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A B S T R A C T   

Evaluating the impact of evasive actions such as braking and steering on the crash risk assessment of vehicles is a 
scarce endeavor due to the lack of relevant data. This study uses Extreme Value Theory to investigate and model 
the effect of evasive actions on the sideswipe crash risk of powered two-wheelers (PTWs) moving on multilane 
rural highways. The crash risk was projected from the observed sideswipe conflicts that were quantified using a 
surrogate safety indicator called anticipated collision time (ACT). The vehicle trajectory data extracted from 
traffic videos, collected using an unmanned aerial vehicle, was used as the input for the analysis. The data was 
denoised using a state-of-the-art trajectory reconstruction method called recursively ensembled low pass 
filtering. Once the conflicts were identified from the trajectory data, the crash risk models were developed 
considering five covariates: maximum deceleration rate, maximum yaw rate, and the times spent in decelerating, 
accelerating, and steering during a sideswipe conflict. These covariates were used to capture the non-stationarity 
in the traffic conflict extremes. The best performing non-stationary model was selected by comparing the 
negative log-likelihood values with the stationary-one. The findings suggest that the PTWs experience significant 
sideswipe crash risk on four-lane (crash risk 0.09%) and six-lane (crash risk 0.17%) highways. The sideswipe 
crash risk of PTWs increases with the increase in the intensity of braking and steering actions measured in terms 
of maximum deceleration and yaw rates. Further, this study emphasizes that incorporating the effects of evasive 
actions in the crash risk estimation and developing non-stationary models could significantly improve the pre-
cision of crash frequency estimates. Based on the findings it can be concluded that for the safety improvement of 
PTWs on multilane highways, lane-restriction should be imposed which can increase the safety margin during 
sideswipe conflicts.   

1. Introduction 

Powered two-wheelers (PTWs) are regarded as vulnerable road users 
(VRUs) since they lack protective gear except for helmets (Damani & 
Vedagiri, 2021). World Health Organization (WHO) has reported that 
vulnerable road users, including PTWs, account for 28% of all traffic 
deaths worldwide (WHO, 2018). Notably, the PTWs constitute a sig-
nificant proportion of road deaths in most developing countries; for 
example, 41% of road death victims in India are PTW riders (Haghani 
et al., 2022). Such a considerable fatality risk associated with PTWs has 
stimulated the growing interest in PTW safety studies, particularly in the 
lower- and middle-income countries (LMICs). Despite several attempts 
to understand PTW behavior, there is a considerable knowledge gap 
related to PTW safety (Haghani et al., 2022). Remarkably, the PTW 

behavior in LMICs is highly complex due to the unique traffic charac-
teristics leading to significant safety challenges. Nevertheless, the rele-
vant research from LMICs in this direction is relatively less. As a matter 
of fact, less than 10% of all accident studies are meant for LMICs 
(Haghani et al., 2022), even though the fatality rate of road users in 
LMICs is disproportionately high. 

Most safety studies employ crash data to perform crash risk analysis. 
However, crash data has inherent issues such as under-reporting, 
inability to capture the driving mechanism that leads to crashes, and 
requiring an extensive data collection period for the modeling (Ven-
thuruthiyil & Chunchu, 2022b; Zheng et al., 2021). Given these draw-
backs of the crash data, researchers opted for the proactive safety 
approach that uses traffic conflicts as a precursor to crashes. Such an 
approach can help identify the factors that correlate traffic conflicts to 
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crash and remove the ethical dilemma of hoping for crashes to occur to 
address safety. Given the inherent benefits, there is a growing interest in 
using the proactive safety approach in modeling crash risk. 

To develop crash risk models using a proactive safety approach, the 
extreme value theory (EVT) emerged as a powerful tool since it enables 
the extrapolation of rarely observed events (i.e., crashes) from the 
frequently observed events (i.e., traffic conflicts). This is evident from 
the recent use of EVT models in crash risk studies (Zheng, Sayed and 
Essa, 2019; Fu, Sayed and Zheng, 2020; Arun et al., 2021a, Arun et al., 
2021b; Arun et al., 2022). Besides, EVT eliminates the mixing of several 
safety pyramid levels (Hydén, 1987) by identifying the true extremes (i. 
e., severe conflicts) from the potential conflicts. Therefore, the present 
study has also chosen EVT for the crash risk estimation of PTWs. 

Extreme value theory assumes that the sampled extremes (i.e., severe 
conflicts) are independent and identically distributed (i.e., drawn from 
the same population). Crash risk models developed using such extremes 
are called stationary EVT models. However, in reality, most of the 
sampled extremes are heterogeneous in nature. Though splitting a het-
erogonous sample into homogeneous subsamples is one way, treating 
heterogeneity using statistical modelling is a more efficient strategy 
(Tarko, 2012).These models are called non-stationary since they capture 
the heterogeneity in the traffic conflict extremes. Most non-stationary 
EVT studies consider aggregated variables such as traffic volume and 
conflict volume to capture the heterogeneity (Fu et al., 2020). Only a few 
studies have used microscopic driver behavior variables such as spacing 
between the subject and the leading vehicle, speed of the subject vehicle 
to model the heterogeneity in the conflict extremes (Ali et al., 2022). 

The objective of the present study is to investigate and model the 
crash risk of PTWs, incorporating the effects of micro-driving behavior 
variables or covariates for the multilane rural highways of LMICs using 
EVT. To fulfill this objective, this study selected a suitable conflict in-
dicator to identify conflicts and then chose the factors that are influ-
encing the crash risk of PTWs. Further, this study developed the non- 
stationary models by using the influencing factors and then selected 
the best-performing model by comparing them with the stationary 
model. 

The remainder of the paper is organized as follows: Section 2 pro-
vides a summary of the studies discussing the crash risk analysis of PTWs 
based on the proactive safety approach. Section 3 elaborates the 

approach of crash risk analysis, and Section 4 explains the data collec-
tion process. Finally, Section 5 describes the results of the analysis and 
Section 6 ends with the concluding remarks of the study. 

2. Literature review 

This section discusses the past studies that models the crash risk 
using proactive methods and EVT, with a specific consideration to the 
non-stationarity. For an extensive review of the safety studies involving 
EVT, the readers may refer to the work of Zheng et al. (2021). Further, 
this section provides a brief discussion on the various covariates 
considered in the PTW crash risk modelling. A brief explanation of the 
limitation of prevalent conflict indicators used to identify the PTW 
conflicts and the workaround is also provided. Besides, the usefulness of 
the real field trajectory data is explained along with the need to assess 
the sideswipe crash risk of PTWs. 

Table 1 summarizes the key aspects of non-stationary EVT studies. It 
is evident from the table that most EVT studies have considered aggre-
gated traffic information (e.g., Songchitruksa & Tarko, 2006; Zheng 
et al., 2014a; Zheng et al., 2018) as covariates to capture the non- 
stationarity of the crash mechanisms. Though a few studies (Ali et al., 
2022; Cavadas et al., 2020) have employed covariates that capture 
microscopic driving characteristics, the vehicle conflict data was 
generated from driving simulator experiments. Such data will lack the 
realism of actual field dynamics. Besides, most of the covariates 
considered were related to the closeness or proximity (i.e., Gap/ 
Spacing) between the two conflicting road users. Nevertheless, Guo et al. 
(2018, 2019) have found that PTWs’crash risk is highly associated with 
evasive actions such as steering, braking, and acceleration than the 
proximity between two conflicting vehicles. Therefore, for the proper 
estimation of PTWs’ crash risk, microscopic variables related to the 
evasive actions should be used. Accordingly, for the crash risk estima-
tion, the present study has developed non-stationary EVT models 
considering the respective evasive action related microscopic variables. 

Prior to modeling the non-stationarity, a suitable conflict indicator 
needs to be identified. Most studies used proximity measures such as 
Time-To-Collision (TTC) and Post-Encroachment-Time (PET) for esti-
mating the crash risk (Arun et al., 2021a, Arun et al., 2021b). Tageldin 
et al. (2015) showed that evasive actions identify the PTW conflicts 

Table 1 
EVT studies addressing non-stationarity issues.  

Study EVT Model Conflict 
Type 

Conflict Indicator Facility Type Covariates Considered Remarks 

Using Naturalistic Driving Data from Videos 
Songchitruksa & 

Tarko (2006) 
Block Maxima 
(BM) 

Right 
Angled 

Post encroachment time (PET) Signalized 
intersection 

Total volume, through volume, 
left-turn volume, conflict 
volume, & conflicting through 
volume 

Crash frequency estimates & 
historical crash data match 
reasonably 

Zheng et al. 
(2014b) 

BM & Peak over 
Threshold 
(POT) 

NA* PET Freeway 5-min traffic volume, fraction of 
oversized vehicles, & number of 
lane changes 

POT performs better than BM 

Zheng et al. 
(2018) 

BM Rear 
End 

Time to Collision (TTC) Signalized 
intersection 

5-min left-turn volume & 
number of conflicts below a 
certain threshold 

Number of conflicts below a 
threshold is a better exposure 
measure than the volume 

Fu et al. (2020) BM Rear 
End 

Modified TTC (a variant of 
TTC), PET, & Deceleration Rate 
to avoid crash (DRAC) 

Signalized 
intersection 

Traffic volume, shock wave 
area, & platoon ratio 

Covariates improve the 
performance of the models 

Using Driving Simulator Data 
(Farah & Azevedo, 

2017) 
BM & POT Head on TTC Two-lane rural 

highway 
Passing gap & duration, Speeds 
of passing & conflict vehicles 

BM provides more stable 
results than POT 

Cavadas et al. 
(2020) 

BM Head on & 
Rear End 

TTC & Gap from the passed 
vehicle (a variant of PET) 

Two-lane rural 
highway 

Gaps of subject vehicle with 
front & opposing vehicles, 
Speeds of front and passing 
vehicles 

Covariates improve the 
performance of the models 

Ali et al. (2022) BM & POT NA* Gap time for lane-changing (a 
variant of TTC) 

Motorway 
(Four-lane 
highway) 

Gap, Spacing, & Speed of the 
subject vehicle during the lane- 
changing event 

POT outperforms BM 

Note: NA* indicates the crash risk associated with lane-change maneuver rather than any specific conflict type. 
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much better than proximity measures such as TTC. Besides, studies 
(Laureshyn et al., 2010; Tageldin et al., 2015) have already pointed out 
that a single conflict indicator combining proximity and all evasive ac-
tions should be developed. Recently, Venthuruthiyil and Chunchu 
(2022) proposed a new conflict indicator called Anticipated Collision 
Time (ACT) that combines proximity and evasive actions using the 
shortest distance and the closing-in rate between two conflicting vehi-
cles. The detailed description of ACT is provided in Section 3. 

Table 1 shows some of the past studies that have obtained conflict 
information from driving simulator experiments or naturalistic driving 
data. The driving simulator generates data in a highly controlled envi-
ronment. Such a controlled environment may not yield realistic results, 
and this issue might even become larger for the LMICs, where the in-
teractions between PTWs and other vehicle types are intricate. Notably, 
obtaining accurate microscopic driving data for longer road stretches 
became a reality due to the recent advancements in image processing- 
based trajectory extraction tools such as SAVETRAX (Venthuruthiyil & 
Chunchu, 2022b). 

Furthermore, it is to be noted that, on multilane highways, the PTWs 
frequently change lanes, increasing the chance of a sideswipe crash risk 
between the two vehicles (Puthan et al., 2021). Guo et al. (2019) found 
that PTWs apply strong swerving (or steering) evasive action to avoid 
collisions when they frequently change lanes and overtake vehicles. 
Unfortunately, most research related to PTWs mainly focused on rear- 
end collisions, with minimal studies on the sideswipe crash risk. 
Puthan et al. (2021) recently stressed the need for examining further the 
sideswipe crashes so that they can be included in the global safety 
standards of PTWs (ISO 13232). Venthuruthiyil et al. (2022) also found 
that PTWs experience more sideswipe conflicts in LMICs than the rear- 
end conflicts. 

To summarise, EVT is a powerful tool for developing conflict-crash 
relationships. For the crash risk estimation of PTWs using EVT, the 
microscopic variables that define PTWs’ evasive actions should be used 
rather than proximity related variables. Notably, the effect of evasive 
actions on the sideswipe crash risk modeling of PTWs has rarely been 
investigated. Given the inherent benefits of ACT, it might be the best 
possible conflict indicator for PTW conflict identification. Finally, the 
crash risk assessment of sideswipe conflicts requires further attention to 
improve the global safety standards of PTWs. 

3. Methodology 

This section begins with a detailed description of ACT and explains 
the process of sideswipe conflict identification from ACT profiles. Then, 
the peak over threshold approach (POT) of extreme value theory was 
elaborated. Further, this approach includes the threshold estimation of 
ACT using both graphical plots and statistical methods. Graphical plots 
include the mean residual life plot and the threshold stability plot. The 
initial selection of ACT threshold range was obtained from these two 
plots, and then various POT models were fitted across the threshold 
range. The best fitted POT model corresponds to the best ACT threshold. 

Then the crash risk estimation was explained and finally the non- 
stationary modeling was discussed for the required covariates defining 
the evasive action of PTW during the sideswipe conflict. 

3.1. Description of ACT 

ACT is the time remaining to collision based on the shortest distance 
between the vehicles and the closing-in rate in the shortest distance 
direction (Fig. 1a). ACT can be computed as: 

T =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ
( ∂δ

∂t

), if
∂δ
∂t

> 0

∞, otherwise

(1)  

where, T is the time after which two vehicles would collide if they move 
with the same closing-in rate, δ is the shortest distance between the 
approaching vehicles at a time instant t1 and 

( ∂δ
∂t
)

indicates the rate at 
which the vehicles approach each other (closing-in rate). The closing-in 
rate encompasses the effect of all state variables that affect the likeli-
hood of a potential conflict (Fig. 1b). 

The closing-in rate of two vehicles is a function of their speed, ac-
celeration, heading angle, and steering. It can be estimated by taking the 
resultant of speed, acceleration, and steering in the direction of the 
shortest distance between the vehicles and is shown in the Equation. 

∂δ
∂t

= Rel
(

v→1− 2, v→2− 1

)

+Rel
(

a→1− 2, a→2− 1

)

× t+Rel
(

θ̇1, θ̇2

)
× δ  

where, v→1− 2, a→1− 2 are the components of speed and acceleration of 
vehicle-1 towards vehicle-2 in the direction of the shortest distance. 
v→2− 1, a→2− 1 are the components of speed and acceleration of vehicle-2 
towards vehicle-1 in the direction of the shortest distance. θ̇1, θ̇2 are 
the steering rate of vehicle-1 and vehicle-2, respectively. Here, Rel is an 
operator that takes the vector sum of the quantities. The steering rate θ̇ is 
measured in terms of yaw rate which represents the angular velocity of 
the road-user rotation around the z-axis or the rate of change of heading 
angle (θ). 

3.2. Identification of sideswipe conflicts 

For the multilane highways in LMICs, the sideswipe conflict mostly 
happens between PTWs and fast-moving vehicles such as passenger cars, 
especially during a lane-changing or overtaking event. It is to be noted 
that the sideswipe conflict can also happen between two PTWs. Given 
the potential benefits of ACT in the proactive safety analysis, this study 
considered ACT as the SSM to identify sideswipe conflicts involving 
PTWs. 

In the case of ACT, a conflict course exists only when the line drawn 
from the approaching vehicle’s nearest corner crosses through either of 
the other vehicles’ corner points. To identify a conflict as sideswipe, a 
line (parallel to the heading angle) projected from the approaching 

Fig. 1. Simplified illustration of the concept of Anticipated Time to collision (ACT); (a) Closing-in of two vehicles till collision; (b) Factors influencing the closing-in 
rate of two vehicles. (Source: Venthuruthiyil & Chunchu, 2022b). 
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vehicle’s nearest corner towards the interacting vehicle must touch the 
side of the interacting vehicle, and both the vehicles should move in the 
same direction (Fig. 2). The ACT values for a sideswipe conflict can then 
be calculated for each PTW using Equation (1). 

ACT is similar to TTC but functions differently and the conflict 
identification from continuous ACT profiles is similar to that of TTC 
profiles (Fig. 3). For identifying the potential conflicts from continuous 
ACT profiles, the slope of ACT should continuously decrease till it rea-
ches a minimum value indicating crash nearness & then the slope should 
increase indicating the risk reduction (Fig. 3). The ACTmin value signifies 
the severity of the potential conflict and will be further used in the 
extreme value analysis. It should be mentioned here that in this study for 
the same trajectory if multiple conflict points arise which are safety 
critical then those will be considered rather than considering a single 
conflict point for a single trajectory. This is pertinent for the longer trips 
of road users on multilane rural highways.Fig. 4. 

3.3. Extreme value theory 

Considering the conflict indicator discussed in the previous section, 
one can estimate potential conflict situations, which are the frequently 
observed events in a traffic stream. However, translating this informa-
tion into the likelihood of a crash event is not a straightforward task. 
Extreme Value Theory (EVT) enables the extrapolation of rarely 
observed events (i.e., crashes) from the frequently observed events (i.e., 
traffic conflicts), provided that the stochastic behavior of the modeled 
process is smooth and continuous. EVT has two main approaches: the 
block maxima (BM) (or minima) using Generalized Extreme Value dis-
tribution (GEV) and the Peak over Threshold (POT) using Generalized 
Pareto distribution (GPD). BM and POT use different sampling methods 
to model extremes: BM takes the largest value (or r greatest values) in 
each block of specific duration, while POT takes the highest values over 
a certain threshold. For the relatively smaller observation periods, the 
block size of BM method should be as small as possible to obtain a suf-
ficient sample size. This leads to issues in extreme sampling because 
sometimes the conflict with a large ACTmin value would be considered as 

an extreme since it is the only value available in the block. Studies have 
already proved that for short-time data, the POT method typically out-
performs the BM approach due to its efficiency in sampling extremes (Ali 
et al., 2022; Zheng et al., 2014a). For the LMICs such as India, collecting 
the field data for relatively larger observation periods may not be 
feasible due to the high economic constraints, hence the present study 
has chosen POT approach for the extreme value modelling. 

3.4. Generalized Pareto distribution (GPD) model 

Let X1,X2, ....,Xn are independently and identically distributed 
random variables with a common distribution function F. Assume that 
there exists a threshold u that differentiate extreme and non-extreme 
events. Then the distribution of the sampled extremes over the 
threshold u can be defined by the conditional probability as follows: 

Pr{X > u + y|X > u} =
1 − F(u + y)

1 − F(u)
, y > 0 

Notably, the limiting distributions of Equation are the generalized 
Pareto distribution (GPD), for a sufficiently large enough threshold u. 

Now, consider the maximum value among all the events, Mn =

max{X1,X2, ......,Xn} . Suppose there exist sequences of constants {an >

0} and {bn} such that Pr
{

Mn − bn
an

⩽z
}

→G(z) as n→∞ for a non-degenerate 

distribution function G. Then, G is a member of the GEV family shown in 
Equation (4). 

G (z) = exp
{

−
[
1 + ξ

(z − μ
σ

) ]− 1
ξ
}

, ξ ∕= 0 (4) 

defined on {z : 1 + ξ((z − μ)/σ )〉0 } , where − ∞ < μ < ∞,σ > 0, and 
− ∞ < ξ < ∞. For a large enough thresholdu, the limiting distribution 
function of exceedances y = X − u, conditional on X > u is as follows: 

H(y) = 1 −
(

1 +
ξy
σ̃

)− 1
/

ξ
(5) 

defined on {y : y > 0 and (1 + ξy/σ̃)〉0 }, where σ̃ = σ +ξ(u − μ) is 

Fig. 2. Criteria for classification of conflict types (Source: Venthuruthiyil & Chunchu, 2022b).  

P. Kar et al.                                                                                                                                                                                                                                      



Accident Analysis and Prevention 183 (2023) 106973

5

the scale parameter, − ∞ < ξ < ∞ is the shape parameter. The family of 
distributions defined by Equation (5) is the generalized Pareto family. 

3.5. Threshold selection 

In the POT approach, the distribution of threshold exceedances 
shown in Equation could be obtained only if the threshold u is large 
enough to approximate the GPD family. Smaller thresholds may violate 
the model’s asymptotic property, leading to bias, whereas the larger 
thresholds may result in a few exceedances for the model estimation 
causing higher variance. In the case of field data, such a threshold is 
attained by trading-off the bias and variance. Two methods are available 
in practice to estimate the thresholds (Coles, 2001): 1) Mean Residual 
Life Plot (MRLP), 2) Threshold Stability Plots (TSP). The first is an 
exploratory approach used before model estimation, and the second is 
an evaluation of the stability of the parameter estimated based on the 
fitting of models to a range of different thresholds. To discuss further, 
the MRLP depicts the relationship between the mean values of exceed-
ances y and thresholds u. The rationale is that if the GPD is valid for 
threshold exceedances u0, then it should be similarly true for other 
thresholds u > u0 , provided the scale parameter σ is appropriately 
adjusted. Therefore, MRLP should be generally linear above a threshold 
u0, where the GPD gives a reliable estimate of the mean exceedances. 
Similarly, for the TSP, if the GPD is valid for threshold exceedances u0, 
then the estimates of the shape and modified scale parameters should be 
approximately constant above u0. In the present study, an initial range of 
thresholds is established using the MRLP and TSP. Further, the best 

threshold for the analysis was determined by fitting various GPD models 
and comparing the fit statistics. Zheng et al. (2015) determined the 
threshold by fitting various GPD models through the initial range of 
thresholds, and the negative log-likelihood values were taken as the 
measure. The threshold corresponding to the smallest negative log- 
likelihood value was selected as the final threshold. The present study 
uses the goodness-of-fit measure called Akaike Information Criterion 
(AIC) to compare the fitted models across different ACT thresholds. The 
AIC is a model fitting measure that combines the likelihood value with a 
complexity penalty related to the number of model parameters and is 
shown below (Gilleland & Katz, 2016). 

AIC(p) = 2 × np − 2 × LL (6)  

where, LL is the maximum log-likelihood value and np is the number of 
parameters in the pth model. 

3.6. Crash risk modelling 

Once the extreme vehicle conflict events are identified, the crash risk 
can be modeled using EVT. It is to be noted that the use of EVT for safety 
assessment is based on the safety continuum, represented by the conflict 
indicator that places all interactions on the same scale, beginning with 
the safest (normal events) and progressing to the most dangerous events, 
which are the crashes. The primary hypothesis of proactive safety 
assessment is that an unsafe event will end up into a crash if the driver 
fails to successfully perform the required evasive action. Therefore, an 

Fig. 3. Illustration of the Potential Conflict Identification from Continuous TTC profiles (Source: Jonasson and Rootzén, 2014).  

Fig. 4. Sideswipe Conflict Identification from the ACT profile of a PTW Trajectory extracted using SAVETRAX.  
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unsafe event is a situation that is closely correlated to the crash. Notably, 
the ACT gets closer to the extreme values for an unsafe event. Since the 
GPD samples extremes over a certain threshold, the negative ACT must 
be considered to represent the extremes. As discussed, ACT is a contin-
uous measure, and for a potential conflict, the ACT profile must contain 
a clear minimum value (Fig. 1). Here the minimum ACT (ACTmin) in-
dicates the amount of safety margin remaining during or after an evasive 
action showing how close the interaction came before avoiding the 
crash. It is worth noting that ACTmin close to zero does not necessarily 
mean a crash; however, the crash probability will be higher. A crash 
occurs when the ACTmin value is equal to zero. Now, using the fitted GPD 
based on the sampled extremes, the risk of a crash can be calculated as: 

R = Pr(Z⩾0) = 1 − Pr(Z⩽0) =
(

1 − ξ
u
σ̃

)− 1
ξ (7)  

where, R is the crash risk or crash probability of a specific conflict type 
(sideswipe in this study), Z is the sampled maximum of negative ACT 
values, and H( • ) is the GPD. Assuming that the observation period t is 
representative of a more extended period T(e.g., a year), the estimated 
annual crashes can be calculated as: 

N =
T
t

R (8)  

3.7. Non-stationary GPD modeling to capture the effect of covariates 

As discussed in the literature review section, the crash risk of PTWs is 
significantly influenced by evasive actions. Such variables influencing 
the extremes are referred to as covariates of the non-stationary model. 
EVT theory assumes that the extremes are independent and identically 
distributed. For non-stationary extremes, ACTs are independent but not 
identically distributed. In such cases, the standard EVT approach will 
not work, therefore, the effect of covariates should be incorporated into 
the GPD model. Coles, (2001) have already reported that, for the POT 
approach, the parameter estimation procedure could relate the non- 
stationary extremes to the covariates, which is accomplished by 
including the covariates into the GPD model parameters (i.e., scale 
parameter with the log link function as shown in the Equation (9)). The 
scale parameter σ of the GPD distribution can be estimated as follows: 

σ = β0 + βi × xi (9)  

where, xi is the vector of covariates,β0 is the intercept and βi are the 
coefficients of the vector of covariates. The shape parameter is usually 
not modified since there is no empirical evidence of non-stationarity in 
the tail behavior (Coles, 2001). Table 2 shows the list of variables related 
to evasive actions that are included in the GPD model. 

The model parameters were estimated using the Maximum Likeli-
hood Estimation (MLE) approach. Further, the significance of the co-
variate incorporated in the non-stationary model was determined by 
comparing the non-stationary model with the stationary-one. This was 
accomplished by employing the Likelihood Ratio test (Coles, 2001), 
which evaluates the goodness-of-fit of two competing statistical models 
based on the ratio of their likelihoods. However, the shape parameter 
must be kept ξ > − 0.5 to ensure the regular asymptotic properties of the 
maximum likelihood estimators (Smith, 1985). Considering the above 

criteria, the non-stationary models with covariates’ effects were iden-
tified. Furthermore, the confidence intervals of the estimated crashes 
were also determined to quantify the uncertainty. 

4. Data collection 

The main purpose of crash risk modeling using surrogate methods is 
to comprehend the driving mechanism of conflicts eventually leading to 
crashes. Such studies require extensive vehicle trajectory data to capture 
the dangerous interactions. In order to do so, this study has collected 
naturalistic driving data from the recorded traffic video footage from 
four and six-lane rural highways in India. In India, the four-lane and six- 
lane highways account for around 22% of the overall National Highway 
network length (MoRTH, 2021). Notably, PTWs are one of the major 
constituents of the multilane highways in the LMICs such as India (Bisht 
& Tiwari, 2022), and most of them primarily operate under free-flow 
conditions. On these highways, the intricate interactions between 
PTWs and other vehicle type considerably enhance the crash risk of 
PTWs (Damani & Vedagiri, 2021). 

The traffic videos were collected using an unmanned aerial vehicle 
(UAV) for a duration of two hours (four-lane) and 1.5 h (six-lane), 
covering a road stretch of 700 m. The location of data collection was 
Kerala, a southern state in India. Fig. 5 shows the cross-sectional view of 
the study sites. 

The trajectories were then extracted from the traffic videos using a 
semi-automated image processing tool called SAVETRAX (Venthur-
uthiyil & Chunchu, 2020a, 2022a). This tool has three modules: pre- 
processor, tracker, and analyzer (Fig. 6). In the pre-processing unit, 
camera calibration and the tracking boundary were defined. Vehicle 
detection, classification, and tracking were performed in the tracker 
module. The analyzer module applied different corrections to the 
tracked vehicle’s path, such as identification and correction of faulty 
tracks and compensation for camera movements were applied and 
various vehicle kinematic variables were estimated. 

Once the trajectories were extracted, the noise embedded in the 
trajectories was removed using the smoothing technique proposed by 
Venthuruthiyil & Chunchu (2018, 2020b). First, during the noise 
removal, all the occluded data points up to a length of 10 m were 
recovered using the spline technique with an accuracy of 5 cm. Then the 
heavy-tailed noise observed in the vehicle path was removed using a 
Recursively Ensembled Low-Pass (RELP) filter, resulting in a realistic 
and reasonable speed profile. Finally, white Gaussian noise was removed 
using an adaptive tri-cubic kernel smoothing, and the smoothing pa-
rameters were estimated using a grid-search algorithm. The resultant 
trajectories were smooth, differentiable, and consistent in nature. Fig. 7 
displays few PTW trajectories extracted using the SAVETRAX tool and 
then smoothed using the RELP technique. For an extensive under-
standing of the smoothing algorithm, the readers can refer to the works 
of Venthuruthiyil & Chunchu (2018) and Venthuruthiyil & Chunchu 
(2020b). 

The extracted trajectories from four-lane and six-lane highways 
include 690 and 212 PTW trajectories, respectively. The other major 
constituents in the traffic stream were Passenger Car (PC), Heavy 
Commercial Vehicles (HCV), and Light Commercial Vehicle (LCV). From 
the reconstructed trajectories, the variables such as acceleration, 
deceleration rate, and yaw rate were estimated. The yaw rate is the 
angular velocity of the road user’s rotation around the z-axis or the rate 
of change of the heading angle. The maximum value of the yaw rate 
during a traffic conflict measures the sudden swerving or change of di-
rection of drivers on the road whereas maximum deceleration rate in-
dicates the hard braking during a conflict (Guo et al., 2018). Fig. 8 shows 
an example of the sideswipe conflict obtained from the ACT profile of a 
PTW and their corresponding Acceleration and Yaw Rate profiles. It is 
evident from the figure that the PTW has applied both the braking and 
swerving actions during a conflict, which are two crucial evasive 
behavior. 

Table 2 
List of Covariates for GPD Model.  

Acronym Description 

dr Maximum Deceleration Rate for each sideswipe conflict 
θr Maximum Yaw Rate for each sideswipe conflict. Yaw Rate is the rate of 

change of heading angle. 
td Duration of the braking action for each sideswipe conflict 
tθ Duration of the steering action for each sideswipe conflict 
ta Duration of the accelerating action for each sideswipe conflict  
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5. Results & analysis 

5.1. Descriptive Statistics of ACT & covariates 

The present study identified 1113 and 395 sideswipe conflicts from 
the four and six-lane highways, respectively. On average, the ACTmin 
values for the four-lane highway show proximity of 4 s (Table 3), and for 
the six-lane highway, 2 s. As closer proximity indicates a larger crash 
risk, the six-lane highway could be more prone to the sideswipe crash 
risk than the four-lane highway in the study area. 

Further, the yaw rate of PTWs is significantly closer to the critical 
threshold value reported in the literature compared to deceleration or 
acceleration rates. Note that Lee et al. (2011) found that the critical 
threshold of deceleration, acceleration, and yaw rate values for the risky 
situations are 6.5 m/s2, 7.5 m/s2, and 1.33 degrees/second, respec-
tively. Further, it was found that, on average, PTWs spend more time 
applying steering than the brakes during a sideswipe conflict on both 
highways. 

5.2. Results of GPD modeling 

As stated earlier, subjectivity is involved in selecting the ACT 
threshold using the MRLP and TSP methods. Fig. 9a shows that the 
MRLP with 95% confidence bounds is approximately linear for the 
threshold range of (-0.8, − 0.5). TSP (Fig. 2b) demonstrates that there are 
two threshold ranges, where each of the scale and shape parameters are 
approximately constant. However, the present study has chosen the 
relatively smaller threshold range since the smaller threshold represents 
severe conflicts (i.e., true extremes) (Tarko, 2018). The modified scale 
parameter is approximately constant for the threshold range of (-0.6, 
− 0.5), and the shape parameter is also nearly constant for the threshold 
range of (-0.6, − 0.5). Based on the observations from these plots, the 
initial threshold range was selected, which is (-0.6, − 0.5). 

Nevertheless, GPD models were fitted across different thresholds to 
choose the best threshold. The threshold corresponding to the smallest 
AIC value is considered the best threshold. Fig. 10 depicts the variation 
of AIC values with the change in ACT threshold for both four-lane and 

six-lane highways. The figure clearly shows that as the threshold de-
creases (i.e., ACT becomes smaller), the model fit becomes better. The 
best thresholds for both four-lane and six-lane highways came out to be 
0.5 and 0.6 s, respectively. 

Based on the threshold, normal interactions are separated from the 
severe conflicts. From Table 4 it can be seen that, for the four-lane 
highway, out of 1113 sideswipe conflicts, 266 conflicts are severe in 
nature. Similarly, for the six-lane highway, there are 147 severe conflicts 
out of 395. This means that proportion-wise, there are more severe 
conflicts relative to the total number of interactions on the six-lane 
highway than that on the four-lane highway. 

Table 4 shows the GPD model parameters and statistics for the best 
thresholds, where the values in parenthesis represent standard errors. 
Both the thresholds resulted in the shape parameter values of ξ > − 0.5. 
Therefore, the MLE estimates possess the regular asymptotic properties 
of the EVT. The crash risk (or crash probability) of PTWs on the four-lane 
and six-lane highways came out to be 0.13% and 0.74%, respectively. 
The estimated annual sideswipe crashes of PTW related to the crash 
probabilities are 2 and 22, respectively, indicating the higher sideswipe 
crash risk of six-lane highway. However, the precision of the crash risk 
estimates (measured in confidence bounds) is higher for the four-lane 
highway than that of the six-lane highway. 

5.3. Non-stationary modelling results 

Table 5 shows the estimation results of the best-fitted models. The 
identity link function for the scale parameter reduced negative log- 
likelihood values when introduced the covariates into the stationary 
GPD model. The greater the reduction, the better the model fits. How-
ever, the statistical significance of such reduction for each model with a 
covariate was verified using a likelihood ratio test. The non-stationar-
y model will be better fitted than the base stationary model if the like-
lihood ratio between the stationary and non-stationary models exceeds 
the chi-square value for the specified degrees of freedom. 

Table 5 shows that, for the four-lane highway, the covariates, such as 
deceleration rate and the steering time, provide the best non-stationary 
model fit. Whereas for the six-lane highway, deceleration rate, yaw rate, 

Fig. 5. Data Collection Sites for the present study.  

Fig. 6. Tracking of Vehicles moving on (a) Four-lane and (b) Six-lane highways Using SAVETRAX.  
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Fig. 7. Example of Noise Removal of (a) Longitudinal Speed (b) Lateral Speed (c) Longitudinal Acceleration (d) Lateral Acceleration of the few PTW Trajectories on 
four-lane highway. 

Fig. 8. ACT, Acceleration/Deceleration, and Yaw Rate Profiles of a Sideswipe Conflict.  
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and steering time provided the best-fitted non-stationary models 
compared to the base model. For the multiple combinations of these 
three covariates, multiple non-stationary models such as M7, M8, M9, 
and M10 were developed (See Table 4). Further, these models were 
verified against the stationary model and the best-fitted non-stationary 
models with a single covariate. Table 5 shows that the non-stationary 
models such as M7, M8, and M9 do not perform better than the M2 
model for the four-lane highway. Therefore, the M2 model was selected 
as the best-fitted model for the four-lane highway to estimate the crash 
risk. For the six-lane highway, model M2 was compared with model 

M10, which considers all three covariates, and it was found that model 
M10 performs the best. Therefore, the non-stationary model M10 was 
selected to estimate the sideswipe crash risk for the six-lane highway. 

It should be pointed out here that, for both locations, all the GPD 
models with covariates related to the evasive actions perform better 
than the stationary ones. As stated earlier, the best performing model for 
the six-lane highway contains the covariates namely the deceleration 
rate, yaw rate, and steering time during a sideswipe conflict. However, 
this is not the case with the four-lane highway, where the model with the 
deceleration rate performed the best. The possible explanation might be 
that the sideswipe conflict mostly happens during lane-change/ 
overtaking maneuvers, which will be frequent on a multilane highway 
in LMICs due to the high-speed difference between the road users. In our 
case, since six-lane highways, on average, has a higher speed difference 
than the four-lane highway, lane changes could be more frequent. Such a 
situation might increase the PTW crash risk with lane-changing/ 
overtaking vehicles. However, PTWs try to evade laterally to avoid a 
crash with the lane-changing/overtaking vehicles through the steering. 
In the case of four-lane highways, the lateral movement might be more 
restricted which could be resulting in the less significant steering effect 
of PTWs on the crash risk. 

Table 6 shows the estimation results of the best-performing GPD 
models. The shape parameter for both models was less than − 0.5, 
meaning that the estimators from MLE fulfill the regular asymptotic 
properties of EVT and thus are more reliable. The crash probabilities or 
crash risks were calculated using the mean values of the covariates 
(shown in Table 3) substituted in Equation along with the estimated 
parameter values. The confidence bounds were calculated assuming that 
the model parameters estimated from MLE follow normal distribution 
under regularity conditions. Table 6 shows that the sideswipe crash risk 

Table 3 
Statistics of sideswipe conflict data.  

Variables Mean SD Min Max 

4- 
lane 

6- 
lane 

4- 
lane 

6- 
lane 

4- 
lane 

6- 
lane 

4- 
lane 

6- 
lane 

ACTmin (s)  4.0  2.0  7.7 4.6  0.0  0.0  47.8  43.7 
Maximum 

Deceleration 
Rate (m/s2)  

0.3  0.4  0.6 1.0  0.0  0.0  10.8  6.8 

Maximum Yaw 
Rate (degree/ 
s)  

0.9  1.1  2.1 4.0.0  0.0  0.0  39.7  59.5 

Braking Time 
(s)  

0.5  0.5  0.6 0.7  0.0  0.0  3.5  5.5 

Steering Time 
(s)  

1.0  1.0  0.6 0.8  0.0  0.0  6.2  7.2 

Acceleration 
Time (s)  

0.5  0.5  0.7 0.7  0.0  0.0  4.8  4.8 

Note: SD, Min, and Max denote standard deviation, minimum, and maximum 
values of the variables. 

Fig. 9. Graphical Plots of the 4-lane highway for Threshold Selection.  
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increases with the intensity of the evasive action, such as braking and 
steering. Also, the time spent in steering evasion negatively affects the 
sideswipe crash risk. Notably, for the non-stationary GPD models, the 
uncertainty in the sideswipe crash risk of PTWs has significantly 
improved. 

6. Summary & conclusions 

This study investigates the sideswipe crash risk of PTWs by consid-
ering various covariates influencing the sideswipe conflict. The study, 

therefore, developed non-stationary models using the POT approach to 
capture the impact of such covariates. The findings of this study are:  

1. On average, during a sideswipe conflict, PTWs spend more time 
performing steering evasion than braking evasion. Besides, only the 
intensity of the steering evasion measured in terms of maximum yaw 
rate reaches safety critical values i.e. exhibits extreme driving 
evasions. 

2. Based on the ACTmin threshold, higher percentage of severe side-
swipe conflicts are occurring on the six-lane highway than that on 
the four-lane highway. Also, PTW riders experience higher crash risk 
on the six-lane highway. The sideswipe crash risk of PTWs increases 
with the intensity of the maximum deceleration and yaw rates. 

3. Non-stationary GPD models have significantly reduced the uncer-
tainty in the crash risk estimates compared to the stationary models. 

The main conclusions of this study are:  

1. PTWs evade a sideswipe conflict mainly by making extreme steering 
evasion rather than applying hard brakes. Therefore, for the side-
swipe conflict identification of PTWs, steering evasion must be 
considered. Otherwise, the locations may give false negatives in 
terms of sideswipe conflict identification which will eventually lead 
to the erroneous identification of risk-free locations.  

2. PTWs experience significantly higher sideswipe (sometimes also 
referred as lane-changing) crash risk on the six-lane highway as 

Fig. 10. Effect of ACT threshold on the goodness of fit of GPD model (a) 4-lane highway; (b) 6-lane highway.  

Table 4 
Parameters and statistics of the GPD model.  

Parameters GPD Model 

four-lane six-lane 

Threshold (s) 0.5 0.6 
σ (SE) 0.25 (0.009) 0.28 (0.013) 
ξ (SE) ¡0.48* (0.115) ¡0.40* (0.183) 
Exceedances 266 147 
Log-likelihood − 228 − 98 
AIC − 450 − 191 
Crash Probability 0.13% 0.74% 
Estimated Annual Crashes 2 22 
Upper 95% CI 96 287 
Lower 95% CI 0 0 

Note: * indicates that the GPD model satisfies the criteria that ξ > -0.5. 

Table 5 
Statistics of the fitted non-stationary models.  

Model 
Number 

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

Model type Stationary Non- 
stationary 

Non- 
stationary 

Non- 
stationary 

Non- 
stationary 

Non- 
stationary 

Non- 
stationary 

Non- 
stationary 

Non- 
stationary 

Non-stationary 

Description Base case σ = β0+

β1 × dr 

σ = β0+

β1 × θr 

σ = β0+

β1 × td 

σ = β0+

β1 × ta 

σ = β0+

β1 × tθ 

σ = β0 +

β1dr + β2θr 

σ = β0 +

β1dr + β2tθ 

σ = β0 +

β1θr + β2tθ 

σ = β0 +

β1dr + β2θr
+β3tθ 

Site LL1 LL2 LL3 LL4 LL5 LL6 LL7 LL8 LL9 LL10 
4-lane − 228.05 − 229.98 − 229.24 − 228.19 − 228.97 − 230.05 − 230.21 − 231.36 − 230.91 ————————— 
6-lane − 98.74 − 102.76 − 101.88 − 99.97 − 99.39 − 101.22 − 104.33 − 104.66 − 103.94 − 106.78 
Likelihood ratio test results 
Site M1&M2 M1&M3 M1&M4 M1&M5 M1&M6 M2&M7 M2&M8 M2&M9 M2&M10 
4-lane 3.84* 2.39 0.29 1.83 3.99* 0.46 2.76 1.86 —————— 
6-lane 8.04* 6.29* 2.46 1.30 4.95* 3.14 3.79 2.35 8.04* 

Notes: χ2
(0.95,df=1) = 3.841,χ2

(0.95,df=2) = 5.991. The * values indicate the best-fitted non-stationary models.  
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compared to the four-lane highway. This means that providing 
additional lane (or widening the roads from four-lane to six-lane) did 
not fully improve the safety situations of PTWs. The workaround 
could be limiting the aggressive and frequent overtaking and lane- 
changing of vehicles on such highways and providing additional 
lanes/service roads for the exclusive movement of PTWs.  

3. Non-stationary GPD model developed considering evasive actions 
such as braking and steering outperforms the stationary model. 
Hence, the effect of evasive actions needs to be incorporated in the 
crash risk models because the parameters such as deceleration rate 
and yaw rate significantly improve the models’ precision. Such crash 
risk models will be very useful in identifying the accident-prone lo-
cations and hence will be beneficial in conducting real-time threat 
assessment on multilane highways without the help of crash data. 

The contribution of this study is manifold:  

1. This paper adds to the relatively little literature available on the 
PTWs’ sideswipe crash risk assessment using a newly developed 
multidimensional proactive measure called ACT. This measure helps 
in identifying the risky situations for PTW riders by integrating the 
steering effect on the proximity calculation which is a very important 
parameter for the lane-changing operations of PTWs.  

2. As discussed in the literature review, most non-stationary crash risk 
models consider aggregated variables such as traffic volume, conflict 
volume, lane change duration, number of lane changes which in-
fluences the crash occurrences. Crash risk models developed 
considering the microscopic driving characteristics are very scarce in 
the literature. The present study has contributed to this scarce 
literature by considering the microscopic driving actions such as 
braking and steering in developing the crash risk models. 

The present study can be further extended in numerous ways:  

1. The effect of road geometry, drivers’ and land use characteristics on 
the sideswipe crash risk should be studied by collecting data from 
different locations with varying traffic compositions.  

2. The effect of temporal features on crash mechanisms should be 
analyzed by collecting trajectory data during different times of the 
day and seasons of the year.  

3. The EVT models can be further improved by considering the effect of 
speed-based measures such as maximum speed difference, delta V 
etc. that can capture the vehicular damage and injury to the drivers. 
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