Effect of Co- and Counterswirl Air on Swirl Airblast Atomization

Kolhe, Pankaj (2023) Effect of Co- and Counterswirl Air on Swirl Airblast Atomization. Journal of Propulsion and Power, 39 (3). pp. 426-437. ISSN 0748-4658

Full text not available from this repository. (Request a copy)

Abstract

For swirl-stabilized gas turbine combustor, liquid fuel distribution in the near field dictates local equivalence ratio, volumetric heat release, and heat transfer to the chamber wall, and hence its understanding is essential. The effect of inlet air aerodynamics on spray characteristics in a primary zone of a simulated gas turbine burner is studied using a phase Doppler particle analyzer, high-speed Mie scatter imaging, and an orthogonal decomposition method. By employing intense coswirl air, the luminous spray region shifts upstream to the burner exit, where lower mass flux can be observed in the central region and higher mass flux in the outer region of the spray due to the recirculation zone formation. Based on the size velocity joint probability distribution functions (JPDFs) and the individual droplet transport with acquisition time, we conclude that the recirculation zone entraps the smaller droplets and transports them from the downstream to the upstream spray region. Compared to coswirl, counterswirl air exhibits torsion instability, intensifies the concentration of drops in the central region, and improves secondary atomization. Finally, five distribution functions are curve-fitted to the experimental data to capture the atomization process accurately.

[error in script]
IITH Creators:
IITH CreatorsORCiD
Kolhe, Pankajhttp://www.orcid.org/0000-0002-7930-5987
Item Type: Article
Uncontrolled Keywords: Aerodynamics; Atomization; Combustion; Distribution functions; Drops; Heat transfer; Air blast; Chamber walls; Effect of CO; Fuel distribution; Gas turbine combustor; Heat release; Local equivalence ratio; Near fields; Recirculation zones; Volumetrics; Gas turbines
Subjects: Physics > Mechanical and aerospace
Physics > Mechanical and aerospace > Transportation Science & Technology
Divisions: Department of Mechanical & Aerospace Engineering
Depositing User: Mr Nigam Prasad Bisoyi
Date Deposited: 28 Sep 2023 11:12
Last Modified: 28 Sep 2023 11:12
URI: http://raiithold.iith.ac.in/id/eprint/11712
Publisher URL: https://doi.org/10.2514/1.B38806
OA policy: https://v2.sherpa.ac.uk/id/publication/9882
Related URLs:

Actions (login required)

View Item View Item
Statistics for RAIITH ePrint 11712 Statistics for this ePrint Item