

neighbourhood N (t, ε) of t such that for each s ∈ N (t, ε),

Φ(s) ⊆ Φ(t) + εBX .

We say Φ is l.H.s.c. (or u.H.s.c. respectively) on T if Φ is l.H.s.c. (or u.H.s.c. respectively) at each

point t ∈ T . The map Φ is Hausdorff metric continuous on T if for each t ∈ T , the single-valued

map Φ from T into the metric space (CB(X), dH) is continuous at t ∈ T . The map Φ is Hausdorff

metric continuous on T if and only if Φ is both l.H.s.c. and u.H.s.c. on T ; see [31, Remark 2.8]. We

refer to [31] for the terminologies defined above related to the (semi-) continuity properties of the

set-valued maps.

We now recall a few concepts which are stronger than proximinality. Before proceeding, we

introduce the following notations.

Notation 1.1.3. Let X be a Banach space, B ∈ CB(X), V ∈ CV(X) and λ > 0.

(i) Sλ(B) : = {x ∈ X : r(x,B) ≤ λ}.

(ii) centV (B, λ) : = {v ∈ V : r(v,B) ≤ radV (B) + λ} = V ∩ SradV (B)+λ(B).

By the definition of restricted Chebyshev centers, we have centV (B) = V ∩ SradV (B)(B). In

particular, for each x ∈ X, the set centV ({x}, λ) is denoted by PV (x, λ) (see [23]).

Definition 1.1.4. Let X be a Banach space, Y be a subspace of X and V ∈ CV(X).
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(i) ([23]) The set V is said to be strongly proximinal at x ∈ X if PV (x) ̸= ∅ and for each ε > 0,

there exists δ(ε, x) > 0 such that PV (x, δ) ⊆ PV (x) + εBX .

We say that V is strongly proximinal in X if it is strongly proximinal at each point in X.

(ii) ([8]) A subspace Y of a Banach space X is said to be ball proximinal in X if for each x ∈ X,

(BY ,S(X)) satisfies r.c.p..

A subspace Y of a Banach space X is said to be strongly ball proximinal in X if BY is strongly

proximinal in X.

(iii) ([62]) A subspace Y of a Banach space X is said to have the 1 1
2 -ball property in X if for

each y ∈ Y , x ∈ X and r1, r2 > 0, the conditions ∥x − y∥ ≤ r1 + r2 and Y ∩ BX [x, r2] ̸= ∅
imply that for each ε > 0, Y ∩BX [y, r1 + ε] ∩BX [x, r2 + ε] ̸= ∅.

An equivalent way of saying that Y has 1 1
2 -ball property in X is that for each x ∈ X and r > 0,

if ∥x∥ ≤ r + 1 and Y ∩BX [x, r] ̸= ∅, then for each ε > 0, Y ∩BX [0, 1 + ε] ∩BX [x, r + ε] ̸= ∅.

We next define the set-valued generalization of strong proximinality called as property-(P1).

The following definition of this property is a reformulation of that given by J. Mach in [47]. The

equivalence of these two definitions has been justified in [40].

Definition 1.1.5 ([40, Definition 1.1]). Let X be a Banach space, V ∈ CV(X) and F ⊆ CB(X)

such that (V,F ) has r.c.p.. The triplet (X,V,F ) has property-(P1) if for each ε > 0 and F ∈ F ,

there exists δ(ε, F ) > 0 such that centV (F, δ) ⊆ centV (F ) + εBX .

Examples of triplets satisfying property-(P1) can be found in [47].

Remark 1.1.6. The following statements are equivalent to Definition 1.1.5.

(i) The pair (V,F ) has r.c.p. and for each F ∈ F and a sequence {vn} ⊆ V , if r(vn, F ) →
radV (F ), then d(vn, centV (F )) → 0.

(ii) The pair (V,F ) has r.c.p. and for each ε > 0 and F ∈ F , there exists δ(ε, F ) > 0 such that

S(F, δ) := sup{d(v, centV (F )) : v ∈ V and r(v, F ) ≤ radV (F ) + δ} < ε.

Some of the main objects of study in this thesis are L1-predual spaces, M -ideals and ideals. We

now define these notions one by one.

Definition 1.1.7 ([43]). A Banach space X is said to be an L1-predual space if X∗ is isometric to

an L1(µ) space for some positive measure µ.

Few classical examples of L1-predual spaces are the space C(S) for each compact Hausdorff space

S; the space C0(T ) for each locally compact Hausdorff space T and the space A(K) for each Choquet

simplex K. One can refer [43] for more examples of an L1-predual space. We refer to [1] and [7] for

the notions related to Choquet simplex and Choquet theory in general.

Definition 1.1.8. Let X be a Banach space.

(i) ([28]) A linear projection P on X is said to be an L-projection (M-projection) if for each

x ∈ X, ∥x∥ = ∥Px∥+ ∥x− Px∥ (∥x∥ = max{∥Px∥, ∥x− Px∥}).

(ii) ([28]) A subspace J of X is said to be an L-summand (M-summand) in X if it is the range

of an L-projection (M -projection).
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(iii) ([28]) A subspace J of X is said to be an M -ideal in X if J⊥ is an L-summand.

(iv) ([24]) A subspace Y of a Banach space X is an ideal in X if there exists a norm one linear

projection P on X∗ such that ker(P ) = Y ⊥.

Clearly,M -summands areM -ideals (see the discussion in [28, p. 2]) andM -ideals are ideals. Rao

proved in [49, Proposition 1] that a subspace Y of an L1-predual space is an ideal in X if and only

if Y itself is an L1-predual. The concept of M -ideals is stronger than strong proximinality; see [28]

and [14, Proposition 3.3]. One can refer to [24] and [28] for a detailed study of ideals and M -ideals

respectively.

1.2 Literature review and objectives

We begin this section by stating the restricted Chebyshev center problem.

Question 1.2.1 (Restricted Chebyshev center problem). Let X be a Banach space, V ∈ CV(X)

and B ∈ CB(X). Does there exist v0 ∈ V such that radV (B) = r(v0, B)?

In Question 1.2.1, if V = X then we call it simply the Chebyshev center problem. For most of

this work, we investigate Question 1.2.1 and related questions in L1-predual spaces. The Chebyshev

center problem for the compact subsets of L1-predual spaces is solved in the literature. It is an easy

consequence of the results in [9, Corollary 3.4], [45, Theorem 4.8, p. 38 and Theorem 6.1, p. 62]. We

formally state it as follows:

Proposition 1.2.2. Let X be an L1-predual space. Then for each F ∈ K(X), centX(F ) ̸= ∅.

In [6, Corollary 4.8], the authors proved the existence of a Choquet simplex K such that

centA(K)(B) = ∅ for some bounded set B ⊆ A(K). Nevertheless, for a compact Hausdorff space S

and B ∈ CB(C(S)), J. D. Ward described the elements in centC(S)(B) along with its non-emptiness

as follows:

Theorem 1.2.3 ([61, Theorem I.2.2]). Let S be a compact Hausdorff space. Let B ∈ CB(C(S)).
Consider the following functions and number : for each t ∈ S,

mB(t) = inf{b(t) : b ∈ B},

nB(t) = lim inf
s→t

mB(s),

MB(t) = sup{b(t) : b ∈ B},

NB(t) = lim sup
s→t

MB(s)
(1.1)

and

rB =
1

2
sup{NB(t)− nB(t) : t ∈ S}. (1.2)

Then the set centC(S)(B) is non-empty, radC(S)(B) = rB and

centC(S)(B) = {f ∈ C(S) : NB − rB ≤ f ≤ nB + rB}. (1.3)

P. W. Smith and Ward provided the following necessary and sufficient condition for the existence

of a restricted Chebyshev center in a closed convex subset of the space C(S).

Theorem 1.2.4 ([53, Theorem 2.2]). Let S be a compact Hausdorff space, V ∈ CV(C(S)) and

B ∈ CB(C(S)). Then the set centV (B) ̸= ∅ if and only if d(V, centC(S)(B)) = ∥v0 − x0∥ for some

v0 ∈ V and x0 ∈ centC(S)(B).
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There are various types of characterizations available in the literature for L1-predual spaces; for

example, see [39, Chapter 7, Section 21] and [49]. The authors in [16] characterized the spaces of

the type C(S) and C0(T ) in terms of the restricted Chebyshev radius. A rigorous examination of

the proofs in [16] enables us to state the result therein in the following manner.

Theorem 1.2.5 ([16]). Let X be a Banach space. Then the following statements are equivalent :

(i) X is isometric to either a C(S) space or a C0(T ) space for some compact Hausdorff space

S or locally compact Hausdorff space T .

(ii) For each V ∈ CV(X) and B ∈ CB(X), radV (B) = radX(B) + d(V, centX(B)).

(iii) For each V ∈ CV(X) and B ∈ CB(X), radV (B) = radX(B) + limδ→0+ d(V, centX(B, δ)).

An important characterization of L1-predual spaces, proved by Duan and Lin, is the following

result.

Theorem 1.2.6 ([13, Theorem 2.7]). Let X be a Banach space. Then X is isometric to an L1-

predual space if and only if for each F ∈ F4(X) (or F(X) or K(X)), radX(F ) = 1
2diam(F ).

In [12], the authors proved the following result for an M -ideal in an L1-predual space.

Theorem 1.2.7 ([12, Theorem 2.6]). Let X be an L1-predual space and J be an M -ideal in X.

Then for each F ∈ F(X), radJ(F ) = radX(F ) + d(J, centX(F )).

We mention here in passing that another instance where the identity in Theorem 1.2.5 (ii) holds

true can be found in [51, Proposition 13].

Given a compact Hausdorff space S and an M -ideal J in the space C(S), we investigate the

possibility of the set centJ(B) to have a similar description as in Theorem 1.2.3, in other words,

the possibility of describing the set centJ(B) as the set of those functions in J which are interposed

between two special functions defined in terms of the elements of B. In light of the results discussed

so far, we raise the following questions which form the basis of a part of our investigation.

Question 1.2.8. Let X be an Banach space.

(i) Let X be an L1 predual space and F ∈ K(X).

(1) Is it possible to explicitly describe the elements of the set centX(F )?

(2) For each set V ∈ CV(X), is radV (F ) = radX(F ) + d(V, centX(F ))?

(3) Is the Chebyshev-center map centX(.) Hausdorff metric continuous on K(X)?

(ii) If for each F ∈ K(X) and V ∈ CV(X), radV (F ) = radX(F ) + d(V, centX(F )), then is X

isometric to an L1-predual space?

We answer Question 1.2.8 entirely in the affirmative in this thesis. We implement a different

approach to answer the traditional question of existence of Chebyshev centers in L1-predual spaces.

It involves a well-known isometric identification of a Banach space and the selection and separation

theorems in an L1-predual space. This approach does not invoke the intersection properties of balls

in the L1-predual spaces, which is a usual technique adopted in the literature.

We now turn our attention to a few stronger notions of proximinality and r.c.p.. It is proved

in [8] that strong ball proximinality implies strong proximinality of a subspace in a Banach space.

In general, the converse is not true (see [19] and [26]). However, C. R. Jayanarayanan proved the
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converse for a finite co-dimensional subspace of an L1-predual space in [33]. Furthermore, it is

proved in [14, Proposition 3.3] that 1 1
2 -ball property is stronger than strong proximinality.

We recall the following intersection property of closed balls.

Definition 1.2.9 ([45]). Let X be a Banach space and n ∈ N. Then X is said to have the n.2.I.P.

if for each family of pairwise intersecting balls {BX [xi, ri] : i = 1, . . . , n},
⋂n

i=1BX [xi, ri] ̸= ∅.

It is proved in [45] that X is an L1-predual space if and only if for each n ∈ N, X has n.2.I.P.. It

is known that M -ideals in an L1-predual space are ball proximinal in the space. In fact, the authors

in [35] prove a more generalized result in the following manner.

Theorem 1.2.10 ([35, Corollary 4.8]). Let X be a Banach space and J be an M -ideal in X. If X

has the 3.2.I.P., then J is ball proximinal in X.

The following result is a strengthening of Theorem 1.2.10.

Theorem 1.2.11 ([34, Theorem 3.5]). Let X be a Banach space and J be an M -ideal in X. If X

has the 3.2.I.P., then J is strongly ball proximinal in X. In particular, if X is an L1-predual space,

then J is strongly ball proximinal in X.

In [18], the authors defined the following notion of strong subdifferentiability which characterizes

strongly proximinal hyperplanes.

Definition 1.2.12. The norm of a Banach space X is strongly subdifferentiable (in short, SSD) at

x ∈ X if the one-sided limit limt→0+
∥x+ty∥−∥x∥

t exists uniformly for each y ∈ SX . We say in this

case that x is a SSD-point of X.

In [23], it is proved that given a Banach space X and x∗ ∈ X∗, x∗ is a SSD-point of X∗ if and

only if ker(x∗) is strongly proximinal in X. It is also established that if Y is a strongly proximinal

finite co-dimensional subspace of a Banach space then Y ⊥ is contained in the set of all SSD-points

of X∗. The converse of the above result is true in the case of an L1-predual space X (see [35,

Proposition 3.20]).

Notation 1.2.13 ([23]). Let X be a Banach space. For each x ∈ X and x∗ ∈ X∗, we denote

JX∗(x) = {x∗ ∈ BX∗ : x∗(x) = ∥x∥} and

JX(x∗) = {x ∈ BX : x∗(x) = ∥x∗∥}.
(1.4)

The functionality of the sets defined in (1.4) has been explored in detail in [23]. The authors in

[32, Theorem 3.2] derived that for each x∗ ∈ SX∗ , if ker(x∗) is ball proximinal in X then JX(x∗) is

proximinal at each x ∈ X with x∗(x) = 1. Furthermore, they also established in [32, Theorem 3.3]

that if x∗ ∈ SX∗ is a SSD-point of X∗, then strong proximinality of JX∗∗(x∗) in X∗∗ implies strong

proximinality of JX(x∗) in X.

The various aspects of property-(P1) have been explored in [11], [40] and [47]. In this work,

we aim to study property-(P1) of triplets which are set-valued analogues of strong proximinality

and strong ball proximinality of a subspace of a Banach space and explore the interconnection

between them. Therefore, we ask the following meaningful questions which constitute our next set

of objectives.
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Question 1.2.14. Let X be a Banach space.

(i) Let Y be a subspace of X and F ⊆ CB(X).

(1) If (BY ,F ) satisfies r.c.p., then does the pair (Y,F ) satisfy r.c.p.?

(2) If (X,BY ,F ) satisfies property-(P1), does the triplet (X,Y,F ) satisfy property-(P1)?

(ii) Let X be an L1-predual space.

(1) Let J be an M -ideal in X. Then does (X,BJ ,K(X)) satisfy property-(P1)?

(2) Let Y be a finite co-dimensional subspace of X. Then does (X,Y,K(X)) satisfy property-

(P1) if and only if (X,BY ,K(X)) satisfies property-(P1)?

Question 1.2.15. Let X be a Banach space and x∗ be a SSD-point of X∗. If the triplet

(X∗∗, JX∗∗(x∗),K(X∗∗)) satisfies property-(P1), then does (X, JX(x∗),K(X)) satisfy property-(P1)?

In this work, we give affirmative answers to Question 1.2.14, and Question 1.2.15 is answered

positively for a generalized class of triplets. In [35], the authors solved a variant of the transitivity

problem for strong proximinality. We pose a similar problem for property-(P1) and investigate it.

The question is as follows:

Question 1.2.16 ([55, Question 1.7]). Let X be a Banach space, J be an M -ideal in X and

Y be a finite co-dimensional subspace of X such that Y ⊆ J . If the triplets (J, Y, CB(J)) (or

(J, Y,K(J)) or (J, Y,F(J)) respectively) and (X, J, CB(X)) (or (X, J,K(X)) or (X, J,F(X)) respec-

tively) have property-(P1), then does (X,Y, CB(X)) (or (X,Y,K(X)) or (X,Y,F(X)) respectively)

have property-(P1)?

We do not know the complete answer to Question 1.2.16. However, in this thesis, we answer it

positively for two cases. It should also be noted that in Question 1.2.16, we impose the additional

assumption that the triplet involving M -ideals satisfy property-(P1) because the example provided

by Vesely in [60] shows that in general, an M -ideal of a Banach space may not admit Chebyshev

centers for its closed bounded subsets.

The main motivation to study the notion of property-(P1) is that it is one of the means to

explore the continuity properties of the restricted Chebyshev-center maps. In this context, we recall

the following result by Mach.

Theorem 1.2.17 ([47, Theorem 5]). Let X be a Banach space, V ∈ CV(X) and F ⊆ CB(X). If

the triplet (X,V,F ) has property-(P1) then the map centV (.) is u.H.s.c. on F .

In relation to Question 1.2.14 (ii), we raise the following questions.

Question 1.2.18. Let Y be a finite co-dimensional subspace of an L1-predual space X.

(i) If (X,Y,K(X)) satisfies property-(P1) then is the map centY (.) continuous on K(C(S))?

(ii) If (X,BY ,K(X)) satisfies property-(P1) then is the map centBY
(.) continuous on K(C(S))?

We do not know the answer to Question 1.2.18. Nevertheless, we answer this question for a

particular case in Chapter 5. Jayanarayanan and Lalithambigai positively answered Question 1.2.18

for the triplet (X,Y,S(X)) in the following result.

Theorem 1.2.19 ([34, Theorem 6.3]). Let Y be a strongly proximinal finite co-dimensional subspace

of an L1-predual space X. Then the metric projection from X onto Y , PY , is Hausdorff continuous.
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In [22, Theorem 3], Godefroy and Indumathi proved that for each subspace X of c0 and a finite

co-dimensional subspace Y of X, if every hyperplane of X containing Y is proximinal in X then Y

is proximinal in X. Further, Indumathi proved the following result.

Theorem 1.2.20 ([31, Theorem 4.1]). Let Y be a proximinal finite co-dimensional subspace of c0.

Then Y is proximinal in ℓ∞ and the metric projection PY from ℓ∞ onto Y is Hausdorff metric

continuous.

Jayanarayanan and Lalithambigai improved Theorem 1.2.20 and proved the following result.

Proposition 1.2.21 ([34, Corollary 3.7]). If Y is a proximinal finite co-dimensional subspace of c0,

then BY is strongly proximinal in ℓ∞.

They also proved in [34, Theorem 6.3] that if Y is a strongly proximinal finite co-dimensional

subspace of an L1-predual space X, then the metric projection from X onto Y , PY , is Hausdorff met-

ric continuous on X. The present work investigates the approximation properties such as r.c.p. and

property-(P1) in finite co-dimensional subspaces of c0. With the notations as in Theorem 1.2.21,

we aim to generalize this result and investigate property-(P1) of the triplets (ℓ∞, Y, CB(ℓ∞)) and

(ℓ∞, BY , CB(ℓ∞)). We also aim to investigate the interconnection between the continuity properties

of the restricted Chebyshev-center maps of a subspace and that of its unit ball in a Banach space.

In light of the discussion above, we also briefly discuss the following questions related to the

generalization of the so-called proxbid spaces (a Banach space which is proximinal in its bidual).

We refer to [29], [42], [50] and the references therein for the study related to proxbid spaces.

Question 1.2.22. Let X be an L1-predual space and Y be an ideal in X.

(i) Do the pairs (Y,K(X)) or (Y, CB(X)) have r.c.p.?

(ii) Do the triplets (X,Y,K(X)) or (X,Y, CB(X)) have property-(P1)?

A well-known characterization of an L1-predual space is as follows: A Banach space X is an L1-

predual space if and only if X∗∗ ∼= C(S) for some compact Hausdorff space S. This characterization

follows from [39, Theorem 6, pg. 92 and Theorem 6, pg. 212]. Therefore, a particular case of

Question 1.2.22 is the following

Question 1.2.23. Let X be an L1-predual space.

(i) Do the pairs (X,K(X∗∗)) or (X, CB(X∗∗)) have r.c.p.?

(ii) Do the triplets (X∗∗, X,K(X∗∗)) or (X∗∗, X, CB(X∗∗)) have property-(P1)?

We do not know the answer to Questions 1.2.22 and 1.2.23 in its entirety. However, we consider

a few triplets for which Questions 1.2.22 and 1.2.23 can be positively answered.

1.3 Major outcomes and organization of the thesis

This thesis is organized into four main chapters following the introductory Chapters 0 and 1. We

summarize and present the major results obtained in each chapter.

Let X be an L1-predual space and BX∗ be endowed with the weak∗ topology. In Chapter 2,

by using an isometric identification of X to a subspace of A(BX∗) (see Proposition 2.2.5), we

not only prove the existence but also describe the Chebyshev centers of a compact subset of X.
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Coupled with the separation and selection theorems in L1-predual spaces by A. J. Lazar and J.

Lindenstrauss in [43], this description leads to a few interesting consequences. One such consequence

is a geometrical characterization of an L1-predual space X as a Banach space satisfying the equality

radV (F ) = radX(F ) + d(V, centX(F )), for each V ∈ CV(X) and F ∈ F4(X). Another consequence

is that the Chebyshev-center map of an L1-predual space is 2-Lipschitz Hausdorff metric continuous

on K(X).

Furthermore, in this chapter, we obtain some new characterizations of ideals in an L1-predual

space in Theorem 2.5.3 and Corollary 2.5.4. In particular, for a compact Hausdorff space S and

a subspace A of C(S) which contains the constant function 1 and separates the points of S, we

prove that the state space of A is a Choquet simplex if and only if d(A, centC(S)(F )) = 0, for every

F ∈ F4(A). We also derive characterizations for a compact convex subset of a lctvs to be a Choquet

simplex. In the above discussions, equivalently, one may replace the class F4(X) by K(X) (or F(X)).

Sections 2.2, 2.3, 2.4 and 2.5 have appeared in [58].

In Chapter 3, we positively answer Question 1.2.14 (i) as follows: for a subspace Y of a Banach

space X and F = CB(X), K(X) or F(X), if (BY ,F ) has r.c.p. then so does (Y,F ) (Proposi-

tion 3.2.2) and if (X,BY ,F ) has property-(P1) then so does (X,Y,F ) (Proposition 3.2.3). Further,

we establish in Theorem 3.3.3 that for an M -ideal J in an L1-predual space X, (X,BJ ,K(X))

satisfies property-(P1). In Theorem 3.4.7, we expand the characterizations of a strongly ball prox-

iminal finite co-dimensional subspace of an L1-predual space provided by Jayanarayanan in [33].

In this result, we establish that for a strongly ball proximinal finite co-dimensional subspace Y of

an L1-predual space X, (X,BY ,K(X)) has property-(P1), and also prove that if (X,Y,K(X)) has

property-(P1), then so does the triplet (X,BY ,K(X)). This answers Question 1.2.14 (ii) in the

affirmative. Sections 3.2, 3.3 and 3.4 have appeared in [56].

In this chapter, we also prove that for a Banach space X, if x∗ is a SSD-point of X∗ and the

triplet (X∗∗, JX∗∗(x∗),K(X∗∗)) satisfies property-(P1), then so does (X, JX(x∗),K(X)). In fact, a

much more generalized version of the result above is proved in Theorem 3.5.8. We conclude this

chapter by demonstrating through an example that 1 1
2 -ball property is not a sufficient condition for

r.c.p.. Section 3.6 of this chapter has appeared in [56].

In Chapter 4, we deviate slightly from our main subject to understand a well-known represen-

tation of the closed linear sublattices of the space C(S), whenever S is a compact Hausdorff space,

given in [36]. This representation is determined by a set of algebraic relations. We provide a simple

alternative proof for the same in Theorem 4.2.1. As a consequence, in Corollary 4.3.2, we alge-

braically represent the sublattices of the space C0(T ), whenever T is a locally compact Hausdorff

space. The representations above come in useful in the subsequent chapter. Sections 4.2 and 4.3

have appeared in [57].

In Chapter 5, for a topological space T and a uniformly convex Banach space X, we first

prove that the triplet (Cb(T,X), BCb(T,X), CB(Cb(T,X))) satisfies property-(P1) and the map

centBCb(T,X)
(.) is uniformly Hausdorff metric continuous on subfamilies of sets in CB(Cb(T,X))

with equi-bounded restricted Chebyshev radii. As a consequence, we establish that if Y is a prox-

iminal finite co-dimensional closed linear subspace of c0 then the triplet (ℓ∞, BY , CB(ℓ∞)) satisfies

property-(P1) and the map centBY
(.) is uniformly Hausdorff metric continuous on subfamilies of sets

in CB(ℓ∞) with equi-bounded restricted Chebyshev radii. To this end, we derive some stability re-

sults of property-(P1) and the semi-continuity properties of restricted Chebyshev-center maps in the
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ℓ∞-direct sum of two Banach spaces. Finally, we prove in Theorem 5.5.1 that for an M-summand Y

of a Banach space X and a subspace Z of Y , if (Y, Z, CB(Y )) has property-(P1), then (X,Z, CB(X))

has property-(P1). We also provide a positive answer to Question 1.2.16 in the case of an L1-predual

space in Proposition 5.5.2.

In this chapter, we also positively answer Questions 1.2.22 and 1.2.23 for a few particular cases.

Let X be an L1-predual space. Then we prove that (X∗∗, BX , CB(X∗∗)) has property-(P1) if X is

a closed subalgebra of a C(S) or C0(T ) space, whenever S is a compact Hausdorff space and T is

a locally compact Hausdorff space. Sections 5.2, 5.3, 5.4, 5.5 and a few parts of Section 5.6 have

appeared in [55].
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Chapter 2

Various geometric properties of

L1-predual spaces determined by

Chebyshev centers

2.1 Summary of results

In this chapter, we study several geometric properties of L1-predual spaces which are determined

by Chebyshev centers and in fact, establish that some of these properties characterize L1-predual

spaces.

In Section 2.2, we lay the groundwork for the results in the subsequent sections. In this section,

for a compact Hausdorff space S, a set V ∈ CV(C(S)) and B ∈ CB(C(S)), we mainly observe

that the set centV (B) is exactly the set of functions in V which are interposed between two special

functions defined in terms of the elements of B; see Proposition 2.2.3. This result serves as a starting

point for the study carried out in this chapter.

In Section 2.3, we prove in Theorem 2.3.6 that for a compact Hausdorff space S, anM -summand

J in C(S) and B ∈ CB(J), the set centJ(B) ̸= ∅ and is precisely the set centC(S)(B) ∩ J . We

illustrate with examples that the description above is not necessarily true in the case of M -ideals

which are not M -summands in C(S).

Let X be an L1-predual space. In Section 2.4, we precisely describe the elements in centX(F )

for each F ∈ K(X) via a well-known identification of a Banach space to a function space; see

Lemma 2.2.5 and Theorem 2.4.2. This description leads us to the following consequences. In

Theorem 2.4.4, we prove that the map centX(.) is 2-Lipschitz Hausdorff metric continuous on K(X)

and that the constant 2 is an optimal choice. Furthermore, for V ∈ CV(X) and F ∈ K(X), we prove

in Theorem 2.4.8 that the set centV (F ) ̸= ∅ if and only if the infimum defining d(V, centX(F )) is

attained.

In the last Section 2.5, we provide a few more appplications of Theorem 2.4.2. We first charac-

terize an L1-predual space to be a Banach space which satisfies for each F ∈ K(X) and V ∈ CV(X),

the equality, radV (F ) = radX(F ) + d(V, centX(F )). We prove in Theorem 2.5.3 that a subspace Y

of an L1-predual space is an ideal in X if and only if for each F ∈ F4(Y ), d(Y, centX(F )) = 0.
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2.2 Preliminaries

Let S be a compact Hausdorff space. Let B ∈ CB(C(S)). We define the following functions in a

similar way as in Theorem 1.2.3. For each t ∈ S,

mB(t) = inf{b(t) : b ∈ B},

nB(t) = lim inf
s→t

mB(s),

MB(t) = sup{b(t) : b ∈ B},

and NB(t) = lim sup
s→t

MB(s).

(2.1)

Further, we define

rB =
1

2
sup{NB(t)− nB(t) : t ∈ S}. (2.2)

Remark 2.2.1 ([58, Remark 2.1]). The following properties of the functions and number defined in

(2.1) and (2.2) respectively can be easily verified.

(i) If B ∈ CB(C(S)) then the functions NB ,mB are upper semi-continuous and nB ,MB are

lower semi-continuous functions on S.

(ii) If F ∈ K(C(S)) then the functions MF and mF are continuous on S and consequently,

NF = MF and nF = mF . It follows from the fact that a compact set F ⊆ C(S) is an

equicontinuous family of functions in C(S).

(iii) For each B ∈ CB(C(S)) and V ∈ CV(C(S)), rB ≤ radC(S)(B) ≤ radV (B). One can find a

proof of the former inequality in [61, Lemma I.2.1] and the latter inequality follows from the

definition of (restricted) Chebyshev radius.

Lemma 2.2.2 ([58, Lemma 2.2]). Let S be a compact Hausdorff space. If B ∈ CB(C(S)) then
1
2diam(B) ≤ rB. Moreover, if F ∈ K(C(S)) then 1

2diam(F ) = rF .

Proof. Let B ∈ CB(C(S)). Let L = sup{NB(t) − nB(t) : t ∈ S} = 2rB . The upper semi-continuity

of mB and −MB results in b(t) ≤ MB(t) ≤ NB(t) and nB(t) ≤ mB(t) ≤ b(t), for each t ∈ S and

b ∈ B. Therefore, for each b1, b2 ∈ B and t ∈ S,

±(b1(t)− b2(t)) ≤ NB(t)− nB(t) ≤ L. (2.3)

It follows that diam(B) ≤ L.

Now, let F ∈ K(C(S)). By Remark 2.2.1 (ii), nF = mF and NF = MF . Now, for each t ∈ S,

the evaluation functional δt, defined as δt(f) = f(t) for each f ∈ C(S), is norm continuous on C(S).

Therefore, due to the compactness of F , for each t ∈ S, there exists z1, z2 ∈ F such that

MF (t)−mF (t) = max
z′∈F

δt(z
′)− min

z′∈F
δt(z

′) = z1(t)− z2(t) ≤ diam(F ). (2.4)

It follows that 2rF = sup{MF (t)−mF (t) : t ∈ S} ≤ diam(F ).

For a set V ∈ CV(C(S)) and B ∈ CB(C(S)), the following result gives us a description of

centV (B).
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Proposition 2.2.3 ([58, Proposition 2.3]). Let S be a compact Hausdorff space. Let V ∈ CV(C(S))
and B ∈ CB(C(S)). Then

centV (B) = {f ∈ V : NB − radV (B) ≤ f ≤ nB + radV (B)}.

Proof. Let B ∈ CB(C(S)). Without loss of generality, we assume that centV (B) ̸= ∅. Suppose

f ∈ centV (B). Then radV (B) = r(f,B). It follows that for each t ∈ S and b ∈ B,

b(t)− radV (B) ≤ f(t) ≤ b(t) + radV (B). (2.5)

Therefore, from the definitions in (2.1), for each t ∈ S,

NB(t)− radV (B) ≤ f(t) ≤ nB(t) + radV (B). (2.6)

Now, if f ∈ V such that the inequalities in (2.6) hold, then using Remark 2.2.1 (i), it is easy to

deduce that radV (B) = r(f,B).

We refer to [6, Section 4] for examples of subspaces of C(S) which admit (restricted) Chebyshev

centers for certain subfamilies of closed bounded subsets of C(S).

Let X be a Banach space. If V ∈ CV(X) then the following result shows that the map radV (.),

defined as B 7→ radV (B) for each B ∈ CB(X), is Hausdorff metric continuous on CB(X). A proof of

this result can be found in [11, Theorem 2.5]. We include it here for the sake of completeness.

Lemma 2.2.4 ([56, Lemma 4.1]). Let V be a non-empty closed convex subset of a Banach space X

and B1, B2 ∈ CB(X). Then for each v ∈ V , |r(v,B1) − r(v,B2)| ≤ dH(B1, B2) and |radV (B1) −
radV (B2)| ≤ dH(B1, B2).

Proof. Let v ∈ V . Now, let b1 ∈ B1 and ε > 0. Choose b2 ∈ B2 such that ∥b1−b2∥ < dH(B1, B2)+ε.

Then

∥v − b1∥ ≤ ∥v − b2∥+ ∥b2 − b1∥ < r(v,B2) + dH(B1, B2) + ε. (2.7)

It follows that

r(v,B1) ≤ r(v,B2) + dH(B1, B2). (2.8)

Further, by swapping B1 with B2 in the argument above, we obtain the following inequality.

r(v,B2) ≤ r(v,B1) + dH(B1, B2). (2.9)

The first conclusion of the result follows from the inequalities in (2.8) and (2.9).

The inequalities in (2.8) and (2.9) hold true for every v ∈ V . Hence, the final conclusion of the

result follows.

Let X be a Banach space. By Banach-Alaoglu’s theorem, BX∗ , when equipped with the weak∗

topology, is a weak∗-compact Hausdorff space. There exists a natural affine homeomorphism from

BX∗ onto BX∗ given by the map σ(x∗) = −x∗ for each x∗ ∈ BX∗ . We define

Aσ(BX∗) = {a ∈ A(BX∗) : a = −a ◦ σ}.
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Clearly Aσ(BX∗) is a Banach space. The following result shows us that every Banach space can be

viewed as a function space.

Lemma 2.2.5 ([39, Lemma 8, p. 213]). Let X be a Banach space. Then X ∼= Aσ(BX∗) under the

mapping x 7→ x, defined as x(x∗) = x∗(x), for each x∗ ∈ BX∗ and x ∈ X.

Remark 2.2.6 ([58, Remark 2.5]). Let X be a Banach space and F ∈ K(X). By Lemma 2.2.5, we

view F as a compact subset of Aσ(BX∗) ⊆ C(BX∗). Hence for each x∗ ∈ BX∗ , the norm continuity

of x∗ on X and the compactness of F implies that

MF (x
∗) = max{x∗(x) : x ∈ F},

mF (x
∗) = min{x∗(x) : x ∈ F}

and rF =
1

2
max{MF (x

∗)−mF (x
∗) : x∗ ∈ BX∗}.

(2.10)

2.3 Restricted center property of M-ideals in C(S)

Let S be a compact Hausdorff space. In this thesis, we use the following notation:

Notation 2.3.1. For a subset D of a compact Hausdorff space S, we define

JD = {h ∈ C(S) : h(t) = 0, for each t ∈ D}.

We recall that J is an M -ideal in C(S) if and only if there exists a closed subset D of S such

that J = JD and J is an M -summand in C(S) if and only if there exists a clopen subset D of S

such that J = JD (see [28, Example 1.4 (a), p. 3]).

We now present the following easy observation.

Proposition 2.3.2 ([58, Proposition 3.1]). Let S be a compact Hausdorff space. If D is a closed

subset of S then the subspace JD of C(S) admits centers for K(JD) and for each F ∈ K(JD),

radJD
(F ) = rF and

centJD
(F ) = {h ∈ JD : MF − rF ≤ h ≤ mF + rF }. (2.11)

Proof. Let F ∈ K(JD). From Remark 2.2.1 (ii),MF and mF are continuous functions on S. Clearly,

for each t ∈ D, MF (t) = 0 = mF (t). Therefore

MF +mF

2
∈ {h ∈ JD : MF − rF ≤ h ≤ mF + rF }. (2.12)

It follows that radJD
(F ) ≤ rF . Thus from Remark 2.2.1 (iii) and Proposition 2.2.3, we obtain

radJD
(F ) = rF and the desired description of the set centJD

(F ) as in (2.11).

Let T be a locally compact Hausdorff space. It is known that C0(T ) admits centers for CB(C0(T ));

see [16]. We denote T∞ to be the one-point compactification of T and t∞ to be the “point at infinity”.

Consider the restriction map Φ: J{t∞} → C0(T ) defined as Φ(f) = f |T for each f ∈ J{t∞}. Then

the map Φ is an isometric lattice and algebra isomorphism. Hence the following result follows

immediately from Proposition 2.3.2.
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Corollary 2.3.3 ([58, Corollary 3.2]). Let T be a locally compact Hausdorff space. Let F ∈
K(C0(T )). Consider the following functions and number : for each t ∈ T ,

MF (t) = sup{f(t) : f ∈ F},

mF (t) = inf{f(t) : f ∈ F}

and rF =
1

2
sup{MF (t)−mF (t) : t ∈ T}.

(2.13)

Then the set centC0(T )(F ) ̸= ∅, radC0(T )(F ) = rF and

centC0(T )(F ) = {h ∈ C0(T ) : MF − rF ≤ h ≤ mF + rF on T}. (2.14)

We now recall and state the well-known insertion theorem by Katětov according to our purpose.

Theorem 2.3.4 ([37] and [38]). Let S be a compact Hausdorff space. If g,−f are upper semi-

continuous functions on S such that g ≤ f on S then there exists h ∈ C(S) such that g ≤ h ≤ f on

S.

The following result is a variant of Theorem 2.3.4. We need it to prove the main result of this

section.

Lemma 2.3.5 ([58, Lemma 3.4]). Let D be a clopen subset of a compact Hausdorff space S. If g,−f
are upper semi-continuous functions on S such that g ≤ f on S and for each t ∈ D, g(t) ≤ α ≤ f(t),

then there exists h ∈ C(S) such that g ≤ h ≤ f on S and for each t ∈ D, h(t) = α.

Proof. Without loss of generality, we assume that D is a non-empty proper subset of S. By our

assumption, both D and S\D are clopen in S. Thus by Theorem 2.3.4, there exists k ∈ C(S\D)

such that g ≤ k ≤ f on S\D. We now define h : S → R as h = k on S\D and h(t) = α, for each

t ∈ D. It is now easy to see that h ∈ C(S). Moreover, g ≤ h ≤ f on S.

Theorem 2.3.6 ([58, Theorem 3.5]). Let S be a compact Hausdorff space and J be an M -summand

in C(S). Then J admits centers for CB(J). Moreover, for each B ∈ CB(J), radJ(B) = rB and

centJ(B) = {h ∈ J : NB − rB ≤ h ≤ nB + rB on S}. (2.15)

Proof. Let J be an M -summand in C(S). Thus there exists a clopen subset D of S such that

J = JD. Let B ∈ CB(JD). Clearly, for each t ∈ D, MB(t) = 0 = mB(t). Using the assumption that

D is clopen in S, by the definitions of the functions NB and −nB and Remark 2.2.1 (i), it follows

that for each t ∈ D, NB(t) = 0 = nB(t). Hence for each t ∈ D,

NB(t)− rB ≤ 0 ≤ nB(t) + rB . (2.16)

By the definition of rB , Remark 2.2.1 (i) and Lemma 2.3.5, there exists h ∈ JD such that NB−rB ≤
h ≤ nB + rB . This shows that the set on the right-hand side in (2.15) is non-empty. It follows that

radJD
(B) ≤ rB . Therefore, by Remark 2.2.1 (iii) and Proposition 2.2.3, we obtain radJD

(B) = rB

and the description of the set centJD
(B) as in (2.15).
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By [54, Theorem 1], for a compact Hausdorff space S, an M -ideal in C(S) admits centers for

CB(C(S)). In Theorem 2.3.6, if B ∈ CB(C(S)) then it is not necessary that the set centJD
(B) has

a description as given in (2.15). We provide an example below to illustrate this fact.

Example 2.3.7 ([58, Example 3.6]). Consider the subspace J = {h ∈ C({0, 1}) : h(0) = 0} of

C({0, 1}). Define the functions f, g : {0, 1} → R as f(0) = 2, f(1) = 0, g(0) = 3 and g(1) = 1. Let

B = {f, g} ⊆ C({0, 1})−J . It is easy to see that if h ∈ C({0, 1}) such thatMB−rB ≤ h ≤ mB+rB ,

then h(0) = 5
2 and h(1) = 1

2 and hence h ̸∈ J .

In Theorem 2.3.6, if the set D is not clopen then the set centJD
(B) need not have the description

as given in (2.15) for each B ∈ CB(JD). The following example illustrates this fact.

Example 2.3.8 ([58, Example 3.7]). Let 0 < a < b < 1. Consider the space C([0, 1]) and D = [a, b].

Let

B = {f ∈ JD : 0 ≤ f(t) ≤ 1, for each t ∈ [0, 1]} ∈ CB(JD)−K(JD). (2.17)

It is easy to see that for each t ∈ [0, 1] − (a, b), NB(t) = 1 and nB(t) = 0 and for each t ∈ (a, b),

NB(t) = 0 = nB(t). Hence rB = 1
2 . If h ∈ C([0, 1]) such that NB − rB ≤ h ≤ nB + rB , then for

each t ∈ [0, 1]− (a, b), h(t) = 1
2 and thus h ̸∈ JD.

2.4 Restricted center property in L1-predual spaces

In this section, we first prove the existence and provide a description of a Chebyshev center of a

compact subset of an L1-predual space using the isometric identification in Lemma 2.2.5. To this

end, we recall the following separation theorem in L1-predual spaces.

Theorem 2.4.1 ([41, Theorem 2.3]). Let X be an L1-predual space. If f is a real-valued weak∗-

lower semi-continuous concave function on BX∗ such that for each x∗ ∈ BX∗ , f(x∗) + f(−x∗) ≥ 0,

then there exists a ∈ Aσ(BX∗) such that a ≤ f .

Theorem 2.4.2 ([58, Theorem 4.2]). Let X be an L1-predual space. If F ∈ K(Aσ(BX∗)), then

centAσ(BX∗ )(F ) ̸= ∅, radAσ(BX∗ )(F ) = rF and

centAσ(BX∗ )(F ) = {a ∈ Aσ(BX∗) : MF − rF ≤ a ≤ mF + rF }. (2.18)

Proof. Let F ∈ K(Aσ(BX∗)). Define f = mF + rF on BX∗ . It follows from Remark 2.2.6 that f is

a weak∗-continuous concave function on BX∗ . Let x∗ ∈ BX∗ . Then,

f(x∗) + f(−x∗)

= mF (x
∗) + rF +mF (−x∗) + rF

= (mF (x
∗) + rF )− (MF (x

∗)− rF ) ≥ 0.

(2.19)

Therefore, by Theorem 2.4.1, there exists a ∈ Aσ(BX∗) such that a ≤ mF + rF . Now, for each

x∗ ∈ BX∗ , a(−x∗) ≤ mF (−x∗) + rF and hence, MF (x
∗)− rF ≤ a(x∗). Therefore, MF − rF ≤ a ≤

mF + rF on BX∗ . It follows that radAσ(BX∗ )(F ) = rF and from Proposition 2.2.3, we can deduce

that centAσ(BX∗ )(F ) ̸= ∅ and

centAσ(BX∗ )(F ) = {a ∈ Aσ(BX∗) : MF − rF ≤ a ≤ mF + rF on BX∗}. (2.20)
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Remark 2.4.3 ([58, Remark 4.3]). Let X be an L1-predual space and F ∈ K(X). Using Lemma 2.2.5,

we view F as a compact subset of Aσ(BX∗). Therefore, applying Theorem 2.4.2, it is easy to see

that centX(F ) ̸= ∅ and radX(F ) = rF . Moreover,

centX(F ) = {x ∈ X : MF − rF ≤ x ≤ mF + rF on BX∗}. (2.21)

We now look at two applications of Theorem 2.4.2. For an L1-predual space X, we prove the

continuity of the map centX(.) on K(X) in the Hausdorff metric in the following result.

Theorem 2.4.4 ([58, Theorem 4.5]). Let X be an L1-predual space. Then the map centX(.) is

2-Lipschitz Hausdorff metric continuous on K(X).

Proof. From Lemma 2.2.5, it suffices to prove that the map centAσ(BX∗ )(.) is 2-Lipschitz Hausdorff

metric continuous on K(Aσ(BX∗)).

Let ε > 0 and F1, F2 ∈ K(Aσ(BX∗)) be such that dH(F1, F2) <
ε
2 . Thus there exists 0 < δ < ε

2

such that

F1 ⊆ F2 + δBX and F2 ⊆ F1 + δBX . (2.22)

Then by Theorem 2.4.2, for each i = 1, 2,

centAσ(BX∗ )(Fi) = {a ∈ Aσ(BX∗) : MFi − rFi ≤ a ≤ mFi + rFi on BX∗}. (2.23)

and rFi
= radAσ(BX∗ )(Fi). By Lemma 2.2.4, |rF1

− rF2
| ≤ dH(F1, F2). Hence we can choose δ such

that rF1
− δ < rF2

< rF1
+ δ and (2.22) hold true.

Let a ∈ centAσ(BX∗ )(F1) and z2 ∈ F2. It follows from (2.22) that there exists z1 ∈ F1 and

z0 ∈ BX such that z2 = z1 + δz0. Thus using (2.23), for each x∗ ∈ BX∗ ,

z2(x
∗)− rF2

= z1(x
∗) + δz0(x

∗)− rF2

≤ z1(x
∗) + δ − rF1 + δ

≤ a(x∗) + 2δ.

(2.24)

z2(x
∗) + rF2

= z1(x
∗) + δz0(x

∗) + rF2

≥ z1(x
∗)− δ + rF1 − δ

≥ a(x∗)− 2δ.

(2.25)

It follows from (2.24), (2.25) and the definitions of MF2
and mF2

that MF2
− rF2

≤ a + 2δ and

a− 2δ ≤ mF2
+ rF2

on BX∗ . We define g = max{MF2
− rF2

, a− 2δ} and f = min{a+2δ,mF2
+ rF2

}
on BX∗ . Clearly, g ≤ f . Moroever, the functions −g and f are weak∗-continuous concave functions

on BX∗ . For each x∗ ∈ BX∗ , by using the fact that MF2
(−x∗) = −mF2

(x∗), it is easy to see that

f(x∗) + f(−x∗) = f(x∗)− g(x∗) ≥ 0. (2.26)

Therefore, by Theorem 2.4.1, there exists a′ ∈ Aσ(BX∗) such that a′ ≤ f . Now, for each x∗ ∈ BX∗ ,

since f(x∗) = −g(−x∗), it follows that g(−x∗) ≤ −a′(x∗) = a′(−x∗). Thus g ≤ a′ ≤ f on

BX∗ . It follows that a′ ∈ centAσ(BX∗ )(F2) such that ∥a′ − a∥ ≤ 2δ < ε. Therefore, this proves
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that centAσ(BX∗ )(F1) ⊆ centAσ(BX∗ )(F2) + εBX . Similarly, we can prove that centAσ(BX∗ )(F2) ⊆
centAσ(BX∗ )(F1) + εBX . Hence dH(centAσ(BX∗ )(F1), centAσ(BX∗ )(F2)) ≤ ε. Since ε > 0 is arbitrary,

dH(centAσ(BX∗ )(F1), centAσ(BX∗ )(F2)) ≤ 2dH(F1, F2).

Remark 2.4.5 ([58, Remark 4.6]). In Theorem 2.4.4, the constant 2 is the optimal choice. For

example, consider R2 equipped with the supremum norm. Let F = {(−1, 0), (1, 0)} and G = {(0, 1)}.
Then centR2(F ) = {(0, λ) : − 1 ≤ λ ≤ 1} and centR2(G) = {(0, 1)}. Moreover, dH(F,G) = 1 and

dH(centR2(F ), centR2(G)) = 2.

We next discuss a necessary and sufficient condition for the existence of restricted Chebyshev

centers in L1-predual spaces. Before proceeding, we need the following definition.

Definition 2.4.6 ([43]). Let C be a convex subset of a lctvs and E be another lctvs. Let Φ be a

set-valued map from C to the family of non-empty convex subsets of E. The map Φ is said to be

(i) a convex function on C if for each 0 ≤ α ≤ 1 and c1, c2 ∈ C,

αΦ(c1) + (1− α)Φ(c2) ⊆ Φ(αc1 + (1− α)c2);

(ii) a lower semi-continuous function on C if for each open subset U of E, the set

{c ∈ C : Φ(c) ∩ U ̸= ∅}

is a relatively open subset of C and

(iii) a symmetric function on C if Φ(−c) = −Φ(c) whenever c,−c ∈ C.

We also need the following selection theorem by Lazar and Lindenstrauss, stated according to

our purpose.

Theorem 2.4.7 ([43, Theorem 2.2]). Let X be an L1-predual space. If Φ: BX∗ → CV(R) is a convex

symmetric weak∗-lower semi-continuous set-valued function on BX∗ then Φ admits a selection from

Aσ(BX∗), that is, there exists a ∈ Aσ(BX∗) such that for each x∗ ∈ BX∗ , a(x∗) ∈ Φ(x∗).

We are now ready to prove the following necessary and sufficient condition in L1-predual spaces.

Theorem 2.4.8 ([58, Theorem 4.9]). Let X be an L1-predual space. Let V ∈ CV(X) and F ∈ K(X).

Then the following statements are true.

(i) The equality

radV (F ) = radX(F ) + d(V, centX(F )) (2.27)

holds true.

(ii) A necessary and sufficient condition for the set centV (F ) ̸= ∅ is that there exists v0 ∈ V

and x0 ∈ centX(F ) such that d(V, centX(F )) = ∥v0 − x0∥. Furthermore, the set

centV (F ) = {v ∈ V : there exists x ∈ centX(F ) such that d(V, centX(F )) = ∥v − x∥}.

Proof. Using Lemma 2.2.5, it suffices to prove the following claims. Let F ∈ K(Aσ(BX∗)) and

V ∈ CV(Aσ(BX∗)).
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Claim 1 : The following formula holds true.

radV (F ) = radAσ(BX∗ )(F ) + d(V, centAσ(BX∗ )(F )). (2.28)

Claim 2 : The set centV (F ) ̸= ∅ if and only if there exists v0 ∈ V and a0 ∈ centAσ(BX∗ )(F ) such

that d(V, centAσ(BX∗ )(F )) = ∥v0 − a0∥.

From Theorem 2.4.2, centAσ(BX∗ )(F ) ̸= ∅ and radAσ(BX∗ )(F ) = rF . Let R =

d(V, centAσ(BX∗ )(F )). In order to prove the formula in (2.28), it suffices to show that radV (F ) ≥
rF +R because the reverse inequality is a simple consequence of triangle inequality. We implement

the proof techniques used in [53, Theorem 2.2].

Let Sn = radV (F )− rF + 1
n , for n = 1, 2, . . .. There exists vn ∈ V such that

r(vn, F ) < radV (F ) +
1

n
. (2.29)

Hence for each z ∈ F and x∗ ∈ BX∗ ,

z(x∗)− radV (F )−
1

n
< vn(x

∗) < z(x∗) + radV (F ) +
1

n
. (2.30)

Therefore, from the inequalities in (2.30) and (2.10), for each x∗ ∈ BX∗ ,

MF (x
∗)− radV (F )−

1

n
≤ vn(x

∗) ≤ mF (x
∗) + radV (F ) +

1

n
. (2.31)

This implies

MF (x
∗)− rF − Sn ≤ vn(x

∗) ≤ mF (x
∗) + rF + Sn. (2.32)

We define the following set-valued function. For each x∗ ∈ BX∗ ,

Φn(x
∗) = [vn(x

∗)− Sn, vn(x
∗) + Sn] ∩ [MF (x

∗)− rF ,mF (x
∗) + rF ]. (2.33)

Clearly, Φn(x
∗) is closed, convex and bounded for each x∗ ∈ BX∗ . Moreover, the inequalities in

(2.32) guarantee that Φn(x
∗) is non-empty for each x∗ ∈ BX∗ . The map Φn can be proved to be

a weak∗-lower semi-continuous function on BX∗ using the same argument as in the proof of [53,

Theorem 2.2].

Now, let 0 ≤ α ≤ 1 and x∗1, x
∗
2 ∈ BX∗ . From the facts that vn ∈ Aσ(BX∗) and the functions MF

and −mF are convex on BX∗ , it is easy to verify that

αΦ(x∗1) + (1− α)Φ(x∗2) ⊆ Φ(αx∗1 + (1− α)x∗2). (2.34)

Moreover, if x∗ ∈ BX∗ , then from the facts that vn ∈ Aσ(BX∗) and MF (−x∗) = −mF (x
∗), it

follows that −Φn(x
∗) = Φn(−x∗). Therefore, Φn is a convex symmetric weak∗-lower semi-continuous

function on BX∗ and hence, by Theorem 2.4.7, there exists an ∈ Aσ(BX∗) such that an(x
∗) ∈ Φn(x

∗),
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for each x∗ ∈ BX∗ . Therefore, for each x∗ ∈ BX∗ ,

vn(x
∗)− Sn ≤ an(x

∗) ≤ vn(x
∗) + Sn

and MF (x
∗)− rF ≤ an(x

∗) ≤ mF (x
∗) + rF .

(2.35)

It follows that an ∈ centAσ(BX∗ )(F ) such that ∥vn − an∥ ≤ Sn. Hence for each n = 1, 2, . . ., R ≤ Sn.

This proves the formula in (2.28).

We now prove Claim 2. Suppose R = ∥v0 − a0∥, for some v0 ∈ V and a0 ∈ centAσ(BX∗ )(F ).

This implies

r(v0, F ) ≤ sup
z∈F

{∥v0 − a0∥+ ∥a0 − z∥} ≤ R+ rF = radV (F ). (2.36)

Therefore, radV (F ) = r(v0, F ) and hence v0 ∈ centV (F ).

Conversely, if v0 ∈ centV (F ), then an argument similar to the one above proves that the set-valued

map defined as Φ(x∗) = [v0(x
∗)−R, v0(x

∗) +R]∩ [MF (x
∗)− rF ,mF (x

∗) + rF ], for each x
∗ ∈ BX∗ ,

is convex symmetric weak∗-lower semi-continuous function on BX∗ . Hence, by Theorem 2.4.7, there

exists a selection a0 ∈ centAσ(BX∗ )(F ) such that R = ∥v0 − a0∥.

2.5 Some geometrical characterizations of L1-predual spaces

We begin this section by providing a geometrical characterization of L1-predual spaces in terms of

the identity in (2.27) in the following result.

Theorem 2.5.1 ([58, Theorem 4.10]). Let X be a Banach space. Then the following statements are

equivalent.

(i) X is an L1-predual space.

(ii) For each V ∈ CV(X) and F ∈ F4(X),

radV (F ) = radX(F ) + d(V, centX(F )).

(iii) For each V ∈ CV(X) and F ∈ F4(X),

radV (F ) = radX(F ) + lim
δ→0+

d(V, centX(F, δ)).

Proof. (i) ⇒ (ii) follows from Theorem 2.4.8 and (ii) ⇒ (iii) follows from the following chain of

inequalities. For each F ∈ K(X),

radV (F ) ≤ radX(F ) + lim
δ→0+

d(V, centX(F, δ)) ≤ radX(F ) + d(V, centX(F )). (2.37)

In order to prove (iii) ⇒ (i), by Theorem 1.2.6, it suffices to show that for each F ∈ F4(X),

radX(F ) = 1
2diam(F ). The proof idea is similar to that in [16, Theorem 3.4].

Let F = {x1, x2, x3, x4} ⊆ X. Without loss of generality, let diam(F ) = ∥x1 − x2∥. Define

R = 1
2diam(F ). Now, let F ′ = {x1, x2} and V = {x3}. Then radX(F ′) = R. By our assumption,

rad{x3}(F
′) = radX(F ′) + lim

δ→0+
d({x3}, centX(F ′, δ)). (2.38)
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Therefore, 2R ≥ R + limδ→0+ d({x3}, centX(F ′, δ)) and hence, for each ε > 0, there exists xε ∈ X

such that r(xε, {x1, x2, x3}) ≤ R + ε. It follows that radX({x1, x2, x3}) = R. We next consider

F ′ = {x1, x2, x3} and V = {x4} and follow the arguments above to obtain radX(F ) = R.

The following result follows from Theorems 2.4.8 and 2.5.1.

Corollary 2.5.2 ([58, Corollary 4.11]). Let X be a Banach space. Then the following statements

are equivalent.

(i) X is an L1-predual space.

(ii) For each V ∈ CV(X) and F ∈ F(X),

radV (F ) = radX(F ) + d(V, centX(F )).

(iii) For each V ∈ CV(X) and F ∈ F(X),

radV (F ) = radX(F ) + lim
δ→0+

d(V, centX(F, δ)).

(iv) For each V ∈ CV(X) and F ∈ K(X),

radV (F ) = radX(F ) + d(V, centX(F )).

(v) For each V ∈ CV(X) and F ∈ K(X),

radV (F ) = radX(F ) + lim
δ→0+

d(V, centX(F, δ)).

We conclude this chapter with one more application of Theorem 2.4.2 : we derive a few charac-

terizations for the ideals of an L1-predual.

Theorem 2.5.3 ([58, Theorem 4.12]). Let Y be a subspace of an L1-predual space X. Then the

following statements are equivalent.

(i) Y is an ideal in X.

(ii) For each F ∈ F4(Y ), centY (F ) ̸= ∅ and

centY (F ) = centX(F ) ∩ Y.

(iii) For each F ∈ F4(Y ), d(Y, centX(F )) = 0.

Proof. We first prove (i) ⇒ (ii). By [49, Proposition 1], Y is an L1-predual space. Thus by

Lemma 2.2.5, Y ∼= Aσ(BY ∗) and X ∼= Aσ(BX∗).

Let F = {y1, y2, y3, y4} ⊆ Y . Clearly, centX(F ) ∩ Y ⊆ centY (F ). Under the mapping given in

Lemma 2.2.5, let F = {y1, y2, y3, y4} ∈ F(Aσ(BY ∗)). We define the following functions and number.

For each y∗ ∈ BY ∗ ,

m̃F (y
∗) = min{y∗(yi) : 1 ≤ i ≤ 4},

M̃F (y
∗) = max{y∗(yi) : 1 ≤ i ≤ 4}

and r̃F =
1

2
max{MF (y

∗)−mF (y
∗) : y∗ ∈ BY ∗}.

(2.39)
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Then by Theorems 1.2.6 and 2.4.2,

centAσ(BY ∗ )(F ) = {a ∈ Aσ(BY ∗) : M̃F − r̃F ≤ a ≤ m̃F + r̃F } ≠ ∅ (2.40)

and radAσ(BY ∗ )(F ) = r̃F = 1
2diam(F ).

Since F ∈ F(Aσ(BX∗)), we define the following functions and number. For each x∗ ∈ BX∗ ,

mF (x
∗) = min{x∗(yi) : 1 ≤ i ≤ 4},

MF (x
∗) = max{x∗(yi) : 1 ≤ i ≤ 4}

and rF =
1

2
max{MF (x

∗)−mF (x
∗) : x∗ ∈ BX∗}

(2.41)

Then we apply Theorems 1.2.6 and 2.4.2 and get

centAσ(BX∗ )(F ) = {a ∈ Aσ(BX∗) : MF − rF ≤ a ≤ mF + rF } ≠ ∅ (2.42)

and radAσ(BX∗ )(F ) = rF = 1
2diam(F ).

Let y0 ∈ Y such that y0 ∈ centAσ(BY ∗ )(F ). Then for each x∗ ∈ BX∗ ,

MF (x
∗)− rF = M̃F (x

∗|Y )− r̃F ≤ x∗|Y (y0) = x∗(y0)

≤ m̃F (x
∗|Y ) + r̃F

= mF (x
∗) + rF .

(2.43)

Therefore, y0 ∈ centAσ(BX∗ )(F ). It follows from Remark 2.4.3 that centY (F ) ⊆ centX(F ) ∩ Y .

(ii) ⇒ (iii) is easy to observe.

Finally, we prove (iii) ⇒ (i). Let F ∈ F4(Y ). By our assumption, d(Y, centX(F )) = 0. Using

the identity in Theorem 2.5.1 and by Theorem 1.2.6, radY (F ) = radX(F ) = 1
2diam(F ). Therefore,

(i) follows from Theorem 1.2.6 and [49, Proposition 1].

We use Theorem 1.2.6 and an argument similar to that in Theorem 2.5.3 to deduce the following

result.

Corollary 2.5.4 ([58, Corollary 4.13]). Let Y be a subspace of an L1-predual space X. Then the

following statements are equivalent.

(i) Y is an ideal in X.

(ii) For each F ∈ F(Y ), centY (F ) ̸= ∅ and

centY (F ) = centX(F ) ∩ Y.

(iii) For each F ∈ F(Y ), d(Y, centX(F )) = 0.

(iv) For each F ∈ K(Y ), centY (F ) ̸= ∅ and

centY (F ) = centX(F ) ∩ Y.

(v) For each F ∈ K(Y ), d(Y, centX(F )) = 0.
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We now recall the notion of state spaces.

Definition 2.5.5 ([7]). Let S be a compact Hausdorff space and A be a subspace of C(S) that

contains the constant function 1 and separates the points of S. The state space of a subspace A,

denoted by SA, is defined as

SA = {L ∈ A∗ : L(1) = 1 = ∥L∥}.

It is easily seen that SA is a weak∗-compact convex subset of A∗. We recall the following result

in [20].

Theorem 2.5.6 ([20, Theorem 1.4]). Let S be a compact Hausdorff space and {s1, . . . , sn} ⊆ S such

that S\{s1, . . . , sn} ≠ ∅. Let µ1, . . . , µn be postive measures on S such that for each i = 1, . . . , n,

∥µi∥ ≤ 1. Then the subspace of C(S)

A : = {f ∈ C(S) : f(si) = µi(f), for i = 1, . . . , n}

equipped with the relative norm and order is an L1-predual space.

We also recall that by [7, Theorem 4.9, p. 14], a subspace A of C(S) which contains the constant

function 1 and separates points of S is order isometric to the space A(SA). Theorem 2.5.6 provides

plenty of examples of such subspaces A of C(S) such that SA is a Choquet simplex. For instance,

the following subspaces A of C([0, 1]) fall under the aforementioned category.

Example 2.5.7. (a) Let λ be the Lebesgue measure on [0, 1]. Then A = {f ∈ C([0, 1]) : f(0) =∫ 1

0
f(t)dλ(t)}.

(b) A =
{
f ∈ C([0, 1]) : f( 12 ) =

f(0)+f(1)
2

}
.

A special case of Theorem 2.5.3 is

Proposition 2.5.8 ([58, Proposition 4.14]). Let S be a compact Hausdorff space and A be a subspace

of C(S) that contains the constant function 1 and separates the points of S. Then the following

statements are equivalent.

(i) SA is a Choquet simplex.

(ii) For each F ∈ F4(A), centA(F ) ̸= ∅ and

centA(F ) = centC(S)(F ) ∩ A.

(iii) For each F ∈ F4(A), d(A, centC(S)(F )) = 0.

(iv) For each F ∈ F(A), centA(F ) ̸= ∅ and

centA(F ) = centC(S)(F ) ∩ A.

(v) For each F ∈ F(A), d(A, centC(S)(F )) = 0.

(vi) For each F ∈ K(A), centA(F ) ̸= ∅ and

centA(F ) = centC(S)(F ) ∩ A.
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(vii) For each F ∈ K(A), d(A, centC(S)(F )) = 0.

Proof. By [7, Theorem 4.9, p. 14], A is order isometric to the space A(SA). Therefore, SA is a

Choquet simplex if and only if A(SA) is an L1-predual space if and only if A is an L1-predual space

if and only if A is an ideal in C(S). Now by applying Theorem 2.5.3 and Corollary 2.5.4, we get the

desired equivalence.

If K is a compact convex subset of a lctvs then K is affinely homeomorphic to SA(K); [7,

Theorem 4.7, p. 14]. Hence a direct consequence of Proposition 2.5.8 is

Corollary 2.5.9 ([58, Corollary 4.15]). Let K be a compact convex subset of a lctvs. Then the

following statements are equivalent

(i) K is a Choquet simplex.

(ii) For each F ∈ F4(A(K)) (or F(A(K)) or K(A(K))), centA(K)(F ) ̸= ∅ and centA(K)(F ) =

centC(K)(F ) ∩A(K).

(iii) For each F ∈ F4(A(K)) (or F(A(K)) or K(A(K))), d(A(K), centC(K)(F )) = 0.
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Chapter 3

Property-(P1) in Banach spaces

3.1 Summary of results

Let X be a Banach space, Y be a subspace of X and F ⊆ CB(X). This chapter is mainly ded-

icated to understanding the interconnection between property-(P1) of the triplets (X,Y,F ) and

(X,BY ,F ) and the interrelation between the four concepts, namely strong proximinality, strong

ball proximinality and property-(P1) of the triplets (X,Y,K(X)) and (X,BY ,K(X)), whenever Y

is a finite co-dimensional subspace of an L1-predual space X.

We prove in Section 3.2 that if (X,BY ,F ) has property-(P1), then so does (X,Y,F ), whenever

F = CB(X), K(X) or F(X). The converse of the result above is proved to be true for the triplet

(X,Y,K(X)), whenever X is an L1-predual space and Y is a finite co-dimensional subspace Y of X

(Theorem 3.4.7).

In Section 3.3, we derive that the following classes of triplets satisfy property-(P1) :

(i) (X,BJ ,K(X)), for an L1-predual space X and an M -ideal J in X.

(ii) (C(S), BY ,K(C(S))), for a compact Hausdorff space S and a finite co-dimensional subspace

Y of C(S) such that the measures determining Y are finitely supported.

(iii) (A(K), BY ,K(A(K))), for a Choquet simplex K and a finite co-dimensional subspace Y of

A(K) such that the measures determining Y are finitely supported and their supports are

contained in ext(K).

In Section 3.4, we characterize a strongly proximinal finite co-dimensional subspace Y of an

L1-predual space X in terms of property-(P1) of the triplets (X,Y,K(X)) and (X,BY ,K(X)). Fur-

thermore, in Section 3.5 of this chapter, we prove that for a Banach space X, if x∗ is a SSD-point of

X∗ and (X∗∗, JX∗∗(x∗),K(X∗∗)) has property-(P1), then (X,JX(x∗),K(X)) satisfies property-(P1).

In fact, we prove a much more generalized version of the result above in Theorem 3.5.8.

In the last Section 3.6, we illustrate that 1 1
2 -ball property is not a sufficient condition for r.c.p..
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3.2 Property-(P1) of a subspace in relation to that of its

closed unit ball

In this section, for a subspace Y of a Banach space X, we discuss the interconnection between

property-(P1) of the triplets (X,Y,F ) and (X,BY ,F ) whenever F = CB(X), K(X) or F(X). We

use ideas similar to that in [8].

Lemma 3.2.1 ([56, Lemma 2.1]). Let Y be a subspace of a Banach space X and B ∈ CB(X).

(i) For each λ > 0, λcentBY
( 1λB) = centλBY

(B).

(ii) For each λ ≥ supb∈B ∥b∥+ radY (B), centY (B) ⊆ centλBY
(B).

(iii) For each λ > supb∈B ∥b∥+ radY (B), centY (B) = centλBY
(B).

Proof. (i). Let λ > 0 and y0 ∈ BY . λy0 ∈ λcentBY
( 1λB) ⇔ for each y ∈ BY , r(y0,

1
λB) ≤ r(y, 1

λB)

⇔ for each y ∈ BY , r(λy0, B) ≤ r(λy,B) ⇔ λy0 ∈ centλBY
(B).

(ii). Let λ ≥ supb∈B ∥b∥ + radY (B) and y0 ∈ centY (B). Then for each b ∈ B, ∥y0∥ ≤ ∥b∥ +

∥y0 − b∥ ≤ supb∈B ∥b∥+ r(y0, B) = supb∈B ∥b∥+ radY (B) ≤ λ. Hence, y0 ∈ λBY and it follows that

y0 ∈ centλBY
(B).

(iii). Let λ > supb∈B ∥b∥ + radY (B) and y0 ∈ centλBY
(B). Let R = radY (B). It is easy to see

that for each δ > 0, R = inf{r(y,B) : y ∈ SR+δ(B)∩Y }. In particular, let δ = λ− (supb∈B ∥b∥+R).
If y ∈ SR+δ(B) ∩ Y , then y ∈ λBY . Hence, r(y0, B) ≤ r(y,B). It follows that y0 ∈ centY (B).

Proposition 3.2.2 ([56, Proposition 2.2]). Let Y be a subspace of a Banach space X and F =

CB(X), K(X) or F(X). If (BY ,F ) has r.c.p. then (Y,F ) has r.c.p..

Proof. We prove the result only for CB(X) because the same proof works for K(X) and F(X).

Let B ∈ CB(X) and λ > supb∈B ∥b∥ + radY (B). Since (BY , CB(X)) has r.c.p., (BY , CB(BX)) has

r.c.p.. Therefore, (λBY , CB(λBX)) has r.c.p.. Clearly, for each b ∈ B, b ∈ λBX . Therefore, from

Lemma 3.2.1 (iii), centY (B) = centλBY
(B) ̸= ∅.

Proposition 3.2.3 ([56, Proposition 2.3]). Let Y be a subspace of a Banach space X and B ∈
CB(X). Then

(i) For each λ > 0 and δ > 0, centλBY
(B, δ) = λcentBY

( 1λB,
δ
λ ).

(ii) For each λ > 0, (X,λBY , {B}) has property-(P1) if and only if (X,BY , { 1
λB}) has property-

(P1).

(iii) Let F = CB(X), K(X) or F(X). If (X,BY ,F ) has property-(P1) then (X,Y,F ) has

property-(P1).

Proof. (i) follows from a similar argument as in Lemma 3.2.1 (i).

(ii) easily follows from (i) and Lemma 3.2.1 (i).

(iii). We prove the result only for CB(X) because the same proof works for K(X) and F(X).

Assume (X,BY , CB(X)) has property-(P1). Obviously, (X,BY , CB(BX)) has property-(P1) and

from Proposition 3.2.2, it follows that (Y, CB(X)) has r.c.p.. Let B ∈ CB(X) and λ > supb∈B ∥b∥+
radY (B). Since 1

λB ∈ CB(BX), (X,BY , { 1
λB}) has property-(P1). Hence, from (ii), (X,λBY , {B})

has property-(P1). Now, using the same argument as in Lemma 3.2.1 (iii), for 0 < δ < λ −
(supb∈B ∥b∥ + radY (B)), centY (B, δ) ⊆ λBY and hence, centY (B, δ) = centλBY

(B, δ). Moreover,
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centY (B) = centλBY
(B). It follows that (X,Y, {B}) has property-(P1). Therefore, (X,Y, CB(X))

has property-(P1).

3.3 Property-(P1) in some L1-predual spaces

In this section, we study property-(P1) in the M -ideals and finite co-dimensional subspaces of L1-

predual spaces.

We first recall and prove a few intersection properties of closed balls ofM -ideals in an L1-predual

space. The following result follows from [44, Theorem 2.17 and Proposition 6.5] and [2, Theorem 5.8].

Lemma 3.3.1. Let J be anM -ideal in an L1-predual space X. Then for every n ∈ N, {x1, . . . , xn} ⊆
X and r1, r2, . . . , rn > 0, if for each i = 1, 2, . . . , n, BX [xi, ri] ∩ J ̸= ∅ and

⋂n
i=1BX [xi, ri] ̸= ∅ then⋂n

i=1BX [xi, ri] ∩ J ̸= ∅.

The following intersection property is obtained by minor modifications to the proof of [46,

Lemma 2.1]. We include the proof here for the sake of completeness.

Lemma 3.3.2 ([56, Lemma 3.1]). Let X be an L1-predual space and J be an M -ideal in X. Let

F ∈ K(X), {x1, . . . , xn} ⊆ X and r, r1, . . . , rn > 0. If for each x ∈ F , BX [x, r] ∩ J ̸= ∅; for each

i = 1, . . . , n, BX [xi, ri]∩J ̸= ∅ and Sr(F )∩
⋂n

i=1BX [xi, ri] ̸= ∅, then Sr(F )∩
⋂n

i=1BX [xi, ri]∩J ̸= ∅.

Proof. For each m ∈ N, let Fm ⊆ F be a finite 1
m -net such that Fm ⊆ Fm+1. Then by Lemma 3.3.1,

there exists an element y1 ∈
⋂

y∈F1
BX [y, r] ∩

⋂n
i=1BX [xi, ri] ∩ J . We assume that for each m ∈ N

and i = 1, 2, . . . ,m, the elements

yi ∈
⋂
y∈Fi

BX [y, r] ∩
n⋂

i=1

BX [xi, ri] ∩
i−1⋂
j=1

BX

[
yj ,

1

j

]
∩ J (3.1)

have been constructed (we use the convention that
⋂0

j=1BX

[
yj ,

1
j

]
= X). Then it is easy to see that

for i = 1, 2, . . . ,m and each y ∈ F , yi ∈ BX

[
y, r + 1

i

]
. Therefore, the closed balls in the collection

{BX [y, r] : y ∈ F} ∪ {BX [xi, ri]}ni=1 ∪
{
BX

[
yj ,

1

j

]}m

j=1

(3.2)

intersect pairwise. Then by [45, Theorem 4.5, pg. 38] and [39, Theorem 6, pg. 212],

⋂
y∈Fm+1

BX [y, r] ∩
n⋂

i=1

BX [xi, ri] ∩
m⋂
i=1

BX

[
yj ,

1

j

]
̸= ∅. (3.3)

We apply Lemma 3.3.1 again to obtain an element

ym+1 ∈
⋂

y∈Fm+1

BX [y, r] ∩
n⋂

i=1

BX [xi, ri] ∩
m⋂
j=1

BX

[
yj ,

1

j

]
∩ J. (3.4)

Then for each y ∈ F , ym+1 ∈ BX [y, r+ 1
m+1 ]. Proceeding inductively, we construct a sequence {ym}

which satisfies the following properties :

(i) for each m ∈ N and y ∈ F , ym ∈ BX [y, r + 1
m ],
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(ii) for each m, k ∈ N with m > k, ym ∈ BX [yk,
1
k ] and

(iii) for each m ∈ N, ym ∈
⋂n

i=1BX [xi, ri].

It is easy to see that {ym} is a Cauchy sequence. In fact, for an ε > 0, we choose m0 ∈ N such that
1

m0
< ε

2 . Then for each m, k > m0, ∥ym − yk∥ ≤ ∥ym − ym0
∥ + ∥ym0

− yk∥ ≤ 2
m0

< ε. Hence let

y0 = limm→∞ ym. Then y0 ∈ Sr(F ) ∩
⋂n

i=1BX [xi, ri] ∩ J .

Theorem 3.3.3 ([56, Theorem 3.2]). Let X be an L1-predual space and J be an M -ideal in X.

Then (X,BJ ,K(X)) has property-(P1).

Proof. Let ε > 0 and F ∈ K(X). Let x ∈ centBJ
(F, ε) = SradBJ

(F )+ε(F ) ∩ BJ . Obviously,

BX [x, ε]∩BX∩J ̸= ∅ and for each y ∈ F , BX [x, ε]∩BX [y, radBJ
(F )] ̸= ∅. By [35, Corollary 4.8], J is

ball proximinal in X. Hence for each y ∈ F , BX [y, d(y,BJ)]∩BJ ̸= ∅. Moreover, it is easy to see that

for each y ∈ F , d(y,BJ) ≤ radBJ
(F ). It follows that for each y ∈ F , BX [y, radBJ

(F )]∩BX ̸= ∅. By
[46, Theorem 2.2], centJ(F ) = SradJ (F )(F )∩ J ̸= ∅. Since radJ(F ) ≤ radBJ

(F ), SradBJ
(F )(F )∩ J ̸=

∅. Now, {BX [y, radBJ
(F )] : y ∈ F} ∪ {BX [x, ε], BX} is a collection of closed balls which intersect

pairwise. Therefore, by [45, Theorem 4.5, pg. 38] and [39, Theorem 6, pg. 212],

SradBJ
(F )(F ) ∩BX [x, ε] ∩BX ̸= ∅. (3.5)

It is easily observed that each of the closed balls above intersects J . Therefore, by Lemma 3.3.2,

SradBJ
(F )(F ) ∩BX [x, ε] ∩BX ∩ J ̸= ∅. (3.6)

Next, for a compact Hausdorff space S and a finite co-dimensional subspace Y of C(S), we

provide a a sufficient condition for the triplet (C(S), BY ,K(C(S))) to satisfy property-(P1). Before

we proceed, we need the following technical result.

Lemma 3.3.4 ([56, Lemma 3.3]). Let X be a Banach space, V ∈ CV(X) and B ∈ CB(X). Then

for each ε > 0 and γ > 0, there exists δ > 0 such that

centV (B, γ + δ) ⊆ centV (B, γ) + εBX .

Proof. Let ε > 0, γ > 0 and without loss of generality, assume that R := radV (B) > 0. We choose

δ > 0 such that δ < min
{
R, εγ

6R+4γ

}
. Let v ∈ centV (B, γ + δ). Then r(v,B) ≤ R+ γ + δ. Further,
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let v′ ∈ centV
(
B, γ2

)
. We define λ = 2δ

2δ+γ and ṽ = (1− λ)v + λv′. Now, for each b ∈ B,

∥ṽ − b∥ = ∥(1− λ)v + λv′ − b∥

≤ (1− λ)∥v − b∥+ λ∥v′ − b∥

< (1− λ)(R+ γ + δ) + λ
(
R+

γ

2

)
= R+ (1− λ)(γ + δ) + λ

γ

2

= R+ (1− λ)γ + λγ − λ
γ

2
+ (1− λ)δ

= R+ γ + δ −
(

2δ

2δ + γ

)(
δ +

γ

2

)
= R+ γ.

(3.7)

Hence, it follows that r(ṽ, B) ≤ R+ γ. Moreover, for each b ∈ B,

∥v − ṽ∥ ≤ λ(∥v − b∥+ ∥v′ − b∥) < 2δ

2δ + γ
(3R+ 2γ) < ε. (3.8)

Theorem 3.3.5 ([56, Theorem 3.5]). Let S be a compact Hausdorff space and {µ1, . . . , µn} ⊆
SC(S)∗ . If for each i = 1, . . . , n, S(µi) is finite and Y =

⋂n
i=1 ker(µi), then (C(S), BY ,K(C(S)))

has property-(P1).

Proof. We apply techniques similar to those used in the proof of [34, Proposition 4.2]. We prove

the result only for n = 2 because the same ideas work to prove the result for n ̸= 2. Let

{k1, . . . , km, t1, . . . , tr} ⊆ S and {α1, . . . , αm, β1, . . . , βr} ⊆ R be such that µ1 =
∑m

i=1 αiδki
,

µ2 =
∑r

j=1 βjδtj , Y = ker(µ1) ∩ ker(µ2) and F ∈ K(C(S)).

Case 1 : S(µ1) ∩ S(µ2) = ∅.
We define

A =

(γ1, . . . , γm, γ
′
1, . . . , γ

′
r) ∈ [−1, 1]m+r :

m∑
i=1

αiγi = 0 and

r∑
j=1

βjγ
′
j = 0

 (3.9)

and

α = inf

sup
f∈F

max
1≤i≤m
1≤j≤r

{|γi − f(ki)|, |γ′j − f(tj)|} : (γ1, . . . , γm, γ′1, . . . , γ′r) ∈ A

 . (3.10)

For each f ∈ F , the continuity of the map

(γ1, . . . , γm, γ
′
1, . . . , γ

′
r) 7→ max

1≤i≤m
1≤j≤r

{|γi − f(ki)|, |γ′j − f(tj)|} (3.11)

on Rm+r implies the lower semi-continuity of the map

(γ1, . . . , γm, γ
′
1, . . . , γ

′
r) 7→ sup

f∈F
max

1≤i≤m
1≤j≤r

{|γi − f(ki)|, |γ′j − f(tj)|} (3.12)
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on Rm+r. The set A ⊆ Rm+r is non-empty and compact and hence, the infimum in (3.10) is attained.

Let (η1, . . . , ηm, η
′
1, . . . , η

′
r) ∈ A be such that

α = sup
f∈F

max
1≤i≤m
1≤j≤r

{|ηi − f(ki)|, |η′j − f(tj)|}. (3.13)

Therefore, for each f ∈ F ,

− α+ ηi ≤ f(ki) ≤ α+ ηi for i = 1, . . . ,m and

− α+ η′j ≤ f(tj) ≤ α+ η′j for j = 1, . . . , r.
(3.14)

Let R = radBY
(F ). It follows from the definition of α that R ≥ α. Therefore, from the inequalities

in (3.14), it follows that for each f ∈ F ,

−R+ ηi ≤ f(ki) ≤ R+ ηi for i = 1, . . . ,m and

−R+ η′j ≤ f(tj) ≤ R+ η′j for j = 1, . . . , r.
(3.15)

Now, by [61, Theorem I.2.2], centC(S)(F ) = SradC(S)(F )(F ) ̸= ∅. Since radC(S)(F ) ≤ R, SR(F ) ̸= ∅.
By [34, Proposition 4.2], Y is ball proximinal in C(S). Therefore, for each f ∈ F , BC(S)[f, d(f,BY )]∩
BY ̸= ∅. It follows that for each f ∈ F , BC(S)[f,R]∩BC(S) ̸= ∅. Since C(S) is an L1-predual space

and F is compact, by [45, Theorem 4.5, pg. 38], SR(F )∩BC(S) ̸= ∅. Let g0 ∈ SR(F )∩BC(S). Then

for each f ∈ F and t ∈ S,

f(t)−R ≤ g0(t) ≤ f(t) +R. (3.16)

It follows that for each t ∈ S,

sup
f∈F

f(t)−R ≤ inf
f∈F

f(t) +R. (3.17)

It also follows from (3.16) that for each f ∈ F and t ∈ S,

−1−R ≤ f(t) ≤ R+ 1. (3.18)

Now, choose g ∈ BC(S) such that g(ki) = ηi, for i = 1, . . . ,m and g(tj) = η′j , for j = 1, . . . , r. Let

h0 : S → R be defined as h0 = min{g, inff∈F f + R}. The compactness of F ensures h0 ∈ C(S).

Further, define h : S → R as h = max{h0, supf∈F f − R}. Then from the inequalities in (3.15),

(3.17) and (3.18), it follows that h ∈ BC(S); h(ki) = ηi, for i = 1, . . . ,m; h(tj) = η′j , for j = 1, . . . , r

and for each t ∈ S, supf∈F f(t)−R ≤ h(t) ≤ inff∈F f(t) +R. Therefore, h ∈ centBY
(F ).

Now, we prove that (C(S), BY , {F}) satisfies property-(P1). Let ε > 0. Let X = Rm+r, equipped

with the supremum norm and

F̃ = {xf = (f(k1), . . . , f(km), f(t1), . . . , f(tr)) ∈ X : f ∈ F} ∈ K(X). (3.19)

Subcase 1 : R = α.

Due to the compactness of the set A, (X,A, CB(X)) has property-(P1). Hence, there exists

0 < δ < ε such that centA(F̃ , δ) ⊆ centA(F̃ ) + εBX .

Let g ∈ centBY
(F, δ). Then xg = (g(k1), . . . , g(km), g(t1), . . . , g(tr)) ∈ centA(F̃ , δ). Therefore,

there exists z = (z1, . . . , zm, z
′
1, . . . , z

′
r) ∈ centA(F̃ ) such that ∥xg − z∥ ≤ ε. Now, choose g′ ∈ BC(S)
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such that g′(ki) = zi, for i = 1, . . . ,m and g′(tj) = z′j , for j = 1, . . . , r. Let f1 = max{supf∈F f −
R, g−ε,−1} and f2 = min{inff∈F f+R, g+ε, 1}. The compactness of F implies that f1, f2 ∈ C(S).

Moreover, f1 ≤ g′ ≤ f2 on {k1, . . . , km, t1, . . . , tr}. Let h1 = max{f1, g′} and h2 = min{h1, f2}.
Clearly, h1, h2 ∈ BC(S). Since r(g, F ) ≤ R + δ < R + ε. It follows that supf∈F f − R ≤ g + ε

and g − ε ≤ inff∈F f + R. From the inequalities in (3.18), it follows that supf∈F f − R ≤ 1 and

−1 ≤ inff∈F f + R. Further, since g ∈ BY , −1 ≤ g ≤ 1 and hence, g − ε ≤ 1. Therefore, f1 ≤ f2

and f1 ≤ h1. We can then conclude that h2 = g′ on {k1, . . . , km, t1, . . . , tr} and f1 ≤ h2 ≤ f2 on

S. Therefore, h2 ∈ BY , supf∈F f − R ≤ h2 ≤ inff∈F f + R and g − ε ≤ h2 ≤ g + ε. This implies

h2 ∈ centBY
(F ) and ∥g − h2∥ ≤ ε. Hence, (C(S), BY , {F}) satisfies property-(P1).

Subcase 2 : R > α.

Let β = R−α. By Lemma 3.3.4, there exists 0 < δ < ε such that centA(F̃ , β+δ) ⊆ centA(F̃ , β)+

εBX .

Let g ∈ centBY
(F, δ). Then xg = (g(k1), . . . , g(km), g(t1), . . . , g(tr)) ∈ centA(F̃ , β+δ). Therefore,

there exists z = (z1, . . . , zm, z
′
1, . . . , z

′
r) ∈ centA(F̃ , β) such that ∥xg − z∥ ≤ ε. Therefore, r(z, F̃ ) ≤

α + β = R. Now, choose g′ ∈ BC(S) such that g′(ki) = zi and g′(tj) = z′j , for i = 1, . . . ,m and

j = 1, . . . , r. Then by following the same steps as in the last paragraph of Subcase 1, we can prove

that (C(S), BY , {F}) satisfies property-(P1).

Case 2 : S(µ1) ∩ S(µ2) ̸= ∅.
Without loss of generality and for simplicity, we assume that for each i ∈ N such that 1 ≤ i ≤

s ≤ min{m, r}, ki = ti and hence S(µ1) ∩ S(µ2) = {k1, . . . , ks}. We define

B = {(γ1, . . . , γm, γ′1, . . . , γ′r) ∈ [−1, 1]m+r : γi = γ′i for 1 ≤i ≤ s;

m∑
i=1

αiγi = 0

and

r∑
j=1

βjγ
′
j = 0}

(3.20)

and

α′ = inf

sup
f∈F

max
1≤i≤m
1≤j≤r

{|γi − f(ki)|, |γ′j − f(tj)|} : (γ1, . . . , γm, γ′1, . . . , γ′r) ∈ B

 . (3.21)

Applying the same argument as in Case 1, we can show that the infimum in (3.21) is attained say

at (η1, . . . , ηm, η
′
1, . . . , η

′
r) ∈ B. We further proceed the same way as in Case 1 to first prove that

centBY
(F ) ̸= ∅ and then that (C(S), BY , {F}) satisfies property-(P1).

The following result provides a characterization for strongly proximinal finite co-dimensional

subspaces of a C(S) space. This result is important to characterize the finite co-dimensional strongly

proximinal subspace of an L1-predual space. This is due to the fact that the bidual of an L1-predual

space is of the type C(S) for some compact Hausdorff space S (see [39, Chapter 7]).

Theorem 3.3.6 ([56, Theorem 3.6]). Let S be a compact Hausdorff space and Y be a finite co-

dimensional linear subspace of C(S). Then the following statements are equivalent :

(i) Y is strongly proximinal in C(S).

(ii) Y is strongly ball proximinal in C(S).

(iii) (C(S), Y,K(C(S))) has property-(P1).
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(iv) (C(S), BY ,K(C(S))) has property-(P1).

(v) Y ⊥ ⊆ {µ ∈ C(S)∗ : µ is a SSD-point of C(S)∗}.

Proof. By [34, Theorem 4.3], (i) ⇔ (ii) ⇔ (v). The implication (v) ⇒ (iv) follows from [15,

Theorem 2.1] and Theorem 3.3.5. Clearly, (iii) ⇒ (i). Moreover, from Proposition 3.2.3, (iv) ⇒
(iii).

For a Choquet simplex K and a finite co-dimensional subspace Y of A(K), the following result

provides a sufficient condition for the triplet (A(K), BY ,K(A(K))) to satisfy property-(P1). We

recall that for a Choquet simplex K, if µ ∈ A(K)∗ then it means µ ∈ C(K)∗ is a restriction map

on A(K). We also recall that a subset G of K is called a face of K if λx+ (1− λ)y ∈ G whenever

x, y ∈ K and 0 < λ < 1, then x, y ∈ G.

Theorem 3.3.7 ([56, Theorem 3.7]). Let K be a Choquet simplex and {µ1, . . . , µn} ⊆ SA(K)∗ . If for

each i = 1, . . . , n, S(µi) is finite, S(µi) ⊆ ext(K) and Y =
⋂n

i=1 ker(µi), then (A(K), BY ,K(A(K)))

has property-(P1).

Proof. We apply methods similar to those used in the proof of [34, Theorem 5.4]. We prove

the result only for n = 2 because the same ideas work to prove the result for n ̸= 2. Let

{k1, . . . , km, t1, . . . , tr} ⊆ ext(K) and {α1, . . . , αm, β1, . . . , βr} ⊆ R be such that µ1 =
∑m

i=1 αiδki ,

µ2 =
∑r

j=1 βjδtj and Y = ker(µ1) ∩ ker(µ2). Let F ∈ K(A(K)).

Case 1 : S(µ1) ∩ S(µ2) = ∅.
Let α,A be as defined in the proof of Case 1 of Theorem 3.3.5 and following the same argument

as in that proof, let (η1, . . . , ηm, η
′
1, . . . , η

′
r) ∈ A be such that

α = sup
f∈F

max
1≤i≤m
1≤j≤r

{|ηi − f(ki)|, |η′j − f(tj)|}. (3.22)

Let R = radBY
(F ). Then from the definition of α it follows that R ≥ α and hence for each f ∈ F ,

−R+ ηi ≤ f(ki) ≤ R+ ηi for i = 1, . . . ,m and

−R+ η′j ≤ f(tj) ≤ R+ η′j for j = 1, . . . , r.
(3.23)

Now, by Proposition 1.2.2, centA(K)(F ) = SradA(K)(F )(F ) ̸= ∅. Since radA(K)(F ) ≤ R, SR(F ) ̸= ∅.
By [34, Theorem 5.4], Y is ball proximinal in A(K). Therefore, for each f ∈ F , BA(K)[f, d(f,BY )]∩
BY ̸= ∅. For each f ∈ F , since d(f,BY ) ≤ R, it follows that BA(K) ∩ BA(K)[f,R] ̸= ∅. Hence, by

[45, Theorem 4.5, pg. 38], BA(K) ∩ SR(F ) ̸= ∅. Let g0 ∈ BA(K) ∩ SR(F ). Then for each f ∈ F and

t ∈ K,

f(t)−R ≤ g0(t) ≤ f(t) +R. (3.24)

It follows that for each t ∈ K,

sup
f∈F

f(t)−R ≤ inf
f∈F

f(t) +R. (3.25)

It also follows from (3.24) that for each f ∈ F and t ∈ K,

−1−R ≤ f(t) ≤ R+ 1. (3.26)
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We choose g ∈ BC(K) such that g(ki) = ηi, for i = 1, . . . ,m and g(tj) = η′j , for j = 1, . . . , r. Define

h0 : K → R as follows: for each t ∈ K,

h0(t) =


inff∈F f(t) +R , if g(t) ≥ inff∈F f(t) +R

g(t) , if supf∈F f(t)−R ≤ g(t) ≤ inff∈F f(t) +R

supf∈F f(t)−R , if g(t) ≤ supf∈F f(t)−R.

(3.27)

The compactness of F and the inequalities in (3.26) ensure h0 ∈ BC(K). By the definition of h0,

supf∈F f − R ≤ h0 ≤ inff∈F f + R on K. From the inequalities in (3.23), it follows that for i =

1, . . . ,m, h0(ki) = ηi and for j = 1, . . . , r, h0(tj) = η′j . Hence,
∑m

i=1 αih0(ki) = 0 =
∑r

j=1 βjh0(tj).

Now, by [1, Theorem II.3.12], there exists h ∈ BA(K) such that for each i = 1, . . . ,m and

j = 1, . . . , r, h(ki) = h0(ki) and h(tj) = h0(tj). Let G = conv({k1, . . . , km, t1, . . . , tr}). Then G is a

closed face of K. Further, for each f ∈ F , f −R ≤ h ≤ f +R on G and hence, supf∈F f −R ≤ h ≤
inff∈F f + R on G. Also, −1 ≤ h ≤ 1 on G. Therefore, from the inequalities in (3.26), it follows

that

max

{
−1, sup

f∈F
f −R

}
≤ h ≤ min

{
1, inf

f∈F
f +R

}
on G (3.28)

and

max

{
−1, sup

f∈F
f −R

}
≤ min

{
1, inf

f∈F
f +R

}
on K. (3.29)

Note that max
{
−1, supf∈F f −R

}
and −min {1, inff∈F f +R} are convex continuous functions

on K. Therefore, by [7, Corollary 7.7, p. 73], there exists h̃ ∈ A(K) such that h̃ = h on G and

max
{
−1, supf∈F f −R

}
≤ h̃ ≤ min {1, inff∈F f +R} on K. It follows that h̃ ∈ centBY

(F ).

Now, we prove that (A(K), BY , {F}) satisfies property-(P1). Let ε > 0. LetX = Rm+r, equipped

with the supremum norm and

F̃ = {xf = (f(k1), . . . , f(km), f(t1), . . . , f(tr)) ∈ X : f ∈ F} ∈ K(X). (3.30)

Subcase 1 : R = α.

The set A ⊆ X is compact and hence, (X,A, CB(X)) has property-(P1). Therefore, there exists

0 < δ < ε such that centA(F̃ , δ) ⊆ centA(F̃ ) + εBX .

Let g ∈ centBY
(F, δ). Then xg = (g(k1), . . . , g(km), g(t1), . . . , g(tr)) ∈ centA(F̃ , δ). Therefore,

there exists z = (z1, . . . , zm, z
′
1, . . . , z

′
r) ∈ centA(F̃ ) such that ∥xg − z∥ ≤ ε. Now, choose g′ ∈ BC(K)

such that g′(ki) = zi and g
′(tj) = z′j , for i = 1, . . . ,m and j = 1, . . . , r. Then by [1, Theorem II.3.12],

there exists h′ ∈ BA(K) such that h′(ki) = g′(ki) = zi, for i = 1, . . . ,m and h′(tj) = g′(tj) = z′j , for

j = 1, . . . , r. Therefore,
∑m

i=1 αih
′(ki) = 0 =

∑r
j=1 βjh

′(tj).

Let G = conv({k1, . . . , km, t1, . . . , tr}). Then G is a closed face of K. Clearly, for each t ∈ G,

supf∈F f(t) − R ≤ h′(t) ≤ inff∈F f(t) + R, g(t) − ε ≤ h′(t) ≤ g(t) + ε and −1 ≤ h′(t) ≤ 1. Since

r(g, F ) ≤ R + δ < R + ε, it follows that supf∈F f − R ≤ g + ε on K and g − ε ≤ inff∈F f + R on

K. Since g ∈ BY , −1 ≤ g ≤ 1 and hence g − ε ≤ 1 on K. Therefore,

max

{
sup
f∈F

f −R, g − ε,−1

}
≤ h′ ≤ min

{
inf
f∈F

f +R, g + ε, 1

}
on G (3.31)
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and

max

{
sup
f∈F

f −R, g − ε,−1

}
≤ min

{
inf
f∈F

f +R, g + ε, 1

}
on K. (3.32)

Moreover, we note that max{supf∈F f −R, g− ε,−1} and −min{inff∈F f +R, g+ ε, 1} are convex

continuous functions on K. Therefore, by [7, Corollary 7.7, p. 73], there exists h ∈ A(K) such that

h = h′ on G and

max{sup
f∈F

f −R, g − ε,−1} ≤ h ≤ min{ inf
f∈F

f +R, g + ε, 1} on K. (3.33)

It follows that h ∈ centBY
(F ) such that ∥g−h∥ ≤ ε. Hence, (A(K), BY , {F}) satisfies property-(P1).

Subcase 2 : R > α.

Let β = R−α. By Lemma 3.3.4, there exists 0 < δ < ε such that centA(F̃ , β+δ) ⊆ centA(F̃ , β)+

εBX .

Let g ∈ centBY
(F, δ). Then xg = (g(k1), . . . , g(km), g(t1), . . . , g(tr)) ∈ centA(F̃ , β+δ). Therefore,

there exists z = (z1, . . . , zm, z
′
1, . . . , z

′
r) ∈ centA(F̃ , β) such that ∥xg − z∥ ≤ ε. Therefore, r(z, F̃ ) ≤

α+ β = R. Now, choose g′ ∈ BC(K) such that g′(ki) = zi and g
′(tj) = z′j , for i = 1, . . . ,m and j =

1, . . . , r. Therefore, by [1, Theorem II.3.12], there exists h′ ∈ BA(K) such that h′(ki) = g′(ki) = zi,

for i = 1, . . . ,m and h′(tj) = g′(tj) = z′j , for j = 1, . . . , r. Then by following the same steps as in

the last paragraph of Subcase 1, we can prove that (A(K), BY , {F}) satisfies property-(P1).

Case 2 : S(µ1) ∩ S(µ2) ̸= ∅.
For simplicity and without loss of generality, we assume that for each i ∈ N such that 1 ≤ i ≤

s ≤ min{m, r}, ki = ti and hence S(µ1) ∩ S(µ2) = {k1, . . . , ks}. Let B and α′ be defined as in the

proof of Case 2 of Theorem 3.3.5. We further proceed the same way as in Case 1 to prove that

(A(K), BY , {F}) satisfies property-(P1).

The following characterization is an easy consequence of [34, Theorem 5.3], Theorem 3.3.7,

Proposition 3.2.3 and [33, Theorem 2.6].

Theorem 3.3.8 ([56, Theorem 3.8]). Let K be a Choquet simplex; {µ1, . . . , µn} ⊆ A(K)∗ be such

that for each i = 1, . . . , n, S(µi) ⊆ ext(K) and Y =
⋂n

i=1 ker(µi). Then the following statements

are equivalent :

(i) Y is strongly proximinal in A(K).

(ii) Y is strongly ball proximinal in A(K).

(iii) (A(K), Y,K(A(K))) has property-(P1).

(iv) (A(K), BY ,K(A(K))) has property-(P1).

(v) Y ⊥ ⊆ {µ ∈ A(K)∗ : µ is a SSD-point of A(K)∗}.

3.4 Characterizations of strongly proximinal finite co-

dimensional subspaces of an L1-predual space

In this section, we generalize the characterization in Theorem 3.3.6 for the strongly proximinal finite

co-dimensional subspaces of an L1-predual space. To this end, we need a few biduality results.
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We first recall the extended version of principle of local reflexivity given by Behrends. We state it

according to our purpose.

Theorem 3.4.1 ([10, Theorem 3.2]). Let Y be a subspace of a Banach space X. Then for each finite

dimensional subspaces E ⊆ X∗∗ and F ⊆ X∗ and ε > 0, there exists a bounded linear map T : E → X

such that

(i) ∥T∥, ∥T−1∥ ≤ 1 + ε;

(ii) for each x∗∗ ∈ E and x∗ ∈ F , x∗(T (x∗∗)) = x∗∗(x∗);

(iii) for each x∗∗ ∈ E ∩X, T (x∗∗) = x∗∗;

(iv) for each y∗∗ ∈ E ∩ Y ⊥⊥, T (y∗∗) ∈ Y and

(v) for each y∗ ∈ Y ⊥ and x∗∗ ∈ E such that x∗∗ is weak∗-continuous on Y ⊥, (T (x∗∗))(y∗) =

x∗∗(y∗).

Lemma 3.4.2 ([56, Lemma 4.2]). Let Y be a subspace of a Banach space X. Then for each

F ∈ K(X), radB
Y ⊥⊥ (F ) = radBY

(F ).

Proof. First we prove the result for each set in F(X). Let F = {x1, . . . , xn} ∈ F(X). Clearly,

radB
Y ⊥⊥ (F ) ≤ radBY

(F ). Suppose radB
Y ⊥⊥ (F ) < radBY

(F ). We choose ε > 0 and Φ ∈ BY ⊥⊥ such

that r(Φ, F ) < radBY
(F )−ε. Now, choose 0 < ε′ < ε

1+r(Φ,F ) and define E = span({x1, . . . , xn,Φ}) ⊆
X∗∗. Then by Theorem 3.4.1, there exists a bounded linear map T : E → X such that T (xi) = xi,

for each i = 1, . . . , n; T (Φ) ∈ Y and ∥T∥ ≤ 1 + ε′. Let y = T (Φ)
1+ε′ ∈ BY . Then for each i = 1, . . . , n,

∥xi − y∥ ≤ ∥T (xi)− T (Φ)∥+
∥∥∥∥T (Φ)− T (Φ)

1 + ε′

∥∥∥∥
≤ (1 + ε′)∥xi − Φ∥+ ε′

≤ r(Φ, F ) + ε′(1 + r(Φ, F ))

< r(Φ, F ) + ε.

(3.34)

It follows that r(y, F ) ≤ r(Φ, F ) + ε. Now, from the inequalities radBY
(F ) ≤ r(y, F ) and r(Φ, F ) <

radBY
(F )− ε, it follows radBY

(F ) < radBY
(F ), which is a contradiction. Therefore, radB

Y ⊥⊥ (F ) =

radBY
(F ).

Now, for a set F ∈ K(X), it follows from Lemma 2.2.4; the fact that for each ε > 0, there

exists a finite ε-net Fε such that dH(Fε, F ) < ε and the first part of the proof that radB
Y ⊥⊥ (F ) =

radBY
(F ).

Lemma 3.4.3 ([56, Lemma 4.3]). Let Y be a subspace of a Banach space X. If (X∗∗, BY ⊥⊥ ,K(X))

has property-(P1) then for each F ∈ K(X) and y ∈ Y , d(y, centB
Y ⊥⊥ (F )) = d(y, centBY

(F )).

Proof. Let F ∈ K(X) and y ∈ Y . We define r = d(y, centB
Y ⊥⊥ (F )) and r′ = radBY

(F ).

By Lemma 3.4.2, r′ = radB
Y ⊥⊥ (F ). Hence centBY

(F ) ⊆ centB
Y ⊥⊥ (F ) and for each δ > 0,

centBY
(F, δ) ⊆ centB

Y ⊥⊥ (F, δ). Therefore, d(y, centB
Y ⊥⊥ (F )) ≤ d(y, centBY

(F )).

We now prove the reverse inequality. By our assumption, for each ε > 0, there exists δε > 0 such

that whenever v ∈ centBY
(F, δε), we have d(v, centB

Y ⊥⊥ (F )) < ε.

Now, let ε > 0 be fixed.

37



We choose 0 < β < ε
3 and define δ = δ ε

22
. For each m ∈ N, let Fm ⊆ F be a finite δ

2m+2 -net such

that Fm ⊆ Fm+1 and define r′m = radBY
(Fm). By Lemma 3.4.2, r′m = radB

Y ⊥⊥ (Fm). Clearly, for

each m ∈ N, r′m ≤ r′m+1. Further, by Lemma 3.3.4, for each m ∈ N and ε′ > 0, there exists 0 <

γmε′ <
δ
2 such that d(v, centB

Y ⊥⊥ (Fm,
∑m

k=1
δ

2k+1 )) < ε′, whenever v ∈ centBY
(Fm,

∑m
k=1

δ
2k+1 +γ

m
ε′ ).

Now, since centB
Y ⊥⊥ (F1,

δ
22 ) is weak∗-compact, it is proximinal and hence there exists Φ0 ∈

centB
Y ⊥⊥ (F1,

δ
22 ) such that d(y, centB

Y ⊥⊥ (F1,
δ
22 )) = ∥y − Φ0∥. Define r0 = d(y, centB

Y ⊥⊥ (F1,
δ
22 )).

It is easy to see that centB
Y ⊥⊥ (F ) ⊆ centB

Y ⊥⊥ (F1,
δ
22 ). Indeed, it follows from Lemma 2.2.4 that

r′ ≤ r′1 + δ
23 and hence, for Φ′ ∈ centB

Y ⊥⊥ (F ), r(Φ′, F1) ≤ r(Φ′, F ) = r′ ≤ r′1 + δ
23 < r′1 + δ

22 .

Therefore, it follows that r0 ≤ r.

We choose 0 < ε1 < min

{
3β

22(r0+1) ,
γ1

β

22

1+r′1+
δ
22

}
. Let E1 = span(F1 ∪ {y,Φ0}}) ⊆ X∗∗. Then by

Theorem 3.4.1, there exists a bounded linear map T1 : E1 → X such that T1(x) = x, for each x ∈ F1;

T1(y) = y; T1(Φ0) ∈ Y and ∥T1∥ ≤ 1 + ε1. Now, let y1 = T1(Φ0)
1+ε1

∈ BY . Then

∥y − y1∥ ≤ ∥T1(y)− T1(Φ0)∥+
∥∥∥∥T1(Φ0)−

T1(Φ0)

1 + ε1

∥∥∥∥
≤ (1 + ε1)r0 + ε1

≤ r + ε1(1 + r0)

< r +
3β

22
.

(3.35)

Moreover, for each x ∈ F1,

∥x− y1∥ ≤ ∥T1(x)− T1(Φ0)∥+
∥∥∥∥T1(Φ0)−

T1(Φ0)

1 + ε1

∥∥∥∥
≤ (1 + ε1)r(Φ0, F1) + ε1

≤ r′1 +
δ

22
+ ε1

(
1 + r′1 +

δ

22

)
< r′1 +

δ

22
+ γ1β

22
.

(3.36)

It follows that r(y1, F1) ≤ r′1 + δ
22 + γ1β

22

. Thus, y1 ∈ centBY
(F1,

δ
22 + γ1β

22

). This implies

d(y1, centB
Y ⊥⊥ (F1,

δ
22 )) <

β
22 . Now, let Φ1 ∈ centB

Y ⊥⊥ (F1,
δ
22 ) such that ∥y1 − Φ1∥ < β

22 .

We also make the following observation: Let x ∈ F2. Then there exists x1 ∈ F1 such that

∥x− x1∥ < δ
23 and hence,

∥x− Φ1∥ ≤ ∥x− x1∥+ ∥x1 − Φ1∥

<
δ

23
+ r(Φ1, F1)

≤ δ

23
+ r′1 +

δ

22

≤ r′2 +
δ

22
+

δ

23
.

(3.37)

It follows that r(Φ1, F2) ≤ r′2 +
δ
22 + δ

23 .
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We choose 0 < ε2 < min

{
β

23(1+ β

22
)
,

γ2
β

23

1+r′2+
δ
22

+ δ
23

}
. Let E2 = span(F2 ∪ {Φ1, y1}) ⊆ X∗∗. Then,

applying Theorem 3.4.1 again, there exists a bounded linear map T2 : E2 → X such that T2(x) = x,

for each x ∈ F2; T2(y1) = y1; T2(Φ1) ∈ Y and ∥T2∥ ≤ 1 + ε2. Now, let y2 = T2(Φ1)
1+ε2

∈ BY . Then

∥y1 − y2∥ ≤ ∥T2(y1)− T2(Φ1)∥+
∥∥∥∥T2(Φ1)−

T2(Φ1)

1 + ε2

∥∥∥∥
< (1 + ε2)

β

22
+ ε2

=
β

22
+ ε2

(
1 +

β

22

)
<

β

22
+
β

23
=

3β

23
.

(3.38)

Moreover, for each x ∈ F2,

∥x− y2∥ ≤ ∥T2(x)− T2(Φ1)∥+
∥∥∥∥T2(Φ1)−

T2(Φ1)

1 + ε2

∥∥∥∥
≤ (1 + ε2)r(Φ1, F2) + ε2

≤ r′2 +
δ

22
+

δ

23
+ ε2

(
1 + r′2 +

δ

22
+

δ

23

)
< r′2 +

δ

22
+

δ

23
+ γ2β

23
.

(3.39)

It follows that r(y2, F2) ≤ r′2 +
δ
22 + δ

23 + γ2β
23

. Thus, y2 ∈ centBY
(F2,

δ
22 + δ

23 + γ2β
23

). This implies

d(y2, centB
Y ⊥⊥ (F2,

δ
22 + δ

23 )) <
β
23 . Now, let Φ2 ∈ centB

Y ⊥⊥ (F2,
δ
22 + δ

23 ) such that ∥y2 − Φ2∥ < β
23 .

Similar to the earlier observation, we can conclude that r(Φ2, F3) ≤ r′3 +
δ
22 + δ

23 + δ
24 .

Proceeding inductively, we get a sequence {yn} ⊆ BY such that ∥yn − yn+1∥ < 3β
2n+2 and

r(yn, Fn) ≤ r′n +
∑n

k=1
δ

2k+1 + γn β

2n+1

< r′ +
∑n

k=1
δ

2k+1 + δ
2 . Clearly, {yn} is Cauchy in BY and

hence, let z1 ∈ BY with z1 = limn→∞ yn. Then we have

∥y − z1∥ ≤ r +
∞∑

n=1

3β

2n+1
= r +

3β

2
< r +

ε

2
. (3.40)

Now, let ε′ > 0 and x ∈ F . Then there exists n0 ∈ N such that δ
2n0+2 <

ε′

3 , ∥yn0
− z1∥ < ε′

3 and∑n0

k=1
δ

2k+1 <
δ
2 + ε′

3 and xn0
∈ Fn0

such that ∥x− xn0
∥ < δ

2n0+2 . Therefore,

∥x− z1∥ ≤ ∥x− xn0∥+ ∥xn0 − yn0∥+ ∥yn0 − z1∥

<
δ

2n0+2
+ r(yn0 , Fn0) +

ε′

3

<
ε′

3
+ r′ +

n0∑
k=1

δ

2k+1
+
δ

2
+
ε′

3

<
ε′

3
+ r′ +

δ

2
+
ε′

3
+
δ

2
+
ε′

3
= r′ + δ + ε′.

(3.41)

It follows that r(z1, F ) ≤ r′ + δ + ε′. Since ε′ is arbitrary, r(z1, F ) ≤ r′ + δ = r′ + δ ε
22
.

Thus, z1 ∈ centBY
(F, δ ε

22
) and hence, d(z1, centB

Y ⊥⊥ (F )) < ε
22 . Now, for each m ∈ N, choose a
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finite
δε/23

2m+2 -netGm ⊆ F such thatGm ⊆ Gm+1. Therefore, there exists ψ ∈ centB
Y ⊥⊥ (G1,

δε/23

22 ) such

that ∥z1 −ψ∥ < ε
22 . Then by applying similar arguments as above, there exists an element z2 ∈ BY

such that ∥z1 − z2∥ < ε
22 and r(z2, F ) ≤ r′ + δ ε

23
.

We now proceed inductively and obtain a sequence {zn} ⊆ BY such that ∥zn − zn+1∥ < ε
2n+1

and r(zn, F ) ≤ r′ + δ ε

2n+1
. Without loss of generality, we assume δ ε

2n+1
→ 0. Clearly, {zn} is

Cauchy in BY and hence, let z0 ∈ BY such that z0 = limn→∞ zn. Let x ∈ F . Then ∥x − z0∥ =

limn→∞ ∥x− zn∥ ≤ limn→∞ r(zn, F ) ≤ r′. It follows that r(z0, F ) ≤ r′ and hence, z0 ∈ centBY
(F ).

Also, ∥y−z0∥ ≤ r+
∑∞

n=1
ε
2n = r+ε. Therefore, d(y, centBY

(F )) ≤ ∥y−z0∥ ≤ d(y, centB
Y ⊥⊥ (F ))+ε.

Since ε is arbitrary, d(y, centBY
(F )) ≤ d(y, centB

Y ⊥⊥ (F )). This proves the result.

The next result connects property-(P1) of the closed unit ball of a subspace of a Banach space

with that of its bidual.

Proposition 3.4.4 ([56, Proposition 4.4]). Let Y be a subspace of a Banach space X. If

(X∗∗, BY ⊥⊥ ,K(X)) has property-(P1) then (X,BY ,K(X)) has property-(P1).

Proof. Let F ∈ K(X). It follows from the proof of Lemma 3.4.3 that centBY
(F ) ̸= ∅. Now, let {yn}

be a sequence in BY such that r(yn, F ) → radBY
(F ). By Lemma 3.4.2, radBY

(F ) = radB
Y ⊥⊥ (F ).

Therefore, d(yn, centB
Y ⊥⊥ (F )) → 0. Hence, by Lemma 3.4.3, d(yn, centBY

(F )) → 0. Therefore,

(X,BY , {F}) satisfies property-(P1).

We now provide an instance where the converse of Proposition 3.4.4 holds true.

Proposition 3.4.5 ([56, Proposition 4.5]). Let Y be a finite co-dimensional subspace of an L1-

predual space X. Then (X∗∗, BY ⊥⊥ ,K(X∗∗)) has property-(P1) if and only if (X,BY ,K(X)) has

property-(P1).

Proof. Assume (X,BY ,K(X)) has property-(P1). Then, in particular, Y is strongly ball proximinal

in X. Therefore, by [35, Theorem 3.10], Y ⊥⊥ is a strongly proximinal finite co-dimensional subspace

of X∗∗. By our assumption, X∗∗ is isometric to a C(S) space, for some compact Hausdorff space S.

Therefore, by Theorem 3.3.6, it follows that (X∗∗, BY ⊥⊥ ,K(X∗∗)) has property-(P1).

The converse of the result follows from Proposition 3.4.4.

Next, we demonstrate that property-(P1) is stable through the weak∗-dense subset X in X∗∗ and

hence, we generalize [33, Corollary 2.5].

Corollary 3.4.6 ([56, Corollary 4.6]). Let X be an L1-predual space and Z be a finite co-

dimensional weak∗-closed linear subspace of X∗∗. If (X∗∗, BZ ,K(X)) has property-(P1), then so

does (X∗∗, BZ ,K(X∗∗)).

Proof. Since Z is a finite co-dimensional weak∗-closed subspace of X∗∗, there exists a basis

{x∗1, . . . , x∗n} ⊆ X∗ for Z⊥. Now, let Y =
⋂n

i=1 ker(x
∗
i ). Then Y ⊥⊥ = Z. Hence, by Proposi-

tion 3.4.4, (X,BY ,K(X)) has property-(P1). Therefore, the result follows from Proposition 3.4.5.

We now prove the main result of this section.

Theorem 3.4.7 ([56, Theorem 4.7]). Let Y be a finite co-dimensional subspace of an L1-predual

space X. Then the following statements are equivalent :

(i) Y is strongly proximinal in X.
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(ii) Y is strongly ball proximinal in X.

(iii) (X,Y,K(X)) has property-(P1).

(iv) (X,BY ,K(X)) has property-(P1).

(v) Y ⊥ ⊆ {x∗ ∈ X∗ : x∗ is a SSD-point of X∗}.

Proof. By [33, Theorem 2.6], (i) ⇔ (ii) ⇔ (v). Obviously, (iii) ⇒ (i) and from Proposition 3.2.3,

(iv) ⇒ (iii).

Now, we prove that (ii) ⇒ (iv). Assume Y is strongly ball proximinal in X. Since (ii) ⇒ (i), by

[35, Theorem 3.10], Y ⊥⊥ is a strongly proximinal finite co-dimensional subspace ofX∗∗. Now, by [45,

Theorem 6.1], X∗∗ is isometric to C(S), for some compact Hausdorff space K. It follows from Theo-

rem 3.3.6 that (X∗∗, BY ⊥⊥ ,K(X∗∗)) has property-(P1). Then, by Proposition 3.4.5, (X,BY ,K(X))

has property-(P1).

We conclude this section by providing characterizations for a strongly proximinal finite co-

dimensional subspace of an L1-predual space which are similar and in addition to those stated

in [33, Corollary 2.7].

Corollary 3.4.8 ([56, Corollary 4.8]). Let Y be a finite co-dimensional subspace of an L1-predual

space X. Then the following statements are equivalent :

(i) (X,Y,K(X)) has property-(P1).

(ii) (X,BY ,K(X)) has property-(P1).

(iii) Y is the intersection of finitely many hyperplanes Y1, . . . , Yn such that for each i = 1, . . . , n,

(X,Yi,K(X)) has property-(P1).

(iv) Y is the intersection of finitely many hyperplanes Y1, . . . , Yn such that for each i = 1, . . . , n,

(X,BYi ,K(X)) has property-(P1).

Proof. It follows from Theorem 3.4.7 and [35, Corollary 3.21] that (i) ⇔ (iii) and (ii) ⇔ (iv).

Clearly, (i) ⇔ (ii) follows from Theorem 3.4.7.

3.5 Some results on the biduality of the approximation prop-

erties

In this section, we prove a few biduality properties of property-(P1) of triplets concerning the special

sets defined in (1.4). We first recall some notations from [35].

Notation 3.5.1 ([35]). Let X be a Banach space and {x∗1, . . . , x∗s} be a set of linearly independent

functionals in X∗. Let M1 = M∗
1 = ∥x∗1∥. Furthermore, by Hahn-Banach theorem, JX∗∗(x∗1) =

{x∗∗ ∈ BX∗∗ : x∗∗(x∗1) = ∥x∗1∥} is non-empty. Now, suppose for each i ∈ {2, . . . , s}, JX(x∗1, . . . , x
∗
i−1)

is defined and is non-empty. Then we define

Mi = sup{x∗i (x) : x ∈ JX(x∗1, . . . , x
∗
i−1)},

M∗
i = sup{x∗∗(x∗i ) : x∗∗ ∈ JX∗∗(x∗1, . . . , x

∗
i−1)},

JX(x∗1, . . . , x
∗
i ) = {x ∈ JX(x∗1, . . . , x

∗
i−1) : x

∗
i (x) =Mi},

JX∗∗(x∗1, . . . , x
∗
i ) = {x∗∗ ∈ JX∗∗(x∗1, . . . , x

∗
i−1) : x

∗∗(x∗i ) =M∗
i }.

(3.42)
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For each ε > 0, we define JX(x∗1, ε) = {x ∈ BX : x∗1(x) > ∥x∗1∥ − ε}. Now, for each i = 2, . . . , s,

we define

JX(x∗1, . . . , x
∗
i , ε) = {x ∈ JX(x∗1, . . . , x

∗
i−1, ε) : x

∗
i (x) > Mi − ε}. (3.43)

Remark 3.5.2. We recall and observe the following facts.

(i) For each i = 1, . . . , s, JX∗∗(x∗1, . . . , x
∗
i ) is a non-empty weak∗-compact subset ofX∗∗. Indeed,

it is true for i = 1 by Hahn-Banach theorem. Moroever, it follows from that JX∗∗(x∗1) is a

weak∗-compact subset of X∗∗. Now consider i = 2. The evaluation functional δx∗
2
: X∗∗ → R,

defined as δx∗
2
(x∗∗) = x∗∗(x∗2) for each x

∗∗ ∈ X∗∗, is weak∗-continuous on X∗∗. Since JX∗∗(x∗1)

is weak∗-compact, we have that JX∗∗(x∗1, x
∗
2) is a weak∗-compact subset of X∗∗. Therefore,

M∗
2 = sup{δx∗

2
(x∗∗) : x∗∗ ∈ JX∗∗(x∗1)} is attained at some x∗∗ ∈ JX∗∗(x∗1), hence proving

that JX∗∗(x∗1, x
∗
2) ̸= ∅. By using an induction argument, we can prove that for each i > 2,

JX∗∗(x∗1, . . . , x
∗
i ) is a weak∗-compact subset of X∗∗ and JX∗∗(x∗1, . . . , x

∗
i ) ̸= ∅.

(ii) By [30, Theorem 1], if Y is a proximinal finite co-dimensional subspace of X, then for each

basis {x∗1, . . . , x∗s} of Y ⊥ and for each i = 1, . . . , s, JX(x∗1, . . . , x
∗
i ) ̸= ∅.

The following result provides a few relations satisfied by the notations defined in Notation 3.5.1.

Proposition 3.5.3 ([35, Proposition 3.4]). Let Y be a strongly proximinal finite co-dimensional

subspace of a Banach space X and let {x∗1, . . . , x∗s} ⊆ SY ⊥ be a basis of Y ⊥. For each i = 1, . . . , s,

let Mi, M
∗
i , JX(x∗1, . . . , x

∗
i ) and JX∗∗(x∗1, . . . , x

∗
i ) be defined as in Notation 3.5.1. Then for each

i = 1, . . . , s,

(i) Mi =M∗
i and

(ii) JX∗∗(x∗1, . . . , x
∗
i ) is the weak∗-closure of JX(x∗1, . . . , x

∗
i ).

In this section, the following characterization of a strongly proximinal finite co-dimensional sub-

space is used to prove the subsequent results.

Theorem 3.5.4 ([23]). Let Y be a proximinal finite co-dimensional subspace of a Banach space X.

Then Y is strongly proximinal in X if and only if for each basis {x∗1, . . . , x∗s} of Y ⊥ and i = 1, . . . , s,

lim
ε→0

[sup{d(x, JX(x∗1, . . . , x
∗
i )) : x ∈ JX(x∗1, . . . , x

∗
i , ε)}] = 0. (3.44)

The following result generalizes the equality in [23, Remark 1.2 (1)].

Lemma 3.5.5. Let X be a Banach space. Let F ∈ K(X) and x∗ ∈ SX∗ . If x∗ is a SSD-point of

X∗, then radJX∗∗ (x∗)(F ) = radJX(x∗)(F ).

Proof. We first prove the desired equality for each F ∈ F(X). Let F = {x1, . . . , xn} ⊆ X. By

Proposition 3.5.3, the weak∗ closure of JX(x∗) is JX∗∗(x∗). Therefore, clearly, radJX∗∗ (x∗)(F ) ≤
radJX(x∗)(F ).

Suppose radJX∗∗ (x∗)(F ) < radJX(x∗)(F ). Then there exists x∗∗ ∈ JX∗∗(x∗) and ε > 0 such that

r(x∗∗, F ) < radJX(x∗)(F ) − ε. Since x∗ is a SSD-point of X∗, ker(x∗) is strongly proximinal in X.

Therefore, by Theorem 3.5.4, there exists δ > 0 such that d(x, JX(x∗)) < ε/2, whenever x ∈ BX

and x∗(x) > 1− δ.

Let 0 < ε′ < min
{

1
1−δ − 1, ε

2(r(x∗∗,F )+1)

}
. Moreover, we define E = span({x1, . . . , xn, x∗∗}) ⊆

X∗∗ and Y = span({x∗}) ⊆ X∗. Then by Theorem 3.4.1, there exists a bounded linear map
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T : E → X such that T (xi) = xi, for i = 1, . . . , n; ∥T∥ ≤ 1 + ε′; T (x∗∗) ∈ X and for each y∗ ∈ Y ,

y∗(T (x∗∗)) = x∗∗(y∗). We define x = T (x∗∗)
1+ε′ ∈ BX . Therefore

x∗(x) = x∗
(
T (x∗∗)

1 + ε′

)
=

1

1 + ε′
x∗∗(x∗) =

1

1 + ε′
> 1− δ. (3.45)

Therefore, there exists x0 ∈ JX(x∗) such that ∥x− x0∥ < ε/2. Now, for each i = 1, . . . , n,

∥x0 − xi∥ ≤ ∥x0 − x∥+ ∥x− xi∥

<
ε

2
+ ∥T (x∗∗)− T (xi)∥+

∥∥∥∥T (x∗∗)− T (x∗∗)

1 + ε′

∥∥∥∥
≤ ε

2
+ ∥T∥∥x∗∗ − xi∥+ ε′

≤ ε

2
+ (1 + ε′)r(x∗∗, F ) + ε′ = r(x∗∗, F ) +

ε

2
+ ε′(r(x∗∗, F ) + 1)

< r(x∗∗, F ) +
ε

2
+
ε

2
= r(x∗∗, F ) + ε.

(3.46)

It follows that

radJX(x∗)(F ) ≤ r(x0, F ) ≤ r(x∗∗, F ) + ε < radJX(x∗)(F ). (3.47)

This is a contradiction. Therefore, radJX(x∗)(F ) = radJX∗∗ (x∗)(F ).

Now, for a set F ∈ K(X), we can easily prove that radJX∗∗ (x∗)(F ) = radJX(x∗)(F ) by using

Lemma 2.2.4; the fact that for each ε > 0, there exists a finite ε-net Fε such that dH(Fε, F ) < ε and

the argument in the first part of the proof.

Lemma 3.5.6. Let Y be a strongly proximinal finite co-dimensional subspace of a Banach space

X. Let {x∗1, . . . , x∗s} ⊆ SY ⊥ be a basis of Y ⊥. Then for each F ∈ K(X) and i = 1, . . . , s,

radJX∗∗ (x∗
1 ,...,x

∗
i )
(F ) = radJX(x∗

1 ,...,x
∗
i )
(F ).

Proof. Let i = 1. Since Y = ker(x∗1) is strongly proximinal, x∗1 is an SSD-point of X∗. Hence, from

Lemma 3.5.5, for each F ∈ K(X), radJX(x∗
1)
(F ) = radJX∗∗ (x∗

1)
(F ).

We now only prove for i = 2 since the same ideas work for i > 2. We consider first F =

{x1, . . . , xm} ⊆ X. By Proposition 3.5.3, radJX∗∗ (x∗
1 ,...,x

∗
i )
(F ) ≤ radJX(x∗

1 ,...,x
∗
i )
(F ). To prove the

reverse inequality, we employ same proof techniques as in [35, Lemma 3.7].

Let R = radJX∗∗ (x∗
1 ,x

∗
2)
(F ). Since JX∗∗(x∗1, x

∗
2) is a weak∗-compact set, centJX∗∗ (x∗

1 ,x
∗
2)
(F ) ̸= ∅.

Let ϕ ∈ JX∗∗(x∗1, x
∗
2) such that r(ϕ, F ) = R.

Since Y is strongly proximinal in X, by Theorem 3.5.4, for each ε > 0, there exists δε > 0 such

that d(x, JX(x∗1, x
∗
2)) < ε, whenever x ∈ JX(x∗1, x

∗
2, δε).

Now let ε′ > 0 such that 0 < ε′ < min
{
δε/22 ,

ε
2(R+1)

}
. Let E = span({x1, . . . , xm, ϕ}) ⊆ X∗∗

and F = span({x∗1, x∗2}) ⊆ X∗. Then by Theorem 3.4.1, there exists a bounded linear map T : E →
X such that for i = 1, . . . ,m, T (xi) = xi; ∥T∥ ≤ 1+ε′; T (ϕ) ∈ X and for i = 1, 2, x∗i (T (ϕ)) = ϕ(x∗i ).

Now, let z1 = T (ϕ)
1+ε′ ∈ BX . Then, for each i = 1, . . . ,m,

∥xi − z1∥ ≤ ∥T (xi)− T (ϕ)∥+
∥∥∥∥T (ϕ)− T (ϕ)

1 + ε′

∥∥∥∥
≤ (1 + ε′)r(ϕ, F ) + ε′

= R+ ε′(R+ 1) < R+
ε

2
.

(3.48)
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This implies that r(z1, F ) ≤ R+ ε
2 . Further, for i = 1, 2, by Proposition 3.5.3, we have

x∗i (z1) = x∗i

(
T (ϕ)

1 + ε′

)
=
ϕ(x∗i )

1 + ε′
=

M∗
i

1 + ε′
=

Mi

1 + ε′
=Mi −

Miε
′

1 + ε′
> Mi − ε′ > Mi − δε/22 . (3.49)

Thus, z1 ∈ JX(x∗1, x
∗
2, δε/22) and d(z1, JX∗∗(x∗1, x

∗
2)) ≤ d(z1, JX(x∗1, x

∗
2)) < ε/22. Let ϕ1 ∈

JX∗∗(x∗1, x
∗
2) such that ∥z1 − ϕ1∥ < ε

22 . Then by Theorem 3.4.1, there exists z2 ∈ BX such that

∥z1 − z2∥ < ε
22 and for i = 1, 2, x∗i (z2) > Mi − δε/23 .

Proceeding inductively, we obtain a sequence {zn} ⊆ BX such that ∥zn − zn+1∥ < ε
2n+1 and

for each n = 1, 2, . . . and i = 1, 2, x∗i (zn) > Mi − δ ε

2n+1
. Without loss of generality, assume that

δ ε
2n

→ 0. Clearly, {zn} is a Cauchy sequence and there exists zε ∈ BX such that zε = limn→∞ zn.

Now, for i = 1, 2, x∗i (zε) = Mi and hence zε ∈ JX(x∗1, x
∗
2). Moreover, for each i = 1, . . . ,m and

n ∈ N, ∥xi − zn∥ ≤ R + ε
2 + . . . + ε

2n . By taking limit as n → ∞, it follows that for i = 1, . . . ,m,

∥xi − zε∥ ≤ R+ ε. This implies r(zε, F ) ≤ R+ ε. Since ε > 0 is arbitrary and zε ∈ JX(x∗1, x
∗
2),

radJX(x∗
1 ,x

∗
2)
(F ) ≤ R = radJX∗∗ (x∗

1 ,x
∗
2)
(F ). (3.50)

Therefore, for each F ∈ F(X), radJX(x∗
1 ,x

∗
2)
(F ) = radJX∗∗ (x∗

1 ,x
∗
2)
(F ).

Further, for a set F ∈ K(X), by Lemma 2.2.4; the fact that for each ε > 0, there exists a finite

ε-net Fε such that dH(Fε, F ) < ε and the argument in the first part of the proof, we can conclude

that radJX(x∗
1 ,x

∗
2)
(F ) = radJX∗∗ (x∗

1 ,x
∗
2)
(F ).

Lemma 3.5.7. Let Y be a strongly proximinal finite co-dimensional subspace of a Banach space

X. Let {x∗1, . . . , x∗s} ⊆ SY ⊥ be a basis of Y ⊥. Then for each i = 1, . . . , s, F ∈ K(X) and x ∈ X,

d(x, centJX∗∗ (x∗
1 ,...,x

∗
s)
(F )) = d(x, centJX(x∗

1 ,...,x
∗
s)
(F )).

Proof. By Remark 3.5.2 (ii), for each i = 1, . . . , s, JX(x∗1, . . . , x
∗
i ) ̸= ∅. We prove the result only for

i = 2 since the same ideas work for i ̸= 2.

Let F ∈ K(X) and x ∈ X. We define r = d(x, centJX∗∗ (x∗
1 ,x

∗
2)
(F )). Now, by Lemma 3.5.6,

r′ := radJX∗∗ (x∗
1 ,x

∗
2)
(F ) = radJX(x∗

1 ,x
∗
2)
(F ). Therefore, centJX(x∗

1 ,x
∗
2)
(F ) ⊆ centJX∗∗ (x∗

1 ,x
∗
2)
(F ) and for

each δ > 0,

centJX(x∗
1 ,x

∗
2)
(F, δ) ⊆ centJX∗∗ (x∗

1 ,x
∗
2)
(F, δ). (3.51)

Hence,

d(x, centJX∗∗ (x∗
1 ,x

∗
2)
(F )) ≤ d(x, centJX(x∗

1 ,x
∗
2)
(F )). (3.52)

We next prove the reverse inequality. By our assumption and (3.51), for each ε > 0, there exists

δε > 0 such that whenever z ∈ centJX(x∗
1 ,x

∗
2)
(F, δε),

d(z, centJX∗∗ (x∗
1 ,x

∗
2)
(F )) < ε. (3.53)

Now, let ε > 0 be fixed.

We choose β > 0 such that β < ε
3 . We define δ = δ ε

22
. We also choose β′ > 0 such that

3β
2 +2β′ < ε

2 and 2β′ < δ
4 . For each m ∈ N, let Fm ⊆ F be a finite δ

2m+2 -net such that Fm ⊆ Fm+1.

By Lemma 3.5.6, r′m := radJX(x∗
1 ,x

∗
2)
(Fm) = radJX∗∗ (x∗

1 ,x
∗
2)
(Fm). Clearly, for eachm ∈ N, r′m ≤ r′m+1.

44



Further, by Lemma 3.3.4, for each m ∈ N and ε′ > 0, there exists 0 < γmε′ <
δ
4 such that whenever

z ∈ centJX(x∗
1 ,x

∗
2)

(
Fm,

m∑
k=1

(
δ

2k+1
+

β′

2k−1

)
+ γmε′

)
, (3.54)

we have

d

(
z, centJX∗∗ (x∗

1 ,x
∗
2)

(
Fm,

m∑
k=1

(
δ

2k+1
+

β′

2k−1

)))
< ε′. (3.55)

Since Y is strongly proximinal in X, by Theorem 3.5.4, for each ε′ > 0, there exists θε′ > 0 such

that whenever z ∈ JX(x∗1, x
∗
2, θε′), we have d(z, JX(x∗1, x

∗
2)) < ε′.

Now, since centJX∗∗ (x∗
1 ,x

∗
2)
(F1,

δ
22 ) is weak∗-compact, it is proximinal and hence there ex-

ists Φ0 ∈ centJX∗∗ (x∗
1 ,x

∗
2)
(F1,

δ
22 ) such that d(x, centJX∗∗ (x∗

1 ,x
∗
2)
(F1,

δ
22 )) = ∥x − Φ0∥. We define

r0 = d(x, centJX∗∗ (x∗
1 ,x

∗
2)
(F1,

δ
22 )). It is easy to see that centJX∗∗ (x∗

1 ,x
∗
2)
(F ) ⊆ centJX∗∗ (x∗

1 ,x
∗
2)
(F1,

δ
22 ).

Indeed, it follows from Lemma 2.2.4 that r′ ≤ r′1 + δ
23 and hence, for Φ′ ∈ centJX∗∗ (x∗

1 ,x
∗
2)
(F ),

r(Φ′, F1) ≤ r(Φ′, F ) = r′ ≤ r′1 +
δ
23 < r′1 +

δ
22 . Therefore, it follows that r0 ≤ r.

We choose 0 < ε1 < min

{
3β

22(r0+1) ,
γ1

β

22

1+r′1+
δ
22
, θβ′

}
. Let E1 = span(F1 ∪ {x,Φ0}) ⊆ X∗∗ and

G = span({x∗1, x∗2}) ⊆ X∗. Then by Theorem 3.4.1, there exists a bounded linear map T1 : E1 → X

such that for each f ∈ F1, T1(f) = f ; T1(x) = x; T1(Φ0) ∈ X and ∥T1∥ ≤ 1 + ε1. Now, let

z1 = T1(Φ0)
1+ε1

∈ BX . Now, for each i = 1, 2, by Proposition 3.5.3, we have

x∗i

(
T (Φ0)

1 + ε1

)
=

Φ0(x
∗
i )

1 + ε1
=

M∗
i

1 + ε1
=

Mi

1 + ε1
=Mi −

Miε1
1 + ε1

> Mi − ε1 > Mi − θβ′ . (3.56)

This implies that z1 ∈ JX(x∗1, x
∗
2, θβ′). Therefore there exists y1 ∈ JX(x∗1, x

∗
2) such that ∥y1 − z1∥ <

β′. Then

∥x− y1∥ ≤ ∥T1(x)− T1(Φ0)∥+
∥∥∥∥T1(Φ0)−

T1(Φ0)

1 + ε1

∥∥∥∥+ ∥z1 − y1∥

< (1 + ε1)r0 + ε1 + β′

≤ r + ε1(1 + r0) + β′

< r +
3β

22
+ β′.

(3.57)

Moreover, for each f ∈ F1,

∥f − y1∥ ≤ ∥T1(f)− T1(Φ0)∥+
∥∥∥∥T1(Φ0)−

T1(Φ0)

1 + ε1

∥∥∥∥+ ∥z1 − y1∥

< (1 + ε1)r(Φ0, F1) + ε1 + β′

≤ r′1 +
δ

22
+ ε1

(
1 + r′1 +

δ

22

)
+ β′

< r′1 +
δ

22
+ β′ + γ1β

22
.

(3.58)

It follows that r(y1, F1) ≤ r′1 + δ
22 + β′ + γ1β

22

. Thus, y1 ∈ centJX(x∗
1 ,x

∗
2)
(F1,

δ
22 + β′ + γ1β

22

). This

implies d(y1, centJX∗∗ (x∗
1 ,x

∗
2)
(F1,

δ
22 + β′)) < β

22 . Now, let Φ1 ∈ centJX∗∗ (x∗
1 ,x

∗
2)
(F1,

δ
22 + β′) such that
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∥y1 − Φ1∥ < β
22 .

We also make the following observation: Let f ∈ F2. Then there exists f1 ∈ F1 such that

∥f − f1∥ < δ
23 and hence

∥f − Φ1∥ ≤ ∥f − f1∥+ ∥f1 − Φ1∥

<
δ

23
+ r(Φ1, F1)

≤ δ

23
+ r′1 +

δ

22
+ β′

≤ r′2 +
δ

22
+

δ

23
+ β′.

(3.59)

It follows that r(Φ1, F2) ≤ r′2 +
δ
22 + δ

23 + β′.

We choose 0 < ε2 < min

{
β

23(1+ β

22
)
,

γ2
β

23

1+r′2+
δ
22

+ δ
23
, θ β′

2

}
. Let E2 = span(F2 ∪ {y1,Φ1}) ⊆ X∗∗

and G = span({x∗1, x∗2}) ⊆ X∗. Then, applying Theorem 3.4.1 again, there exists a bounded

linear map T2 : E2 → X such that for each f ∈ F2, T2(f) = f ; T2(y1) = y1; T2(Φ1) ∈ X and

∥T2∥ ≤ 1 + ε2. Now, let z2 = T2(Φ1)
1+ε2

∈ BX . Using the earlier argument, it is easy to conclude that

z2 ∈ JX(x∗1, x
∗
2, θ β′

2

). Therefore, there exists y2 ∈ JX(x∗1, x
∗
2) such that ∥z2 − y2∥ < β′

2 . Then

∥y1 − y2∥ ≤ ∥T2(y1)− T2(Φ1)∥+
∥∥∥∥T2(Φ1)−

T2(Φ1)

1 + ε2

∥∥∥∥+ ∥z2 − y2∥

< (1 + ε2)
β

22
+ ε2 +

β′

2

=
β

22
+ ε2

(
1 +

β

22

)
+
β′

2

<
β

22
+
β

23
+
β′

2
=

3β

23
+
β′

2
.

(3.60)

Moreover, for each f ∈ F2,

∥f − y2∥ ≤ ∥T2(f)− T2(Φ1)∥+
∥∥∥∥T2(Φ1)−

T2(Φ1)

1 + ε2

∥∥∥∥+ ∥z2 − y2∥

< (1 + ε2)r(Φ1, F2) + ε2 +
β′

2

≤ r′2 +
δ

22
+

δ

23
+ β′ + ε2

(
1 + r′2 +

δ

22
+

δ

23

)
+
β′

2

< r′2 +
δ

22
+

δ

23
+ β′ +

β′

2
+ γ2β

23
.

(3.61)

It follows that r(y2, F2) ≤ r′2 +
δ
22 + δ

23 + β′ + β′

2 + γ2β
23

. Thus,

y2 ∈ centJX(x∗
1 ,x

∗
2)

(
F2,

δ

22
+

δ

23
+ β′ +

β′

2
+ γ2β

23

)
. (3.62)

This implies

d

(
y2, centJX∗∗ (x∗

1 ,x
∗
2)

(
F2,

δ

22
+

δ

23
+ β′ +

β′

2

))
<

β

23
. (3.63)
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Now, let Φ2 ∈ centJX∗∗ (x∗
1 ,x

∗
2)
(F2,

δ
22 +

δ
23 + β′ + β′

2 ) such that ∥y2 −Φ2∥ < β
23 . Similar to the earlier

observation, we can conclude that r(Φ2, F3) ≤ r′3 +
δ
22 + δ

23 + δ
24 + β′ + β′

2 .

Proceeding inductively, we get a sequence {yn} ⊆ JX(x∗1, x
∗
2) such that ∥yn − yn+1∥ < 3β

2n+2 +
β′

2n

and r(yn, Fn) ≤ r′n +
∑n

k=1

(
δ

2k+1 + β′

2k−1

)
+ γn β

2n+1

< r′ +
∑n

k=1

(
δ

2k+1 + β′

2k−1

)
+ δ

4 . Clearly, {yn}

is Cauchy in JX(x∗1, x
∗
2) and hence, let y10 ∈ BX with y10 = limn→∞ yn. Moreover, for each i = 1, 2,

x∗i (y
1
0) = limn→∞ x∗i (yn) = limn→∞Mi =Mi and hence y10 ∈ JX(x∗1, x

∗
2). Then we have

∥x− y10∥ ≤ r +

∞∑
n=1

3β

2n+1
+

∞∑
n=0

β′

2n
= r +

3β

2
+ 2β′ < r +

ε

2
. (3.64)

Now, let ε′ > 0 and f ∈ F . Then there exists n0 ∈ N such that δ
2n0+2 <

ε′

3 , ∥yn0 − y10∥ < ε′

3 and∑n0

k=1

(
δ

2k+1 + β′

2k−1

)
< δ

2 + 2β′ + ε′

3 and fn0
∈ Fn0

such that ∥f − fn0
∥ < δ

2n0+2 . Therefore,

∥f − y10∥ ≤ ∥f − fn0
∥+ ∥fn0

− yn0
∥+ ∥yn0

− y10∥

<
δ

2n0+2
+ r(yn0

, Fn0
) +

ε′

3

<
ε′

3
+ r′ +

n0∑
k=1

(
δ

2k+1
+

β′

2k−1

)
+
δ

4
+
ε′

3

<
ε′

3
+ r′ +

δ

2
+ 2β′ +

ε′

3
+
δ

4
+
ε′

3

<
ε′

3
+ r′ +

δ

2
+
δ

4
+
ε′

3
+
δ

4
+
ε′

3
= r′ + δ + ε′.

(3.65)

It follows that r(y10 , F ) ≤ r′ + δ + ε′. Since ε′ is arbitrary, r(y10 , F ) ≤ r′ + δ = r′ + δ ε
22
.

Thus, y10 ∈ centJX(x∗
1 ,x

∗
2)
(F, δ ε

22
) and hence, d(y10 , centJX∗∗ (x∗

1 ,x
∗
2)
(F )) < ε

22 . Now, for each

m ∈ N, choose a finite
δε/23

2m+2 -net Hm ⊆ F such that Hm ⊆ Hm+1. Therefore, there exists

ψ ∈ centJX∗∗ (x∗
1 ,x

∗
2)
(H1,

δε/23

22 ) such that ∥y10 − ψ∥ < ε
22 . Then by applying similar arguments as

above, there exists an element y20 ∈ JX(x∗1, x
∗
2) such that ∥y10 − y20∥ < ε

22 and r(y20 , F ) ≤ r′ + δ ε
23
.

We now proceed inductively and obtain a sequence {yn0 } ⊆ JX(x∗1, x
∗
2) such that ∥yn0 − yn+1

0 ∥ <
ε

2n+1 and r(yn0 , F ) ≤ r′ + δ ε

2n+1
. Without loss of generality, we assume δ ε

2n+1
→ 0. Clearly,

{yn0 } is Cauchy in JX(x∗1, x
∗
2) and hence, let y0 ∈ BX such that y0 = limn→∞ yn0 . Moreover,

for each i = 1, 2, x∗i (y0) = limn→∞ x∗i (y
n
0 ) = limn→∞Mi = Mi and hence y0 ∈ JX(x∗1, x

∗
2).

Let f ∈ F . Then ∥f − y0∥ = limn→∞ ∥f − yn0 ∥ ≤ limn→∞ r(yn0 , F ) ≤ r′. It follows that

r(y0, F ) ≤ r′ and hence, y0 ∈ centJX(x∗
1 ,x

∗
2)
(F ). Moreover, ∥x − y0∥ ≤ r +

∑∞
n=1

ε
2n = r + ε.

Therefore, d(x, centJX(x∗
1 ,x

∗
2)
(F )) ≤ ∥x − y0∥ ≤ d(x, centJX∗∗ (x∗

1 ,x
∗
2)
(F )) + ε. Since ε is arbitrary,

d(x, centJX(x∗
1 ,x

∗
2)
(F )) ≤ d(x, centJX∗∗ (x∗

1 ,x
∗
2)
(F )). This proves the result.

We now prove the main result of this section.

Theorem 3.5.8. Let Y be a strongly proximinal finite co-dimensional subspace of a Banach

space X. Let {x∗1, . . . , x∗s} ⊆ SY ⊥ be a basis of Y ⊥. Then for each i = 1, . . . , s, if the triplet

(X∗∗, JX∗∗(x∗1, . . . , x
∗
i ),K(X)) has property-(P1) then (X, JX(x∗1, . . . , x

∗
i ),K(X)) has property-(P1).

Proof. Let F ∈ K(X) and i ∈ {1, . . . , s}. It follows from the proof of Lemma 3.5.7 that

centJX(x∗
1 ,...,x

∗
i )
(F ) ̸= ∅. Now, let {xn} be a sequence in JX(x∗1, . . . , x

∗
i ) such that r(xn, F ) →

radJX(x∗
1 ,...,x

∗
i )
(F ). By Lemma 3.5.6, radJX(x∗

1 ,...,x
∗
i )
(F ) = radJX∗∗ (x∗

1 ,...,x
∗
i )
(F ). Therefore,
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d(xn, centJX∗∗ (x∗
1 ,...,x

∗
i )
(F )) → 0. Hence, by Lemma 3.5.7, d(xn, centJX(x∗

1 ,...,x
∗
i )
(F )) → 0. There-

fore, (X, JX(x∗1, . . . , x
∗
i ), {F}) satisfies property-(P1).

3.6 A subspace of a Banach space which satisfies 11
2-ball prop-

erty and does not have r.c.p.

A. L. Garkavi provided an example in [19] of a hyperplane in a non-reflexive Banach space which is

proximinal but does not admit restricted Chebyshev center for a two-point set, after a (equivalent)

renorming, in the resulting renormed space. We can observe that this hyperplane satisfies 11
2 -

ball property in the renormed Banach space. This shows that 1 1
2 -ball property and hence strong

proximinality is not a sufficient condition for r.c.p.. We now briefly explain Garkavi’s example and

further, we prove that it satisfies 11
2 -ball property for the sake of completeness.

Example 3.6.1 ([56, Example 5.1]). Let X be a non-reflexive Banach space. Let x∗ ∈ X∗\{0}.
We define Y = ker(x∗). Then Y is also non-reflexive and by James’ theorem, there exists a linear

functional Φ ∈ Y ∗ such that ∥Φ∥ = 1 and Φ does not attain its norm on BY . We define D = {y ∈
BY : Φ(y) ≥ 3

4} and then choose a γ > 0 and y0 ∈ D such that BX [y0, γ] ∩ Y is contained in the

interior of the set D, with respect to Y . Let α = inf{Φ(y) : y ∈ BX [y0, γ] ∩ Y }. Then 3
4 ≤ α < 1.

Further, we define U = {y ∈ BY : |Φ(y)| ≤ α}. Now, U ∩ BX [y0, γ] ∩ Y = ∅ because the infimum

defining α is not attained on BX [y0, γ] ∩ Y .

We fix x0 ∈ X\Y such that x∗(x0) = 1. We define Bγ = BX [0, γ] ∩ Y and V = x0 +Bγ . Let B

denote the closure of the set conv(U ∪V ∪−V ). Then B is a closed bounded symmetric subset of X.

Let X ′ denote the Banach space X, renormed to have B as the closed unit ball. Let the renorming

be denoted by ∥.∥B . Then the new norm ∥.∥B on X ′ is equivalent to the old one on X. It is proved

in [20] that Y is proximinal in X ′ and centY ({0, x0 + y0}) = ∅ in X ′.

Let Y be a subspace of a Banach space X. For an element x ∈ X and ε = 0, we define

PY (x, ε) = PY (x). We recall the following characterisation of 1 1
2 -ball property, which is obtained as

a consequence of [27, Remark 6, p. 50 and Corollary 4, p. 52].

Proposition 3.6.2 ([56, Proposition 5.2]). Let Y be a subspace of a Banach space X. Then Y

has 1 1
2 -ball property in X if and only if Y is proximinal in X and for each x ∈ X and ε ≥ 0,

PY (x, ε) = {y ∈ Y : d(y, PY (x)) ≤ ε}.

The next result is proved using ideas similar to that used in [8, Example 3.3].

Proposition 3.6.3 ([56, Proposition 5.3]). Let Y be a closed hyperplane in a non-reflexive Banach

space X and X ′ be the Banach space X with the renorming ∥.∥B as defined in Example 3.6.1. Then

Y satisfies 1 1
2 -ball property in X ′.

Proof. Clearly, if x ∈ X ′, then there exists λ ∈ R and y ∈ Y such that x = y + λx0. Also,

clearly, PY (y + λx0) = y + λPY (x0) and PY (y + λx0, δ) = y + λPY (x0,
δ
|λ| ), for δ > 0 and λ ̸= 0.

Therefore, applying Proposition 3.6.2 and by translation, it suffices to prove that for each ε ≥ 0,

PY (x0, ε) = {y ∈ Y : d(y, PY (x0)) ≤ ε}. Now, d(x0, Y ) = 1 and PY (x0) = Bγ . Let ε ≥ 0. By

[27, Remark 5, p. 50], we have {y ∈ Y : d(y, PY (x0)) ≤ ε} ⊆ PY (x0, ε). For ε = 0, it is trivial

to see that PY (x0) ⊆ {y ∈ Y : d(y, PY (x0)) = 0}. Thus, it remains to show that for each ε > 0,
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PY (x0, ε) ⊆ {y ∈ Y : d(y, PY (x0)) ≤ ε}, or in other words, we prove that if ε > 0 and y ∈ Y is such

that ∥y − x0∥B ≤ 1 + ε then we have d(y,Bγ) ≤ ε.

Let y ∈ Y such that η = ∥y − x0∥B ≤ 1 + ε. Without loss of generality, assume η > 1.

Therefore, y−x0

η ∈ B. Thus, there exists sequences {αn}, {βn}, {νn} ⊆ [0, 1] such that for each n,

αn + βn + νn = 1 and sequences {un}, {u′n} ⊆ Bγ ; {yn} ⊆ U such that

y − x0
η

= lim
n→∞

[αnun + βnu
′
n + νnyn + (αn − βn)x0]. (3.66)

Without loss of generality, there exists α, β, ν ∈ [0, 1] such that α + β + ν = 1, αn → α, βn → β

and νn → ν. Therefore, it follows that β − α = 1
η and y = limn→∞ η[αun + βu′n + νyn]. Now,

1
η ≤ α+ 1

η = β ≤ 1 and for each n, ∥un∥B , ∥u′n∥B , ∥yn∥B ≤ 1. Therefore,

d(y,Bγ) ≤ inf
n

∥y − u′n∥B

≤ lim inf
n

∥η(αun + βu′n + νyn)− u′n∥B

= lim inf
n

∥ηαun + (ηβ − 1)u′n + ηνyn∥B

≤ ηα+ (ηβ − 1) + ην = η − 1 ≤ ε.

(3.67)
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Chapter 4

An algebraic characterization of

closed linear sublattices of C(S)

4.1 Summary of results

In this chapter, we study the algebraic representation of the closed linear sublattices of the space

C(S), whenever S is a compact Hausdorff space, given by S. Kakutani [36].

In Section 4.2, we recall a few known facts and identify precisely the closed linear sublattices

of the two-dimensional vector space, R2. Further, in Section 4.3, we present an elementary proof

of Kakutani’s representation of a closed linear sublattice and subalgebra of a C(S) space, without

using any deep results of lattice theory or functional analysis. As a consequence, in Corollary 4.3.2,

we also provide an algebraic representation of the sublattices and subalgebras of the space C0(T ),

whenever T is a locally compact Hausdorff space.

4.2 Preliminaries

Let S be a compact Hausdorff space. It is well-known that C(S) is a lattice under the operation of

pointwise maximum or minimum of a pair of functions in C(S). Moreover, the Banach space C(S) is

an algebra under the operation of pointwise multiplication of a pair of functions in C(S). Kakutani

presented an algebraic characterization of the closed linear sublattices of C(S) as follows:

Theorem 4.2.1 ([36, Theorem 3, pg. 1005]). Let S be a compact Hausdorff space. Let A be a closed

linear subspace of C(S). Then A is a sublattice of C(S) if and only if there exists an index set I

and co-ordinates (ti, si, λi) ∈ S × S × [0, 1] for each i ∈ I such that

A = {f ∈ C(S) : f(ti) = λif(si), for each i ∈ I}. (4.1)

The following result gives us an explicit description of the sublattices in R2 under the lattice

operation of co-ordinate-wise maximum or minimum of a pair of vectors in R2.

Lemma 4.2.2 ([57, Lemma 1.2]). Consider R2 as a lattice under the operation of co-ordinate-wise

maximum or minimum of a pair of vectors in R2. Then the only closed linear sublattices of R2 are
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{(0, 0)}, R2 and span({(a, b)}), for those (a, b) ∈ R2 satisfying 0 ≤ a, b ≤ 1.

Proof. Let A be a closed linear subspace of R2. Now, the possible dimensions of A are 0, 1 or 2.

If the dimension of A is either 0 or 2, then A = {(0, 0)} or A = R2 respectively; obviously, these

subspaces are sublattices of R2. Assume that A is a one-dimensional subspace of R2. We know

that if A = span({(a, b)}) for some (a, b) ∈ R2, then A = span({(λa, λb)}) for each λ ∈ R\{0}.
Therefore, without loss of generality, there exists a, b ∈ [−1, 1] such that A = span({(a, b)}). It

is easy to see that if −1 ≤ a, b ≤ 0 or 0 ≤ a, b ≤ 1 then A is a sublattice of R2. Furthermore,

if −1 ≤ a < 0 < b ≤ 1 then the minimum of (a, b) and (2a, 2b) is (2a, b) ̸∈ A; hence A is not a

sublattice of R2. Using a similar argument, if −1 ≤ b < 0 < a ≤ 1 then A is not a sublattice of R2.

Therefore, without loss of generality, we get the desired conclusion.

Similarly, the possible closed linear subalgebras of R2 are as follows:

Lemma 4.2.3 ([17, Lemma 4.46]). Consider R2 as an algebra under co-ordinate-wise addition

and multiplication of a pair of vectors in R2. Then the only subalgebras of R2 are {(0, 0)}, R2,

span({(1, 0)}), span({(0, 1)}) and span({(1, 1)}).

We now recall the following interconnection between a subalgebra and a sublattice of C(S).

Lemma 4.2.4 ([17, Lemma 4.48]). Let S be a compact Hausdorff space. If A is a closed linear

subalgebra of C(S), then A is a sublattice of C(S).

For a closed linear sublattice A of C(S), we also recall the following sufficient condition for a

function in C(S) to be in A.

Lemma 4.2.5 ([17, Lemma 4.49]). Let S be a compact Hausdorff space. Let A be a closed linear

sublattice of C(S) and f ∈ C(S). If for every x, y ∈ S there exists gxy ∈ A such that gxy(x) = f(x)

and gxy(y) = f(y) then f ∈ A.

4.3 Main results

We now prove our main result. This proof has appeared in [57, Section 2].

Proof of Theorem 4.2.1. We assume that S contains at least two points because if S is a singleton

set then C(S) is simply R and the only closed linear sublattices or subalgebras are {0} and R. If A
has the description as in (4.1) then clearly A is a sublattice of C(S).

Now, assume that A is a sublattice of C(S). For every two distinct points x, y ∈ S, we define

Axy = {(g(x), g(y)) ∈ R2 : g ∈ A}. (4.2)

Since A is a lattice, Axy is a sublattice of R2 (under the operation of co-ordinate-wise maximum of

a pair of vectors in R2).

Case 1 : Assume A separates the points of S.

If for every x, y ∈ S, Axy = R2 then by Lemma 4.2.5, A = C(S). Hence A has the description as

in (4.1). Otherwise, there exists two distinct points x0, y0 ∈ S such that Ax0y0
is a proper sublattice

of R2. Consider the following collection:

I = {(t, s, λ) ∈ S × S × [0, 1] : f(t) = λf(s), for each f ∈ A}. (4.3)
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We now show that I ̸= ∅. Since A separates the points of S, Ax0y0 cannot be {(0, 0)} or

span({(1, 1)}). Thus Ax0y0 = span({(a, b)}) for some 0 ≤ a, b ≤ 1 and a ̸= b. If a = 0 and b > 0

then for each g ∈ A, g(x0) = 0 and hence (x0, y0, 0) ∈ I. If a > 0 and b = 0 then for each g ∈ A,

g(y0) = 0 and hence (y0, x0, 0) ∈ I. If without loss of generality 0 < a < b then for each g ∈ A,

there exists rg ∈ R such that (g(x0), g(y0)) = (rga, rgb). It follows that g(x0) = a
b g(y0). Thus

(x0, y0,
a
b ) ∈ I.

We index I by I itself, that is, each element of I is indexed by itself. Further, we define

A′ = {f ∈ C(S) : f(ti) = λif(si), for each i ∈ I}. (4.4)

By the definition of I, it is clear that A ⊆ A′.

We next show that A′ ⊆ A. Let f ∈ A′. In order to show f ∈ A, by Lemma 4.2.5, it suffices

to show that for each x, y ∈ S, there exists gxy ∈ A such that gxy(x) = f(x) and gxy(y) = f(y).

Therefore, it suffices to show that for each x, y ∈ S, (f(x), f(y)) ∈ Axy.

Let x, y ∈ S. Since A separates the points of S, Axy cannot be {(0, 0)} or span({(1, 1)}). We

remark here that in this case, we use the assumption that A separates the points of S only to prove

that I ̸= ∅ and to rule out the above two possibilities of Axy.

If Axy = R2 then clearly (f(x), f(y)) ∈ R2 = Axy. If Axy = span({(0, 1)}) then (0, f(y)) ∈ Axy

and for each g ∈ A, g(x) = 0. Thus (x, y, 0) ∈ I. Since f ∈ A′, f(x) = 0. Hence (f(x), f(y)) ∈ Axy.

Similar arguments hold if Axy = span({(1, 0)}).
Without loss of generality, let 0 < a < b < 1. Consider Axy = span({(a, b)}) then for each

g ∈ A, g(x) = a
b g(y). Thus (x, y, ab ) ∈ I. Since f ∈ A′, let f(x)

a = f(y)
b = r (say). It follows that

(f(x), f(y)) ∈ span({(a, b)}) = Axy.

Case 2 : Assume that A does not separate the points of S. Thus there exists two distinct points

x0, y0 ∈ S such that f(x0) = f(y0), for each f ∈ A. Consider the following collection:

I = {(t, s, λ) ∈ S × S × [0, 1] : f(t) = λf(s), for each f ∈ A}. (4.5)

Since (x0, y0, 1), (y0, x0, 1) ∈ I, clearly I ̸= ∅. We index I by I itself, that is, each element of I is

indexed by itself. We define

A′ = {f ∈ C(S) : f(ti) = λif(si), for each i ∈ I}. (4.6)

Clearly A ⊆ A′. In order to show A′ ⊆ A, by Lemma 4.2.5 it suffices to show that for each f ∈ A′

and each x, y ∈ S, (f(x), f(y)) ∈ Axy.

Let x, y ∈ S. We first consider the following possibilities of Axy : R2, span({(0, 1)}),
span({(1, 0)}) and span({(a, b)}) for those a, b ∈ R satisfying 0 < a < b < 1 (without loss of

generality). For each of the above possibilities, we apply arguments similar to that used in Case 1

to show that (f(x), f(y)) ∈ Axy.

In this case, due to our assumption that A does not separate the points of S, we need to consider

the two possibilities which we rule out in Case 1. They are as follows: If Axy = {(0, 0)} then for

each g ∈ A, g(x) = 0 = g(y). Hence, (x, y, 0), (y, x, 0) ∈ I. Since f ∈ A′, (f(x), f(y)) = (0, 0) ∈ Axy.

If Axy = span({(1, 1)}) then for each g ∈ A, g(x) = g(y). Thus (x, y, 1) ∈ I. Since f ∈ A′,

(f(x), f(y)) = (f(x), f(x)) ∈ Axy.
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Along similar lines, we obtain a representation of the closed linear subalgebras of the C(S) space

with the value of the coefficients λi being either 0 or 1 in (4.1). With the help of Lemmas 4.2.3,

4.2.4 and 4.2.5, we use a similar argument as in Theorem 4.2.1 to prove the following result. Hence

we omit it.

Theorem 4.3.1 ([57, Theorem 2.1]). Let S be a compact Hausdorff space. Let A be a closed linear

subspace of C(S). Then A is a subalgebra of C(S) if and only if there exists an index set I and

co-ordinates (ti, si, λi) ∈ S × S × {0, 1} for each i ∈ I such that

A = {f ∈ C(S) : f(ti) = λif(si), for each i ∈ I}. (4.7)

For a locally compact Hausdorff space T , we obtain similar characterizations for the sublattices

and subalgebras of C0(T ) by combining Theorems 4.2.1 and 4.3.1 and the fact that C0(T ) is isomet-

rically lattice and algebra isomorphic to a subalgebra of a C(S) space for some compact Hausdorff

space S. We state it formally as follows:

Corollary 4.3.2 ([57, Corollary 2.2]). Let T be a locally compact Hausdorff space. Let A be a closed

linear subspace of C0(T ). Then

(i) A is a sublattice of C0(T ) if and only if there exists an index set I and co-ordinates

(ti, si, λi) ∈ T × T × [0, 1], for each i ∈ I such that

A = {f ∈ C0(T ) : f(ti) = λif(si), for each i ∈ I}. (4.8)

(ii) A is a subalgebra of C0(T ) if and only if there exists an index set I and co-ordinates

(ti, si, λi) ∈ T × T × {0, 1}, for each i ∈ I such that

A = {f ∈ C0(T ) : f(ti) = λif(si), for each i ∈ I}. (4.9)

Remark 4.3.3 ([57, Remark]). Kakutani provided a precise identification of a much general class of

Banach spaces, namely abstract (M)-spaces (see [36, pg. 994] for the definition), with a subspace

of C(S) for some compact Hausdorff space S. Let S be a compact Hausdorff space and A be

a closed subspace of C(S). If A is an abstract (M)-space, then by [36, Theorem 1, pg. 998],

there exists a compact Hausdorff space Ω such that A is isometric and lattice isomorphic to the

subspace, {f ∈ C(Ω): f(ti) = λif(si), for each i ∈ I}, of C(Ω) for some index set I and co-

ordinates (ti, si, λi) ∈ Ω × Ω × [0, 1] for each i ∈ I. However, it is not necessary that A, being a

subspace of C(S), has a description in C(S) as given in (4.1). For example, consider the Banach

space A([0, 1]), which is a closed subspace of C([0, 1]) but not a sublattice of C([0, 1]). Therefore,

by Theorem 4.2.1, A([0, 1]) does not have a description as in (4.1), for any given subfamily of co-

ordinates in [0, 1]× [0, 1]× [0, 1]. Nevertheless, it is easy to see that A([0, 1]) is isometric and lattice

isomorphic to C({0, 1}) and hence is an abstract (M)-space.
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Chapter 5

Semi-continuity properties of

restricted Chebyshev-center maps

of Banach spaces

5.1 Summary of results

As the title of this chapter suggests, we investigate the semi-continuity properties of the restricted

Chebyshev-center maps of Banach spaces which stem from the concept of property-(P1) in Banach

spaces. We also discuss property-(P1) in the Banach space c0 (as a subspace of ℓ∞) and its subspaces.

In Section 5.2, we prove that the triplet (ℓ∞, Bc0 , CB(ℓ∞)) has property-(P1). In fact, we improve

a result by Amir [5] in Theorem 5.2.2. It is observed that for a topological space T and a uniformly

convex Banach space X, the triplet (Cb(T,X), BCb(T,X), CB(Cb(T,X))) satisfies property-(P1).

In Section 5.3, we establish the stability of r.c.p. and property-(P1) in the ℓ∞-direct sum of two

Banach spaces. As a consquence of the results in Sections 5.2 and 5.3, we prove that for a proximinal

finite co-dimensional subspace Y of c0, the triplet (ℓ∞, BY , CB(ℓ∞)) satisfies property-(P1).

In Section 5.4, we derive various stability results of the semi-continuity properties of the restricted

Chebyshev-center maps of the ℓ∞-direct sum of two Banach spaces. These results lead us to conclude

that for a proximinal finite co-dimensional subspace Y of c0, the map centBY
(.) is uniformly Hausdorff

continuous on subfamilies of sets in CB(ℓ∞) with equi-bounded restricted Chebyshev radii. We also

establish that for a subspace Y of a Banach space X, if (BY , CB(X)) has r.c.p. then the Hausdorff

metric continuity of the map centBY
(.) on CB(X) implies that of the map centY (.) on CB(X).

In Section 5.5, we prove in Theorem 5.5.1 that for a Banach space X, an M-summand Y in X

and a subspace Z of Y , if (Y,Z, CB(Y )) has property-(P1) then so does (X,Z, CB(X)). We further

positively answer Question 1.2.16 for an L1-predual space. In fact, we establish in Proposition 5.5.2

that for an L1-predual space X, a finite co-dimensional subspace Y of X and anM -ideal J in X such

that Y ⊆ J , if Y is strongly proximinal in J then the triplet (X,Y,K(X)) satisfies property-(P1).

In the last Section 5.6, we mainly present the following observations : Let Y be an ideal in an

L1-predual space X. Then (X,BY , CB(X)) has property-(P1) if (i) for a compact Hausdorff space

S, Y is a closed linear subalgebra of C(S) and X = C(S)∗∗ and (ii) for a locally compact Hausdorff
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space T , Y is a closed linear subalgebra of C0(T ) and X = C0(T )
∗∗.

5.2 Property-(P1) in vector-valued continuous function

spaces

In this section, we establish that for a compact Hausdorff space S, if A is a closed linear subalgebra of

C(S) then the triplet (C(S)∗∗, BA, CB(C(S)∗∗)) satisfies property-(P1). We first recall the following

characterization of a uniformly convex Banach space.

Lemma 5.2.1 ([5, Lemma 1]). Let X be a Banach space. Then X is uniformly convex if and only

if for each ε > 0, there exists δ′(ε) > 0 such that if x, y ∈ X and Φ ∈ X∗ such that ∥x∥ = ∥y∥ = 1 =

∥Φ∥ = Φ(y) and Φ(x) > 1− δ′(ε), then ∥x− y∥ < ε. We can choose δ′(ε) ≤ ε
2 .

The following result is obtained through a few modifications in the proof of [5, Theorem 2]. For

the sake of thoroughness, we present the modifications in its proof here.

Theorem 5.2.2 ([55, Theorem 2.3]). Let T be a topological space and X be a uniformly convex Ba-

nach space. Then the triplet (Cb(T,X), BCb(T,X), CB(Cb(T,X))) satisfies property-(P1) and the map

centBCb(T,X)
(.) is uniformly Hausdorff metric continuous on {B ∈ CB(Cb(T,X)) : radBCb(T,X)

(B) ≤
R}, for each R > 0.

Proof. Let B ∈ CB(Cb(T,X)). We define R = radBCb(T,X)
(B). We assume R = 1 and fix ε > 0.

Then we obtain δ′(ε) > 0 satisfying the condition in Lemma 5.2.1. Now there exists f0 ∈ BCb(T,X)

such that r(f0, B) ≤ 1 + δ′(ε). We claim the following:

Claim : There exists f1 ∈ BCb(T,X) such that r(f1, B) ≤ 1 + δ′(ε/2) and ∥f0 − f1∥ ≤ 2ε.

Indeed, there exists g ∈ BCb(T,X) such that r(g,B) ≤ 1 + δ′(ε/2). We now define α : T → [0, 1]

and f1 : T → X as follows: for each t ∈ T ,

α(t) =


1, if ∥g(t)− f0(t)∥ ≤ 2ε;

2ε

∥g(t)− f0(t)∥
, if ∥g(t)− f0(t)∥ > 2ε.

(5.1)

and

f1(t) = f0(t) + α(t)(g(t)− f0(t)). (5.2)

Clearly, f1 ∈ BCb(T,X) and ∥f1 − f0∥ ≤ 2ε. For each b ∈ B, we now claim that for each t ∈ T ,

∥f1(t)− b(t)∥ ≤ 1 + δ′(ε/2) (5.3)

and hence r(f1, B) ≤ 1 + δ′(ε/2).

In order to prove the claim above, we apply the same arguments as in the proof of [5, Theorem 2].

Let t ∈ T . The inequality in (5.3) is true if α(t) = 1 (since in this case f1(t) = g(t)) or α(t) < 1

and ∥g(t)− b(t)∥ ≥ ∥f0(t)− b(t)∥ (since in this case f1(t) lies in the line segment joining f0(t) and

g(t)). Therefore, we assume that α(t) < 1 and ∥g(t)− b(t)∥ < ∥f0(t)− b(t)∥ ≤ 1 + δ′(ε). We denote

u = f0(t)− b(t) and v = g(t)− b(t). Thus ∥v∥ ≤ 1 + δ′( ε2 ) and ∥v∥ < ∥u∥ ≤ 1 + δ′(ε). We want to

show that by moving a distance of 2ε from u towards v, we enter the ball BX [0, 1 + δ′( ε2 )]. Since

this is true if ∥v∥ = 0, it suffices to show for the case when ∥v∥ = 1 + δ′( ε2 ).
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Consider the 2-dimensional space spanned by u and v. Let z be a point with ∥z∥ = ∥v∥ on the

same side of the line through 0 and u as v is such that the line passing through u and z supports the

sphere ∥v∥SX . Extend this line to a hyperplane H : = ψ−1(1) supporting BX [0, ∥v∥] in X. Then it

is clear that ∥ψ∥ = 1
∥v∥ . Let ϕ = ∥v∥ψ, x = u

∥u∥ and y = z
∥z∥ . Then ∥ϕ∥ = 1 = ϕ(y) = ∥y∥ = ∥x∥

and ϕ(x) = ∥v∥
∥u∥ ≥ 1

∥u∥ ≥ 1
1+δ′(ε) > 1 − δ′(ε). Hence, by Lemma 5.2.1, ∥x − y∥ < ε and ∥u − z∥ <

ε+ ∥u− x∥+ ∥z − y∥ ≤ ε+ δ′(ε) + δ′( ε2 ) < 2ε. This proves our claim since the distance from u to

BX [0, ∥v∥] in the direction of v is less than the maximum of the distances in the directions x (which

is less than or equal to δ′(ε)) and z (which is less than 2ε).

We now proceed inductively to find a sequence {fn} ⊆ BCb(T,X) such that for each n = 1, 2, . . .,

∥fn+1−fn∥ ≤ 2 ε
2n and r(fn+1, B) ≤ 1+δ′(ε/2n+1). Since {fn} is Cauchy, there exists f ∈ BCb(T,X)

such that limn→∞ fn = f . Hence ∥f − f0∥ ≤ 4ε and r(f,B) ≤ limn→∞ r(fn, B) ≤ 1. Thus

f ∈ centBCb(T,X)
(B). It also follows that centBCb(T,X)

(B, δ′(ε)) ⊆ centBCb(T,X)
(B) + 4εBX . Hence

(Cb(T,X), BCb(T,X), {B}) has property-(P1).

Now assume 0 < R ̸= 1. Then inff∈BCb(T,X)
r
(

f
R ,

1
RB
)

= 1. In the argument above, if f0, g

are chosen in 1
RBCb(T,X) then f1 ∈ 1

RBCb(T,X). Hence replacing BCb(T,X) and B by 1
RBCb(T,X)

and 1
RB respectively in the argument above, we can conclude that (Cb(T,X), 1

RBCb(T,X), { 1
RB})

has property-(P1). Thus it follows from Proposition 3.2.3 (ii) that (Cb(T,X), BCb(T,X), {B}) has

property-(P1).

In order to show that the map centBCb(T,X)
(.) is uniformly Hausdorff continuous on subfami-

lies of sets in CB(Cb(T,X)) with equi-bounded restricted Chebyshev radii, we fix ε,R > 0. We

now obtain a δ′(ε) > 0 satisfying the condition in Lemma 5.2.1. Choose 0 < δ < Rδ′(ε)
2 . Let

A,B ∈ CB(Cb(T,X)) such that radBCb(T,X)
(B), radBCb(T,X)

(A) < R and dH(B,A) < δ. Then by

Lemma 2.2.4, |radBCb(T,X)
(B)− radBCb(T,X)

(A)| < δ. Let f ∈ centBCb(T,X)
(A). Thus

r(f,B) < radBCb(T,X)
(A) + δ < radBCb(T,X)

(B) + 2δ < (1 + δ′(ε))R. (5.4)

Now using the arguments above, we obtain f0 ∈ centBCb(T,X)
(B) such that ∥f − f0∥ ≤ 4εR. It

follows that

centBCb(T,X)
(A) ⊆ centBCb(T,X)

(B) + 4εRBCb(T,X). (5.5)

Similarly, we prove that

centBCb(T,X)
(B) ⊆ centBCb(T,X)

(A) + 4εRBCb(T,X). (5.6)

Hence dH(centBCb(T,X)
(B)), centBCb(T,X)

(A)) ≤ 4εR.

Corollary 5.2.3 ([55, Corollary 2.4]). Let S be a compact Hausdorff space and A be a closed linear

subspace of C(S) described as follows :

A = {f ∈ C(S) : f(ti) = λif(si), for each i ∈ I}, (5.7)

for some index I and co-ordinates (ti, si, λi) ∈ S × S × {−1, 0, 1} for each i ∈ I. Then the triplet

(C(S), BA, CB(C(S))) satisfies property-(P1) and the map centBA(.) is uniformly Hausdorff metric

continuous on {B ∈ CB(C(S)) : radBA(B) ≤ R}, for each R > 0.

Proof. In the proof of Theorem 5.2.2, if we choose f0 and g in BA then clearly ∥f1∥ ≤ 1 and from

56



the description of A, f1 ∈ BA. Hence the result follows.

By using the representation given in Theorem 4.3.1 of closed linear subalgebras of C(S) and

applying Corollary 5.2.3, we obtain the following result.

Corollary 5.2.4 ([55, Corollary 2.5]). Let S be a compact Hausdorff space and A be a closed linear

subalgebra of C(S). Then the triplet (C(S), BA, CB(C(S))) satisfies property-(P1) and the map

centBA(.) is uniformly Hausdorff metric continuous on {B ∈ CB(C(S)) : radBA(B) ≤ R}, for each

R > 0.

The fact that c0 is strongly proximinal in ℓ∞ follows from the well-known fact that c0 is an

M -ideal in ℓ∞. The next result follows from the fact that c0 is a subalgebra in ℓ∞ ∼= C(βN) (here
βN is the Stone-Čech compactification of N) and Corollary 5.2.4.

Corollary 5.2.5 ([55, Corollary 2.7]). The triplet (ℓ∞, Bc0 , CB(ℓ∞)) has property-(P1) and the map

centBc0
(.) is uniformly Hausdorff metric continuous on {B ∈ CB(ℓ∞) : radBc0

(B) ≤ R}, for each

R > 0.

5.3 Stability of property-(P1) in ℓ∞-direct sums

We first establish some notations which are used in the present and subsequent sections.

Notation 5.3.1 ([55, Section 3]). Let X1 and X2 be two Banach spaces. Then the ℓ∞-direct sum of

X1 and X2, given as

X := X1 ⊕∞ X2 = {(x1, x2) ∈ X1 ×X2 : x1 ∈ X1 and x2 ∈ X2}, (5.8)

is again a Banach space equipped with the maximum norm defined as follows: for each x = (x1, x2) ∈
X, ∥x∥ = max{∥x1∥, ∥x2∥}.

For each B ∈ CB(X), we denote

B(1) = {b1 ∈ X1 : there exists b ∈ B and b2 ∈ X2 such that b = (b1, b2)}

and B(2) = {b2 ∈ X2 : there exists b ∈ B and b1 ∈ X1 such that b = (b1, b2)}.
(5.9)

For each B ∈ CB(X) and i ∈ {1, 2}, we also denote

ri(B) = radVi
(B(i)). (5.10)

Remark 5.3.2 ([55, Section 3]). Let X1 and X2 be two Banach spaces. Let X = X1 ⊕∞ X2 and

B ∈ CB(X).

(i) For each i ∈ {1, 2}, if Vi ∈ CV(Xi) then V1 × V2 ∈ CV(X).

(ii) For each i ∈ {1, 2}, B(i) ∈ CB(Xi) and B ⊆ B(1)×B(2).

The following result provides a formula for the restricted Chebyshev radius of a closed bounded

subset of an ℓ∞-direct sum.

Proposition 5.3.3 ([55, Proposition 3.1]). For each i ∈ {1, 2}, let Xi be a Banach space and

Vi ∈ CV(Xi). Let X = X1⊕∞X2, V = V1×V2 and B ∈ CB(X). Then radV (B) = max{r1(B), r2(B)}
and for each v = (v1, v2) ∈ V , r(v,B) = max{r(v1, B(1)), r(v2, B(2))}.
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Proof. Let v = (v1, v2) ∈ V and for each i ∈ {1, 2}, bi ∈ B(i). Then there exists b, b′ ∈ B and for

each i ∈ {1, 2}, b′i ∈ Xi such that b = (b1, b
′
2) and b

′ = (b′1, b2). Thus

∥b1 − v1∥ ≤ ∥b− v∥ ≤ r(v,B) and ∥b2 − v2∥ ≤ ∥b′ − v∥ ≤ r(v,B). (5.11)

It follows that for each i ∈ {1, 2}, r(vi, B(i)) ≤ r(v,B). From here, it is easy to conclude that

max{r1(B), r2(B)} ≤ radV (B).

Conversely, for each ε > 0 and i ∈ {1, 2}, there exists vi ∈ Vi such that r(vi, B(i)) < ri(B) + ε.

Let v = (v1, v2) ∈ V and b = (b1, b2) ∈ B. Then for each i ∈ {1, 2}, bi ∈ B(i) and hence

∥v − b∥ = max{∥v1 − b1∥, ∥v2 − b2∥} ≤ max{r1(B), r2(B)}+ ε. (5.12)

It follows that radV (B) ≤ max{r1(B), r2(B)} + ε. Since ε > 0 is arbitrary, we obtain the desired

equality.

It follows from the arguments above that for each v = (v1, v2) ∈ V , r(v,B) =

max{r(v1, B(1)), r(v2, B(2))}.

We now prove the stability of r.c.p. under the ℓ∞-direct sum in the following result.

Proposition 5.3.4 ([55, Proposition 3.2]). For each i ∈ {1, 2}, let Xi be a Banach space and

Vi ∈ CV(Xi). Let X = X1 ⊕∞ X2 and V = V1 × V2. If for each i ∈ {1, 2}, (Vi, CB(Xi)) has

r.c.p. then (V, CB(X)) has r.c.p..

Proof. Assume that for each i ∈ {1, 2}, (Vi, CB(Xi)) has r.c.p.. Let B ∈ CB(X). For each i ∈ {1, 2},
since B(i) ∈ CB(Xi), let vi ∈ centVi

(B(i)). We define v = (v1, v2) ∈ V . Let b = (b1, b2) ∈ B. Then

for each i ∈ {1, 2}, bi ∈ B(i) and by Proposition 5.3.3,

∥v − b∥ = max{∥v1 − b1∥, ∥v2 − b2∥}

≤ max{r(v1, B(1)), r(v2, B(2))}

= max{r1(B), r2(B)}

= radV (B).

(5.13)

It follows that r(v,B) ≤ radV (B) and hence v ∈ centV (B).

Remark 5.3.5 ([55, Remark 3.3]). For each i ∈ {1, 2}, let Xi be a Banach space and Vi ∈ CV(Xi).

For each i ∈ {1, 2}, suppose (Vi, CB(Xi)) has r.c.p.. Let X = X1 ⊕∞X2 and V = V1 ×V2. It is easy

to verify the following facts.

(i) For each B ∈ CB(X),

centV (B) =



centV1
(B(1))× centV2

(B(2)), if r1(B) = r2(B);⋂
b1∈B(1)

BX1
[b1, r2(B)] ∩ V1 × centV2

(B(2)), if r1(B) < r2(B);

centV1
(B(1))×

⋂
b2∈B(2)

BX2
[b2, r1(B)] ∩ V2, if r2(B) < r1(B).

(5.14)
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We note here that in each case above,

centV (B) ⊇ centV1
(B(1))× centV2

(B(2)). (5.15)

(ii) For each B,A ∈ CB(X),

max{dH(B(1), A(1)), dH(B(2), A(2))} ≤ dH(B,A). (5.16)

We need the following important auxiliary result, which is a generalization of [31, Fact 3.2].

Lemma 5.3.6 ([55, Lemma 3.4]). Let X be a Banach space, V ∈ CV(X) and F ⊆ CB(X) such that

(V,F ) has r.c.p.. Let F ∈ F and α > radV (F ). Then for each ε > 0, there exists δ > 0 such that

for each F ′ ∈ F with dH(F, F ′) < δ and scalar β such that |α− β| < δ, we have

dH

(⋂
z∈F

BX [z, α] ∩ V,
⋂

z′∈F ′

BX [z′, β] ∩ V

)
< ε.

Proof. We define RF = radV (F ). We fix ε > 0. Further, we define 2γ = α − RF , L = α + RF + 2

and δ = min{1, γ2 ,
γε
2L}.

Let F ′ ∈ F be such that dH(F, F ′) < δ and β be a scalar such that |α− β| < δ. For simplicity,

let RF ′ = radV (F
′). Then, from Lemma 2.2.4, we have |RF −RF ′ | < δ. Moreover,

β −RF ′ = β − α+RF −RF ′ + α−RF > 2γ − 2δ ≥ 2γ − γ = γ. (5.17)

Now, let v ∈
⋂

z∈F BX [z, α] ∩ V and z′ ∈ F ′. Then there exists z ∈ F such that ∥z − z′∥ < δ.

Therefore, we have

∥z′ − v∥ ≤ ∥z′ − z∥+ ∥z − v∥ < δ + α < β + 2δ. (5.18)

Thus for each z′ ∈ F ′, ∥z′ − v∥ < β + 2δ. Let v0 ∈ centV (F
′) and λ = β−RF ′

β−RF ′+2δ . We define

v′ = λv + (1− λ)v0. Then v
′ ∈ V and for each z′ ∈ F ′, we have

∥z′ − v′∥ ≤ λ∥z′ − v∥+ (1− λ)∥z′ − v0∥

< λ(β + 2δ) + (1− λ)RF ′ = λ(β −RF ′ + 2δ) +RF ′ = β.
(5.19)

It follows that v′ ∈
⋂

z′∈F ′ BX [z′, β] ∩ V . Further, let z′ ∈ F ′. Since dH(F, F ′) < δ, there exists

z ∈ F such that ∥z − z′∥ < δ. Now,

∥v − v′∥ = (1− λ)∥v − v0∥ =
2δ

β −RF ′ + 2δ
∥v − v0∥

<
2δ

γ
(∥v − z∥+ ∥z − z′∥+ ∥z′ − v0∥)

<
2δ

γ
(α+ δ + r(v0, F

′)) =
2δ

γ
(α+ δ +RF ′)

<
2δ

γ
(α+RF + 2δ) <

2δL

γ
≤ ε.

(5.20)

Therefore, v′ ∈
⋂

z′∈F ′ BX [z′, β] ∩ V such that ∥v − v′∥ < ε.
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Similarly, for each w′ ∈
⋂

z′∈F ′ BX [z′, β] ∩ V , we obtain w ∈
⋂

z∈F BX [z, α] ∩ V such that

∥w − w′∥ < ε. This completes the proof.

We next prove the stability of property-(P1) under ℓ∞-direct sums in the following result.

Theorem 5.3.7 ([55, Theorem 3.5]). For each i ∈ {1, 2}, let Xi be a Banach space and Vi ∈ CV(Xi).

Let X = X1 ⊕∞X2 and V = V1 × V2. If for each i ∈ {1, 2}, (Xi, Vi, CB(Xi)) has property-(P1) then

(X,V, CB(X)) has property-(P1).

Proof. Firstly we observe that by Proposition 5.3.4, (V, CB(X)) has r.c.p.. Now let B ∈ CB(X) and

ε > 0. Then there exists δ > 0 such that for each i ∈ {1, 2},

centVi
(B(i), δ) ⊆ centVi

(B(i)) + εBXi
. (5.21)

Case 1: r1(B) = r2(B)

By Remark 5.3.5 (i), centV (B) = centV1
(B(1))× centV2

(B(2)). Similarly, for each γ > 0, we also

have centV (B, γ) = centV1
(B(1), γ)× centV2

(B(2), γ). Therefore, it follows from (5.21) that

centV (B, δ) ⊆ centV (B) + εBX . (5.22)

Case 2: r1(B) ̸= r2(B)

Without loss of generality, assume r1(B) < r2(B), since the same arguments work for the reverse

inequality. By Remark 5.3.5 (i), centV (B) =
⋂

b1∈B(1)BX1 [b1, r2(B)]∩V1 × centV2(B(2)). Similarly,

for each γ > 0, we also have

centV (B, γ) =
⋂

b1∈B(1)

BX1
[b1, r2(B) + γ] ∩ V1 × centV2

(B(2), γ). (5.23)

Let ε > 0. Now replacing X, V and B by X1, V1 and B(1) respectively in Lemma 5.3.6, we

obtain δ′ > 0 such that for each scalar β with |α− β| < 2δ′, we have

dH

 ⋂
b1∈B(1)

BX1
[b1, α] ∩ V1,

⋂
b1∈B(1)

BX1
[b1, β] ∩ V1

 < ε. (5.24)

Choose δ0 = min{δ, δ′}. We take α = r2(B) and β = r2(B) + δ0. Then we have

dH

 ⋂
b1∈B(1)

BX1 [b1, r2(B)] ∩ V1,
⋂

b1∈B(1)

BX1 [b1, r2(B) + δ0] ∩ V1

 < ε. (5.25)

Let v = (v1, v2) ∈ centV (B, δ0) such that v1 ∈
⋂

b1∈B(1)BX1 [b1, r2(B) + δ0] ∩ V1 and v2 ∈
centV2(B(2), δ0). Then by (5.25) and (5.21), there exists w1 ∈

⋂
b1∈B(1)BX1 [b1, r2(B)] ∩ V1 and

w2 ∈ centV2(B(2)) such that for each i ∈ {1, 2}, ∥wi − vi∥ < ε. Hence (w1, w2) ∈ centV (B) and

∥v − (w1, w2)∥ < ε.

One of the instances where the converses of Proposition 5.3.4 and Theorem 5.3.7 hold true is as

follows:
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Proposition 5.3.8 ([55, Proposition 3.6]). For each i ∈ {1, 2}, let Xi be a Banach space and Yi be

a non-trivial subspace of Xi. Let X = X1 ⊕∞ X2 and Y = Y1 ⊕∞ Y2. Then

(i) If (Y, CB(X)) has r.c.p. then for each i ∈ {1, 2}, (Yi, CB(Xi)) has r.c.p..

(ii) If (X,Y, CB(X)) has property-(P1) then for each i ∈ {1, 2}, (Xi, Yi, CB(Xi)) has property-

(P1)

Proof. (i) : Without loss of generality, we only prove that (Y1, (CB)(X1)) has r.c.p.. Let B1 ∈
CB(X1). We can choose B2 ∈ CB(X2) such that radY2(B2) = radY1(B1). Let B = B1×B2 ∈ CB(X).

Then B(1) = B1 and B(2) = B2 and hence r1(B) = r2(B). By Remark 5.3.5 (i), centY (B) =

centY1(B1)× centY2(B2). Thus by our assumption, it follows that centY1(B1) ̸= ∅.
(ii) : Without loss of generality, we only prove that (X1, Y1, (CB)(X1)) has property-(P1). By

(i), (Y1, CB(X1)) has r.c.p.. Let B1 ∈ CB(X1). We choose B2 ∈ CB(X2) such that radY2(B2) =

radY1(B1). Define B = B1×B2 ∈ CB(X). Then B(1) = B1 and B(2) = B2 and hence r1(B) = r2(B).

Let ε > 0. Then there exists δ > 0 such that

centY (B, δ) ⊆ centY (B) + εBX . (5.26)

By Remark 5.3.5 (i), centY (B) = centY1
(B1)× centY2

(B2). Similarly, centY (B, δ) = centY1
(B1, δ)×

centY2
(B2, δ). Let y1 ∈ centY1

(B1, δ) and y2 ∈ centY2
(B2, δ). Hence (y1, y2) ∈ centY (B, δ). Then

there exists y′1 ∈ centY1
(B1) and y

′
2 ∈ centY2

(B2) such that ∥(y1, y2)−(y′1, y
′
2)∥ ≤ ε. Thus ∥y1−y′1∥ ≤

ε.

We next provide an application of the above stability results.

Proposition 5.3.9 ([55, Proposition 3.7]). Let Y be a proximinal finite co-dimensionsal subspace

of c0. Then the triplet (ℓ∞, BY , CB(ℓ∞)) has property-(P1).

Proof. Let Y be a proximinal finite co-dimensional subspace of c0. Let NA(c0) denote the set of all

norm attaining functionals on c0. Then the set NA(c0) is precisely the set of all finite sequences in ℓ1.

Now, Y ⊥ is a finite dimensional subspace of c0
∗. Further, Y ⊥ ⊆ NA(c0) (see [25, Proposition III.5]).

Therefore, there exists an integer n0 such that for each y = (yn) ∈ Y ⊥, we have yn = 0, for each

n ≥ n0.

Let us now consider the decompositions of ℓ∞ and Y as done in [31, Section 4]. Let {en : n =

1, 2, . . .} be the canonical basis of c0. For each sequence of real scalars x = (xn), we define x′ =∑n0

i=1 xiei. We also define the following spaces :

X1 = span({e1, . . . , en0
}),

X2 = {(xn) ∈ ℓ∞ : xn = 0 for 1 ≤ i ≤ n0},

Y1 = {x′ : x ∈ Y }

and Y2 = {(xn) ∈ c0 : xn = 0 for 1 ≤ i ≤ n0}.

Thus ℓ∞ = X1 ⊕∞ X2 and Y = Y1 ⊕∞ Y2. Clearly, BY = BY1
×BY2

.

It is easily seen that X2
∼= ℓ∞ and Y2 ∼= c0. By Corollary 5.2.5, (X2, BY2

, CB(X2)) has property-

(P1). Further, since X1 is finite dimensional space and Y1 ⊆ X1, by using a compactness argument

we observe that (X1, BY1
, CB(X1)) has property-(P1). Therefore by Theorem 5.3.7, we conclude

that (ℓ∞, BY , CB(ℓ∞)) has property-(P1).
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5.4 Semi-continuity of restricted Chebyshev-center maps of

ℓ∞-direct sums

In this section, we derive a few stability results concerning the semi-continuity properties of restricted

Chebyshev-center maps of ℓ∞-direct sums.

Proposition 5.4.1 ([55, Proposition 4.1]). For each i ∈ {1, 2}, let Xi be a Banach space and

Vi ∈ CV(Xi) such that (Vi, CB(Xi)) has r.c.p.. Let X = X1 ⊕∞ X2 and V = V1 × V2. If for each

i ∈ {1, 2}, centVi(.) is l.H.s.c. on CB(Xi) then the map centV (.) is l.H.s.c. on CB(X).

Proof. By Proposition 5.3.4, (V, CB(X)) has r.c.p.. Let B ∈ CB(X) and ε > 0. Using lower Hausdorff

semi-continuity of the maps centV1
(.) and centV2

(.) at B(1) and B(2) respectively, there exists δ > 0

such that for each i ∈ {1, 2}, whenever

A ∈ CB(X) with dH(B,A) < δ and ρi ∈ centVi(B(i)) ⇒ BXi(ρi, ε) ∩ centVi(A(i)) ̸= ∅. (5.27)

Case 1: r1(B) = r2(B)

In this case, by Remark 5.3.5 (i), centV (B) = centV1
(B(1))×centV2

(B(2)). Let i ∈ {1, 2}. Let ρi ∈
centVi

(B(i)) and A ∈ CB(X) such that dH(B,A) < δ. Thus by Remark 5.3.5 (ii), dH(B(i), A(i)) < δ

and hence by (5.27), there exists vi ∈ BXi
(ρi, ε) ∩ centVi

(A(i)). By Remark 5.3.5 (i), (ρ1, ρ2) ∈
centV (B) and (v1, v2) ∈ centV (A). Moreover, ∥(ρ1, ρ2) − (v1, v2)∥ < ε. Hence BX((ρ1, ρ2), ε) ∩
centV (A) ̸= ∅. Thus centV (.) is l.H.s.c. at B.

Case 2: r1(B) ̸= r2(B)

Without loss of generality, assume r1(B) < r2(B), since the same arguments work for the reverse

inequality. Let 2γ = r2(B)−r1(B). ReplacingX, V , B and α byX1, V1, B(1) and r2(B) respectively

in Lemma 5.3.6, we obtain 0 < δ < γ
2 such that whenever A ∈ CB(X) with dH(B,A) < δ, we have

r2(A)− r1(A) > γ and

dH

 ⋂
b1∈B(1)

BX1
[b1, r2(B)] ∩ V1,

⋂
a1∈A(1)

BX1
[a1, r2(A)] ∩ V1

 < ε. (5.28)

Without loss of generality, assume that δ is so chosen that (5.27) is also satisfied. Let

A ∈ CB(X) with dH(B,A) < δ. Then r2(A) > r1(A) and hence by Remark 5.3.5 (i),

centV (A) =
⋂

a1∈A(1)BX1
[a1, r2(A)] ∩ V1 × centV2

(A(2)). Let v1 ∈
⋂

b1∈B(1)BX1
[b1, r2(B)] ∩ V1

and v2 ∈ centV2
(B(2)) and hence by Remark 5.3.5 (i), v = (v1, v2) ∈ centV (B). Therefore, by

(5.27) and (5.28), there exists w1 ∈
⋂

a1∈A(1)BX1
[a1, r2(A)] ∩ V1 and w2 ∈ centV2

(A(2)) such that

∥v1 − w1∥ < ε and ∥v2 − w2∥ < ε. Thus (w1, w2) ∈ BX(v, ε) ∩ centV (A).

Proposition 5.4.2 ([55, Proposition 4.2]). For each i ∈ {1, 2}, let Xi be a Banach space and

Vi ∈ CV(Xi). Let X = X1 ⊕∞ X2 and V = V1 × V2. If for each i ∈ {1, 2}, (Xi, Vi, CB(Xi)) has

property-(P1), then the map centV (.) is u.H.s.c. on CB(X).

Proof. By Proposition 5.3.4, (V, CB(X)) has r.c.p.. By Theorem 1.2.17, for each i ∈ {1, 2}, centVi
(.)

is u.H.s.c. on CB(Xi). Let B ∈ CB(X) and ε > 0. Then there exists δ > 0 such that for each
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i ∈ {1, 2}, if

A ∈ CB(X) with dH(B,A) < δ ⇒ centVi
(A(i)) ⊆ centVi

(B(i)) + εBXi
. (5.29)

Case 1: r1(B) = r2(B)

By Remark 5.3.5 (i), centV (B) = centV1(B(1)) × centV2(B(2)). By our assumption and Re-

mark 1.1.6, we can choose θ > 0 such that for each i ∈ {1, 2}, S(B(i), θ) < ε. We further

choose 0 < δ < θ
4 such that (5.29) holds valid. Let A ∈ CB(X) such that dH(B,A) < δ.

If r1(A) = r2(A), then centV (A) = centV1(A(1)) × centV2(A(2)). Thus by (5.29), we obtain

centV (A) ⊆ centV (B) + εBX .

Now without loss of generality, we assume that r1(A) < r2(A). For each i ∈ {1, 2}, since

|ri(B)− ri(A)| ≤ dH(B(i), A(i)) ≤ dH(B,A) <
θ

4
, (5.30)

we have

|r1(B)− r2(A)| ≤ |r1(B)− r2(B)|+ |r2(B)− r2(A)| <
θ

4
. (5.31)

Now, by Remark 5.3.5 (i),

centV (A) =
⋂

a1∈A(1)

BX1 [a1, r2(A)] ∩ V1 × centV2(A(2)). (5.32)

We select v1 ∈
⋂

a1∈A(1)BX1
[a1, r2(A)]∩V1. Then using (5.31) and the assumption that dH(B,A) <

δ, for each b1 ∈ B(1), there exists a1 ∈ A(1) such that ∥a1 − b1∥ < θ
4 and hence

∥v1 − b1∥ ≤ ∥v1 − a1∥+ ∥a1 − b1∥ < r2(A) +
θ

4
< r1(B) +

θ

2
. (5.33)

It follows that r(v1, B(1)) ≤ r1(B) + θ
2 . Now, since S(B(1), θ) < ε, d(v1, centV1(B(1))) < ε. Thus

there exists w1 ∈ centV1(B(1)) satisfying ∥v1 − w1∥ < ε. It follows that⋂
a1∈A(1)

BX1
[a1, r2(A)] ∩ V1 ⊆ centV1

(B(1)) + εBX1
. (5.34)

Further, we also have centV2(A(2)) ⊆ centV2(B(2)) + εBX2 . Hence, centV (A) ⊆ centV (B) + εBX .

Case 2: r1(B) ̸= r2(B)

Without loss of generality, we assume that r1(B) < r2(B) since the same arguments work for

the reverse inequality. Let 2γ = r2(B) − r1(B). Replacing X, V , B and α by X1, V1, B(1) and

r2(B) respectively in Lemma 5.3.6, we obtain 0 < δ < γ
2 such that whenever A ∈ CB(X) with

dH(B,A) < δ, we have r2(A)− r1(A) > γ and

dH

 ⋂
b1∈B(1)

BX1
[b1, r2(B)] ∩ V1,

⋂
a1∈A(1)

BX1
[a1, r2(A)] ∩ V1

 < ε. (5.35)

We choose δ > 0 such that (5.29) is also satisfied. If A ∈ CB(X) such that dH(B,A) < δ, then
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r2(A) > r1(A) and hence by Remark 5.3.5 (i),

centV (A) =
⋂

a1∈A(1)

BX1
[a1, r2(A)] ∩ V1 × centV2

(A(2)). (5.36)

Let A ∈ CB(X) such that dH(B,A) < δ. If v1 ∈
⋂

a1∈A(1)BX1 [a1, r2(A)]∩V1 and v2 ∈ centV2(A(2)),

then by (5.29) and (5.35), we choose w1 ∈
⋂

b1∈B(1)BX1 [b1, r2(B)] ∩ V1 and w2 ∈ centV2(B(2))

satisfying ∥vi−wi∥ < ε, for each i ∈ {1, 2}. Thus (w1, w2) ∈ centV (B) and ∥(v1, v2)− (w1, w2)∥ < ε.

It follows that centV (A) ⊆ centV (B) + εBX .

We note that the assumptions in above Proposition 5.4.2 cannot be weakened; see [31, Re-

mark 3.5]. The following result follows from Propositions 5.4.1 and 5.4.2 and [31, Remark 2.8].

Proposition 5.4.3 ([55, Proposition 4.3]). For each i ∈ {1, 2}, let Xi be a Banach space and

Vi ∈ CV(Xi) such that (Xi, Vi, CB(Xi)) has property-(P1). Let X = X1 ⊕∞ X2 and V = V1 × V2. If

for each i ∈ {1, 2}, centVi(.) is Hausdorff metric continuous on CB(Xi), then centV (.) is Hausdorff

metric continuous on CB(X).

The stability results proved in Sections 5.3 and 5.4 are true if we replace the class of all non-

empty closed bounded subsets by that of all non-empty compact or finite subsets of the respective

spaces.

We now recall the definition of a polyhedral space. A finite dimensional Banach space X is called

polyhedral if BX has only finitely many extreme points. An infinite dimensional Banach space X is

called polyhedral if each of the finite dimensional subspace of X is polyhedral. The sequence space

c0 is a well-known example of an infinite dimensional polyhedral space. We refer to [21] and the

references therein for a study on polyhedral spaces. We recall the following recent result due to

Tsar’kov.

Theorem 5.4.4 ([59, p. 243] and [3, Theorem 6.7, pg. 801]). Let V be a non-empty polyhedral subset

of a finite dimensional polyhedral Banach space X. Then the map centV (.) is globally Lipschitz

Hausdorff metric continuous on CB(X) and admits a Lipschitz selection.

We now prove our main result.

Proposition 5.4.5 ([55, Proposition 4.5]). Let Y be a proximinal finite co-dimensional subspace of

c0. Then the map centBY
(.) is Hausdorff metric continuous on {B ∈ CB(ℓ∞) : radBY

(B) ≤ R}, for
each R > 0.

Proof. For each i ∈ {1, 2}, let Xi and Yi be defined as in the proof of Theorem 5.3.9. Then

ℓ∞ = X1 ⊕∞ X2 and Y = Y1 ⊕∞ Y2. Clearly, BY = BY1
× BY2

. Moreover, X2
∼= ℓ∞, Y2 ∼= c0 and

Y1 ⊆ X1. Hence from Corollary 5.2.5, centBY2
(.) is Hausdorff metric continuous on CB(X2). Further,

X1 is a finite dimensional subspace of c0 and hence is a polyhedral space. Thus by Theorem 5.4.4,

centBY1
(.) is Hausdorff metric continuous on CB(X1). Therefore, we conclude from Theorems 5.3.7

and 5.4.3 that centBY
(.) is Hausdorff metric continuous on {B ∈ CB(ℓ∞) : radBY

(B) ≤ R}, for each
R > 0.

For a subspace Y of a Banach space X, we conclude this section by discussing the interconnection

between the semi-continuity properties of the maps centBY
(.) and centY (.) in the following result.
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Proposition 5.4.6 ([55, Proposition 4.6]). Let X be a Banach space and Y be a subspace of X.

Let the pair (BY , CB(X)) have r.c.p..

(i) For each λ > 0 and B ∈ CB(X), centλBY
(.) is l.H.s.c. at B if and only if centBY

(.) is

l.H.s.c. at 1
λB.

(ii) If centBY
(.) is l.H.s.c. on CB(X), then centY (.) is l.H.s.c. on CB(X).

(iii) For each λ > 0 and B ∈ CB(X), centλBY
(.) is u.H.s.c. at B if and only if centBY

(.) is

u.H.s.c. at 1
λB.

(iv) If centBY
(.) is u.H.s.c. on CB(X), then centY (.) is u.H.s.c. on CB(X).

(v) For each λ > 0 and B ∈ CB(X), centλBY
(.) is Hausdorff metric continuous at B if and

only if centBY
(.) is Hausdorff metric continuous at 1

λB.

(vi) If centBY
(.) is Hausdorff metric continuous on CB(X), then centY (.) is Hausdorff metric

continuous on CB(X).

Proof. By Proposition 3.2.2, (Y, CB(X)) has r.c.p..

(i) We first assume that centλBY
(.) is l.H.s.c. at B. We fix ε > 0. Then there exists δ > 0 such

that if

A ∈ CB(X) with dH(B,A) < δ and y ∈ centλBY
(B) ⇒ BX(y, λε) ∩ centλBY

(A) ̸= ∅. (5.37)

We now set γ = δ
λ . Let A ∈ CB(X) such that dH( 1λB,A) < γ and y ∈ centBY

( 1λB). This

implies dH(B, λA) < γλ = δ and from Lemma 3.2.1, λy ∈ centλBY
(B). Therefore, by (5.37), let

z ∈ BX(λy, λε) ∩ centλBY
(λA). Thus by Lemma 3.2.1, z

λ ∈ centBY
(A). It follows that ∥ z

λ − y∥ < ε

and hence BX(y, ε) ∩ centBY
(A) ̸= ∅.

Conversely, let ε > 0. Then there exists δ > 0 such that if

A ∈ CB(X) with dH

(
1

λ
B,A

)
< δ and y ∈ centBY

(
1

λ
B

)
⇒ BX

(
y,
ε

λ

)
∩ centBY

(A) ̸= ∅. (5.38)

We now set γ = λδ. Let A ∈ CB(X) such that dH(B,A) < γ and y ∈ centλBY
(B). This implies

dH( 1λB,
1
λA) <

γ
λ = δ and from Lemma 3.2.1, y

λ ∈ centBY
( 1λB). Therefore, by (5.38), let z ∈

BX( yλ ,
ε
λ )∩ centBY

( 1λA). Thus by Lemma 3.2.1, λz ∈ centλBY
(A). It follows that ∥λz − y∥ < ε and

hence BX(y, ε) ∩ centBY
(A) ̸= ∅.

(ii) Let B ∈ CB(X) and λ > supb∈B ∥b∥+radY (B). From our assumption, centBY
(.) is l.H.s.c. at

1
λB. Therefore from (i), centλBY

(.) is l.H.s.c. at B. Let ε > 0. Then there exists δ > 0 such that if

A ∈ CB(X) with dH(B,A) < δ and y ∈ centλBY
(B) ⇒ BX(y, ε) ∩ centλBY

(A) ̸= ∅. (5.39)

We choose 0 < γ < min{2δ, λ− (supb∈B ∥b∥+ radY (B))}. Let A ∈ CB(X) such that dH(B,A) < γ
2

and y ∈ centY (B). Now by Lemma 2.2.4,

radY (A) + sup
a∈A

∥a∥ ≤ radY (B) +
γ

2
+
γ

2
+ sup

b∈B
∥b∥ < λ. (5.40)

Hence by Lemma 3.2.1 (iii), centY (B) = centλBY
(B) and centY (A) = centλBY

(A). Therefore, it

follows from (5.39) that

BX(y, ε) ∩ centBY
(A) ̸= ∅. (5.41)
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(iii) We first assume that centλBY
(.) is u.H.s.c. at B. We fix ε > 0. Then there exists δ > 0 such

that if

A ∈ CB(X) such that dH(B,A) < δ ⇒ centλBY
(A) ⊆ centλBY

(B) + λεBX . (5.42)

We set γ = δ
λ . Let A ∈ CB(X) such that dH( 1λB,A) < δ. Hence, dH(B, λA) < γλ = δ. Therefore,

from (5.42),

centλBY
(λA) ⊆ centλBY

(B) + λεBX . (5.43)

From Lemma 3.2.1, λcentBY
(A) ⊆ λcentBY

( 1λB)+λεBX . Hence, centBY
(A) ⊆ centBY

(
1
λB
)
+ εBX .

Conversely, let ε > 0. Then there exists δ > 0 such that if

A ∈ CB(X) such that dH

(
1

λ
B,A

)
< δ ⇒ centBY

(A) ⊆ centBY

(
1

λ
B

)
+
ε

λ
BX . (5.44)

We now set γ = λδ. Let A ∈ CB(X) such that dH(B,A) < γ. Thus dH( 1λB,
1
λA) <

γ
λ = δ.

Therefore, by (5.44), centBY
( 1λA) ⊆ centBY

(
1
λB
)
+ ε

λBX . Now, by Lemma 3.2.1, 1
λcentλBY

(A) ⊆
1
λcentλBY

(B) + ε
λBX and hence

centλBY
(A) ⊆ centλBY

(B) + εBX . (5.45)

(iv) Let B ∈ CB(X) and λ > supb∈B ∥b∥+radY (B). From our assumption, centBY
(.) is u.H.s.c. at

1
λB. Therefore, from (iii), centλBY

(.) is u.H.s.c. at B. Let ε > 0. Then there exists δ > 0 such that

if

A ∈ CB(X) such that dH(B,A) < δ ⇒ centλBY
(A) ⊆ centλBY

(B) + εBX . (5.46)

We choose 0 < γ < min{2δ, λ − (supb∈B ∥b∥ + radY (B))}. Let A ∈ CB(X) such that dH(B,A) <

δ. Applying the same argument as in (ii), we obtain that λ > radY (A) + supa∈A ∥a∥. Thus by

Lemma 3.2.1 (iii), centY (B) = centλBY
(B) and centY (A) = centλBY

(A). Therefore, it follows from

(5.46) that

centBY
(A) ⊆ centBY

(B) + εBX . (5.47)

The result in (v) follows from (i), (iii) and [31, Remark 2.8] and the result in (vi) follows from

(ii), (iv) and [31, Remark 2.8].

5.5 A variant of transitivity property of property-(P1)

In this section, we provide answers to the transitivity type problem for property-(P1), stated in

Question 1.2.16, for certain cases. On considering anM -summand, in particular, in Question 1.2.16,

the following result answers this question positively and generalizes [35, Proposition 3.2].

Proposition 5.5.1 ([55, Proposition 5.1]). Let X be a Banach space, Y be an M -summand in

X and Z be a subspace of Y . If (Y, Z, CB(Y )) satisfies property-(P1), then (X,Z, CB(X)) satisfies

property-(P1).

Proof. Since Y is an M -summand in X, let X = Y ⊕∞ W for some subspace W of X. Then the

subspace Z ⊆ Y , when considered as a subspace of X, is isometrically isomorphic to Z ′ = Z × {0}.
We know that (Y, Z, CB(Y )) has property-(P1) and, trivially, (W, {0}, CB(W )) has property-(P1) as

well. Therefore, by Theorem 5.3.7, (X,Z ′, CB(X)) has property-(P1).
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Another instance where Question 1.2.16 is positively answered is as follows:

Proposition 5.5.2 ([55, Proposition 5.2]). Let X be an L1-predual space. Let Y be a finite co-

dimensional subspace of X and J be an M -ideal in X such that Y ⊆ J . If Y is strongly proximinal

in J , then the triplet (X,Y,K(X)) satisfies property-(P1).

Proof. By [35, Theorem 3.13], Y is strongly proximinal in X. Therefore, by Theorem 3.4.7,

(X,Y,K(X)) satisfies property-(P1).

5.6 Restricted center property of X in X∗∗

This section is a brief discourse on Questions 1.2.22 and 1.2.23. In this section, we present a few

applications to the results in Section 5.2. We provide our first observation as follows:

Proposition 5.6.1 ([55, Corollary 2.6]). Let S be a compact Hausdorff space and A be a closed

linear subalgebra of C(S). Then the triplet (C(S)∗∗, BA, CB(C(S)∗∗)) satisfies property-(P1) and the

map centBA(.) is uniformly Hausdorff metric continuous on {B ∈ CB(C(S)∗∗) : radBA(B) ≤ R}, for
each R > 0.

Proof. We know that C(S)∗∗ ∼= C(Ω) for some compact Hausdorff space Ω. Moreover, C(S) is

a closed linear subalgebra of C(Ω) under the canonical embedding; see [52]. Since A is a sub-

algebra of C(S), A is a subalgebra of C(Ω). Now, it follows directly from Corollary 5.2.4 that

(C(S)∗∗, BA, CB(C(S)∗∗)) satisfies property-(P1) and the map centBA(.) is uniformly Hausdorff met-

ric continuous on {B ∈ CB(C(S)∗∗) : radBA(B) ≤ R}, for each R > 0.

For a subspace A of C(S), since A∗∗ ∼= A⊥⊥ is a subspace of C(S)∗∗, an immediate consequence

of Proposition 5.6.1 is

Corollary 5.6.2. Let S be a compact Hausdorff space and A be a closed linear subalgebra of C(S).

Then the triplet (A∗∗, BA, CB(A∗∗)) satisfies property-(P1) and the map centBA(.) is uniformly Haus-

dorff metric continuous on {B ∈ CB(A∗∗) : radBA(B) ≤ R}, for each R > 0.

We know that for a locally compact Hausdorff space T , C0(T ) is isometrically isomorphic to a

closed linear subalgebra of some C(S) space. Therefore

Corollary 5.6.3. Let T be a locally compact Hausdorff space and A be a closed linear subalgebra

of C0(T ). Then the triplet (C0(T )
∗∗, BA, CB(C0(T )

∗∗)) satisfies property-(P1) and the map centA(.)

is uniformly Hausdorff metric continuous on {B ∈ CB(C0(T )
∗∗) : radBA(B) ≤ R}, for each R >

0. Consequently, the triplet (A∗∗, BA, CB(A∗∗)) satisfies property-(P1) and the map centBA(.) is

uniformly Hausdorff metric continuous on {B ∈ CB(A∗∗) : radBA(B) ≤ R}, for each R > 0.

As per the classification diagram in [43], we investigate if the answer is positive or not for

Question 1.2.22 in the case of sublattices of C(S). There exists a sublattice A of C([0, 1]), which

does not contain constant functions and a bounded subset B ⊆ CB(A) such that centA(B) = ∅;
see [6, Example 4.7]. However, the authors in [6] proved the following result for a specific type of

sublattices of C(S).
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Proposition 5.6.4 ([6, Corollary 4.5]). Let S be a compact Hausdorff space and A be a closed linear

sublattice of C(S) described as follows :

A = {f ∈ C(S) : f(ti) = λif(si), for each i ∈ I}, (5.48)

for some index set I and co-ordinates (ti, si, λi) ∈ S × S × [0, 1] for each i ∈ I such that inf{λi : i ∈
I and λi > 0} > 0. Then the pair (A, CB(C(S))) has r.c.p..

Proposition 5.6.4 leads us to the following result.

Proposition 5.6.5. Let S be a compact Hausdorff space and A be a closed linear sublattice of C(S)

described as follows :

A = {f ∈ C(S) : f(ti) = λif(si), for each i ∈ I}, (5.49)

for some index set I and co-ordinates (ti, si, λi) ∈ S × S × [0, 1] for each i ∈ I such that inf{λi : i ∈
I and λi > 0} > 0. Then the pair (A, CB(C(S)∗∗)) has r.c.p.. Consequently, the pair (A, CB(A∗∗))

has r.c.p..

Proof. We know that there exists a compact Hausdorff space Ω such that C(S)∗∗ ∼= C(Ω). Fur-

thermore, C(S) is a closed linear sublattice of C(Ω) under the canonical embedding; see [4, Theo-

rem 1.69]. Since A is a sublattice of C(S), A is a sublattice of C(Ω). Therefore, it follows directly

from Proposition 5.6.4 that (A, CB(C(S)∗∗)) has r.c.p..

We now make the following easy observation.

Proposition 5.6.6. Let S be a compact Hausdorff space. Let A be a closed linear sublattice of C(S)

containing constant functions. Then A is a subalgebra of C(S).

Proof. By Theorem 4.2.1, let I be the index set and (si, ti, λi) ∈ S × S × [0, 1] for each i ∈ I such

that

A = {f ∈ C(S) : f(si) = λif(ti), for each i ∈ I}. (5.50)

Since A contains constant functions, it is easy to see that for each i ∈ I, λi ̸∈ [0, 1). Hence, for each

i ∈ I, λi = 1. It follows from Theorem 4.3.1 that A is a subalgebra of C(S).

Therefore, Proposition 5.6.1 holds true for closed linear sublattices of C(S) containing constant

functions.

Further, according to the classification diagram in [43], we look at the class of G-spaces. It is

described as follows: A Banach space X is a G-space if X is isometric to the Banach space described

as follows:

{f ∈ C(S) : f(si) = λif(ti) for each i ∈ I}, (5.51)

for some compact Hausdorff space S, index set I and co-ordinates (si, ti, λi) ∈ S × S × R for each

i ∈ I. The result in Corollary 5.2.3 gives a positive answer to Question 1.2.22 for certain types

of G-subspaces in a C(S) space. The discussion above motivates us to ask the following general

question to which we do not know the answer.

Question 5.6.7. Let S be a compact Hausdorff space and A be a closed linear subspace of C(S)

described as follows:

A = {f ∈ C(S) : f(si) = λif(ti) for each i ∈ I}, (5.52)
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for some index set I and co-ordinates (si, ti, λi) ∈ S × S × R for each i ∈ I. Then is A proximinal

in C(S)?
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