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Abstract

Type 1 diabetes (T1D) is a condition characterized by an absolute deficiency of

insulin. Loss of insulin-producing pancreatic islet b cells is one of the many

causes of T1D. Viral infections have long been associated with new-onset T1D

and the balance between virulence and host immunity determines whether the

viral infection would lead to T1D. Herein, we detail the dynamic interaction

of pancreatic b cells with severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) and the host immune system with respect to new-onset T1D.

Importantly, b cells express the crucial entry receptors and multiple studies

confirmed that b cells are infected by SARS-CoV-2. Innate immune system

effectors, such as natural killer cells, can eliminate such infected b cells.

Although CD4+CD25+FoxP3+ regulatory T (TREG) cells provide immune

tolerance to prevent the destruction of the islet b-cell population by

autoantigen-specific CD8+ T cells, it can be speculated that SARS-CoV-2

infection may compromise self-tolerance by depleting TREG-cell numbers or

diminishing TREG-cell functions by repressing Forkhead box P3 (FoxP3)

expression. However, the expansion of b cells by self-duplication, and

regeneration from progenitor cells, could effectively replace lost b cells.

Appearance of islet autoantibodies following SARS-CoV-2 infection was

reported in a few cases, which could imply a breakdown of immune tolerance

in the pancreatic islets. However, many of the cases with newly diagnosed

autoimmune response following SARS-CoV-2 infection also presented with

significantly high HbA1c (glycated hemoglobin) levels that indicated

progression of an already set diabetes, rather than new-onset T1D. Here we

review the potential underlying mechanisms behind loss of functional b-cell
mass as a result of SARS-CoV-2 infection that can trigger new-onset T1D.

INTRODUCTION

Type 1 and type 2 diabetes are considered a comorbidity

and risk factor for severe coronavirus disease 2019

(COVID-19) caused by severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2); conversely,

whether SARS-CoV-2 can cause diabetes remains a

puzzle.1 During the pandemic, anecdotal reports of

new-onset type 1 diabetes (T1D) in young adults and

children raised concerns that SARS-CoV-2 might damage

the insulin-producing pancreatic islet b cells. Indeed,

some studies reported a higher risk of developing

diabetes among patients with COVID-19.2,3 It was also

suggested that one of the long-term consequences of the

COVID-19 pandemic is an increase in the new onset of

T1D.4–8 However, population-based studies failed to find
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any strong correlation between SARS-CoV-2 infection

and new-onset T1D.9,10

A proposed link between new-onset T1D following viral

infection is not new. Several viral infections, including

rotavirus,11 enterovirus,12 mumps,13 measles and rubella

virus,14 Coxsackie virus15 and cytomegalovirus,16 have

been reported to be the causal agent of T1D. Pancreatic

b cells express most of the known SARS-CoV-2 entry

receptors, including angiotensin-converting enzyme 2

(ACE2) and neuropilin-1 (NRP1).17–19 Relatively high

expression of NRP1 on b cells makes these cells

vulnerable to SARS-CoV-2.20

However, the outcome of viral infection might not lead

to T1D21 and could depend on virulence and host

immunity. To know whether there is any link between

T1D and SARS-CoV-2 infection, it is crucial to

understand whether islet b cells were damaged by direct

virus-induced cell death, and whether the immune

tolerance in the islet milieu could be disrupted following

SARS-CoV-2 infection that may evoke an autoimmune

response ultimately leading to T1D. With limited direct

epidemiological data linking T1D and SARS-CoV-2

infection, this review intends to bring together several

laboratory and clinical evidence related to b-cell–specific
immune responses following SARS-CoV-2 infection that

might help to build a plausible hypothesis.

IMMUNE TOLERANCE MECHANISM
PROTECTS AGAINST T1D: COULD
SARS-COV-2 INFECTION DISRUPT
IMMUNE TOLERANCE LEADING TO
THE DEVELOPMENT OF T1D?

T1D is usually caused by b-cell loss accompanied by

b-cell dysfunction, and is characterized by impairment in

insulin secretion. The development of T1D is frequently

associated with insulin-specific autoantibodies, but these

autoantibodies are not likely to be the cause of the loss

of islet b cells in T1D.22 Studies with cadaveric

pancreatic tissue revealed hyperexpression of major

histocompatibility complex class I (MHC-I) on islet

b cells and infiltration of effector CD8+ and CD4+

T cells.23–25 The islet-infiltrated CD8+ T cells can destroy

SARS-CoV-2–infected insulin-producing b cells through

the recognition of virus-specific proteins presented by

MHC-I.26 Such loss of the b-cell population resulting

from direct SARS-CoV-2 infection is transient and may

be corrected after recovery from infection. In addition,

islet-infiltrated CD4+ T cells secrete cytokines to increase

MHC-I expression on b cells resulting in the continuous

presentation of b-cell epitopes, thereby increasing the

chance of recognition of b-cell–specific proteins presented

by MHC-I.27 Although central tolerance successfully

removes the majority of the self-reactive T cells, some

self-reactive T cells escape negative thymic selection and

give rise to a peripheral T-cell population that still

contains some self-reactive T cells (Figure 1a). This

repertoire of peripheral self-reactive T cells might

subsequently provoke autoimmune diseases, such as T1D,

multiple sclerosis and inflammatory bowel disease, unless

controlled by “peripheral tolerance.”28 The critical

components of peripheral tolerance consist of T cells

known as regulatory T (TREG) cells and a specific

subpopulation of dendritic cells (DCs) known as

plasmacytoid DCs (pDCs).29 TREG cells are specialized

T cells, identified by their expression of CD4 and CD25,

and have the ability to regulate immune responses

(Figure 1b). These CD4+CD25+ T cells specifically express

the transcription factor Forkhead box P3 (FOXP3), which

is crucial for the differentiation and function of TREG

cells.30 The pDCs appear different from conventional DCs

(cDCs) and instead have similarities with plasma cells.

Unlike cDCs, they are mostly localized in lymphoid

organs and display tolerogenic functions under steady-

state or resting conditions. They are the primary

producers of the antiviral cytokines, such as type I

interferons (IFNs). Tolerogenic pDCs secrete a variety of

soluble anti-inflammatory cytokines, including interleukin

(IL)-10, transforming growth factor b and indoleamine

2,3-dioxygenase.31 Among the cytokines released by the

pDCs, transforming growth factor b triggers FoxP3 and

CD25 expression on TREG cells. Indeed, the key

tolerogenic function of pDCs involves differentiation of

na€ıve CD4+CD25+ T cells into CD4+CD25+FoxP3+ TREG

cells.32 The tolerogenic pDCs express programmed cell

death ligand-1 (PD-L1).33 Interaction between PD-L1 on

pDCs and programmed cell death protein 1 (PD-1)

receptor on TREG cells contributes to differentiation and

maintenance of the function of TREG cells by sustaining

and enhancing FoxP3 expression(Figure 1b).34 Once

mature CD4+CD25+FoxP3+ TREG cells are formed, they

contribute to peripheral tolerance by functionally

suppressing a variety of immune cells, including CD4+

T cells, CD8+ T cells, B cells and natural killer (NK) cells.

TREG cells display high surface expression of IL-2 receptor

(CD25), and this helps TREG cells to “mop up”

extracellular IL-2, thereby suppressing cytokine

signaling.35,36 In fact, the unique presence of high

expression of the IL-2 receptor (CD25) was responsible

for the discovery of TREG cells.37 As the CD4+ T and

CD8+ T cells are sensitive to the effects of IL-2, their

effector function is inhibited by TREG cells by this

mechanism. The suppressive function of

CD4+CD25+FoxP3+ TREG cells is also partially mediated

by negative signals to cDCs through contact via the co-

inhibitory receptor cytotoxic T-lymphocyte–associated
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protein 4 (CTLA-4) of TREG cells.38 CTLA-4 and CD28

share two ligands of cDCs, namely, CD80 and CD86.

TREG-cell CTLA-4 can capture its ligands CD80 and

CD86 from DCs by trans-endocytosis and degrade inside

TREG cells, depriving CD28-mediated costimulation of

effector T cells39 (Figure 1b). The capture of CD80 and

CD86 by the CTLA-4 of TREG cells ensures complete

anergy of the self-reactive effector T cells. Many studies

have reported that impaired CD4+CD25+FOXP3+

TREG-cell function has a causative role in T1D.40–44

For successful virus infection of the pancreatic insulin-

secreting islet b cells, virus entry is essential. It was

reported that SARS-CoV-2 infects human pancreatic

b cells in patients as well as islet b cells in vitro.18 The

islet b cells are known to express receptor ACE2 and

transmembrane serine protease 2 (TMPRSS2), albeit at a

lower level, allowing successful virus entry.19 The

SARS-CoV-2 spike protein engages ACE2 as the entry

receptor and employs the cellular serine protease

TMPRSS2 for spike protein priming.45 Indeed, ACE2, as

well as TMPRSS2 expression, was found to be

significantly upregulated in cardiomyocytes from diabetic

cadavers, and by favoring the cellular entry of

SARS-CoV-2, this could render the diabetic population

more susceptible to COVID-19.46 TMPRSS2 facilitates the

entry of viruses, including Middle East respiratory

syndrome coronavirus and SARS-CoV-2, into host cells

by proteolytically cleaving and thus activating the viral

envelope glycoproteins. The bioinformatics analysis

suggests that microRNA miR-98-5p could potentially

repress TMPRSS2 messenger RNA expression,47 but the

miR-98-5p level was downregulated in diabetes.48 Islet

b cells also display most factors implicated in the entry of

SARS-CoV-2, including NRP1, FES upstream region

(FURIN), heparan sulfate, transferrin receptor,

Ras-associated binding 7A (RAB7A), cathepsin L (CTSL),

transmembrane protein 41B and 106B (TMEM41B and

106B).17,18,49–51

ELEVATED TYPE I IFN LEVEL IN
PATIENTS WITH SARS-COV-2: COULD
THIS CONTRIBUTE TO PERIPHERAL
TOLERANCE BREAKDOWN?

Several studies measured type I IFN (IFNa and IFNb)
levels in peripheral blood in patients with COVID-19. A

meta-analysis of the published literature found that levels

of type I IFN in peripheral plasma of mild to moderate

Figure 1. A simplified schematic representation of interactions of dendritic cells (DCs) and T cells. (a) Activated, conventional DCs presenting

self-antigen can prime differentiation of CD8+ autoreactive killer T cells and CD4+ helper T cells (not shown). (b) Tolerogenic plasmacytoid DCs

(pDCs) express different coreceptors and cytokines and can interact with regulatory T (TREG) cells. TREG cells and pDCs use multiple mechanisms to

inhibit the activation of potentially pathogenic effector T cells. The interaction of cytotoxic T-lymphocyte–associated protein 4 (CTLA-4) on TREG
cells with its ligand CD80/86 on pDCs, inhibits T-cell activation. The sequestration of T-cell proliferation factor, interleukin-2 (IL-2) by high

expression of constitutive IL-2 receptor (CD25) on TREG-cell surface also prevents T-cell activation. TREG cells also upregulate the expression of

indoleamine 2,3-dioxygenase, and pDCs secrete anti-inflammatory cytokines, such as IL-10 and transforming growth factor b (TGF-b), which also

block T-cell activation. FoxP3, Forkhead box P3; IDO, indoleamine 2,3-dioxygenase; MHC-II, major histocompatibility complex class II; PD-1,

programmed cell death protein 1; PD-L1, programmed cell death ligand-1; TCR, T-cell receptor.
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cases of COVID-19 were significantly elevated compared

with healthy individuals.52 This is not unexpected because

viral infection is known to induce IFNb expression in

most cell types and IFNa expression in hematopoietic

cells. However, the same study did not find any

significant difference in plasma levels of type I IFN

between mild and severely affected patients.52 Galani

et al.53 observed that proinflammatory cytokines such as

tumor necrosis factor and interleukins IL-6 and IL-8 were

produced in all patients and persistently, but type I IFN

production was both diminished and barely detectable,

induced at a high level only in a fraction of patients as

they became critically ill. Hadjadj et al.54 also reported a

rather low level of type I IFN in patients with COVID-19.

It was also observed that the lower serum levels of type I

IFN at the initial stage in patients with severe COVID-19

were associated with a higher viral load.55,56 A

longitudinal study that measured IFN levels in the

peripheral blood of patients with mild and severe

COVID-19 revealed that type I IFN levels in the

peripheral blood are elevated during the early infection

compared with healthy individuals. However, in mild

infection, type I IFN levels gradually declined during the

course of the infection, whereas in severe COVID-19

infection it remained unchanged.57 These data on low

type I IFN among patients with COVID-19 are in

agreement with those from in vitro and animal studies

suggesting that SARS-CoV-2 is a poor inducer of type I

IFN response.58 However, the prolonged presence of these

IFNs and antiviral cytokines, albeit at a low level, might

cause pleiotropic damaging effects.59

It is well established that pDCs have a major role in

type I IFN secretion following viral infection.60

Investigation of SARS and Middle East respiratory

syndrome coronavirus infections in mouse models61,62

showed that pDCs migrate to the infection site and are

responsible for rapid production of type I IFNs.

Postmortem biopsies of the SARS-CoV-2–infected
pancreatic cells revealed that pDCs had migrated to the

area of infection.63 By in vitro experiment, it was

demonstrated that SARS-CoV-2 enters pDC via NRP1/

BDCA4 and produces high levels of type I IFN.64

Interestingly, pDCs display a significant level of NRP1 on

the surface65 and NRP1 is a known SARS-CoV-2 entry

receptor.17 Although SARS-CoV-2 infects pDCs, it does

not replicate in pDCs and the viral RNA is recognized by

Toll-like receptor-7 (TLR7).64,66 TLR7 is produced in the

endoplasmic reticulum and senses viral RNA in

endosomes after virus entry into host cells.67 The signal

from endosomal RNA binding is relayed to the cytoplasm

by the myeloid differentiation primary response 88

(MyD88) adaptor which forms a complex with interferon

regulatory factor-7 (IRF7) and promotes phosphorylation

of IRF7 by interleukin-1 receptor–associated kinase-1.68

Phosphorylation activates IRF7 and allows its

translocation to the nucleus and triggers the expression of

hundreds of interferon-stimulated genes69 required for

virus clearance. Detection of the virus by pDCs not only

triggers type I IFN production via the TLR7–MyD88–
IRF7 pathway, but the TLR7–MyD88 also activates the

nuclear factor-kappa B pathway and results in the

synthesis of proinflammatory cytokines and

chemokines.70 Large amounts of type I IFNs also induce

proliferation and activation of monocytes and

macrophages, further increasing the level of

proinflammatory cytokines.71

SARS-CoV-2–infected pancreatic cells could be the

source of type I IFN. Serum levels of type I IFNs, such as

IFNa, are elevated in children at diagnosis of T1D.72

Postmortem biopsies of pancreatic islets obtained from

patients with T1D reveal the presence of cytokines and

type I IFN.73–75 Even in animal models, induction of an

IFNa response was demonstrated to accelerate T1D

development.76 SARS-CoV-2 has an RNA genome and

the viral RNA could be detected by the cytosolic sensors

of the islet b cells. Viral RNA could be recognized by

TLR7 receptors and recent data with SARS-CoV-2

infection also demonstrated the involvement of the

TLR7–MyD88–IRF7 pathway.66 Thus, SARS-CoV-2

infection of b cells could result in the initial production

of type I IFNs and subsequently, a positive feedback loop

would be established by the cell surface expression of IFN

receptor. IFN binding to the receptor initiates a signaling

pathway leading to the expression of IRF7. The newly

synthesized IRF7, in turn, leads to the further induction

of hundreds of interferon-stimulated genes. Interferon-

stimulated genes have diverse functions, ranging from

direct inhibition of viral replication to the recruitment

and activation of various immune cells.77 The products of

these interferon-stimulated genes collectively establish the

antiviral state at the site of viral infection and eventually

result in virus clearance.78 However, a higher level of type

I IFN has a trade-off: type I IFN is linked with multiple

autoimmune syndromes.79 It remains to be seen whether

type I IFN secretion by SARS-CoV-2–stimulated pDCs

can cause substantial disruption in immune tolerance and

thereby play a role in the development of T1D.

HIGHER LEVEL OF ANTIVIRAL
CYTOKINES IN PATIENTS WITH
SARS-COV-2: COULD THIS ACTIVATE
CDCS AND CAUSE BREAKDOWN
OF IMMUNE TOLERANCE?

Studies in other autoimmune conditions, such as

systemic lupus erythematosus,80 showed that antiviral
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cytokines (IFNa and IFNk) and proinflammatory

cytokines (tumor necrosis factor-a and IL-6) could result

in a disruption of tolerance. It can be hypothesized that

type I IFN produced by pDCs and SARS-CoV-2–infected
b cells might immunogenically activate pancreatic cDCs.

Immunogenic cDCs would capture viral antigens and

islet cell autoantigens more efficiently and enhance CD8+

T-cell activation. The activated CD8+ T cells can directly

destroy SARS-CoV-2–infected b cells and also during the

process, are likely to recognize b cells MHC-I presenting

b-cell–specific antigens, which may potentially increase

the risk of T1D (Figure 2a, i). Activation of CD8+

T lymphocytes can also happen independently of T-cell

receptor signaling by a high level of type I IFN via a

mechanism termed “bystander activation.”81,82 Indeed,

enhanced autoantigen presentation and T-cell activation

are known to be associated with patients with T1D.83,84

As the sustained high level of type I IFN enhances the

susceptibility to autoimmune diseases, it is possible, but

only speculative, that the patients who had long-term

elevated type I IFN response as a result of COVID-19 are

likely to have more predisposition to develop

autoimmune reactions, including T1D.

COULD DIRECT DAMAGE OF ISLET
b CELLS BY SARS-COV-2 INFECTION
PROMOTE DEVELOPMENT OF T1D?

The death of islet b cells as a result of islet-infiltrating T

cells is a common feature of T1D. However, b-cell death
could also be mediated by NK cells, which respond rapidly

and directly kill virus-infected cells by releasing cytotoxic

granules (Figure 2a, ii). Although understanding of the

SARS-CoV-2–specific NK cell response remains poorly

understood, a quantitative proteomics study showed that

SARS-CoV-2 infection provokes limited NK cell

responses.85 However, NK cells can efficiently eliminate

SARS-CoV-2–infected cells by antibody-dependent cellular

cytotoxicity in the presence of anti-SARS-CoV-2 antibodies

in the serum86 (Figure 2a, ii). Some viruses, such as

Coxsackieviruses, establish a chronic infection in b cells.

Even when a small percentage of islet b cells are infected,

Figure 2. Putative mechanisms affecting the pancreatic b-cell function following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

infection that might lead to new-onset type 1 diabetes. (a) Loss of b cells by SARS-CoV-2 infection. (i) Bystander activation of CD8+ T cells. An

elevated level of type I interferon (IFN) as a result of infection of plasmacytoid dendritic cells (pDCs) by SARS-CoV-2 leads to inactivation of

regulatory T cells and b-cell cytolysis (ii) When b cells are infected with SARS-CoV-2, they are prone to attack by innate immune cells, including

natural killer (NK) cells. (iii) Direct infection of b cells by SARS-CoV-2 is mostly cytopathic, eliciting multiple cellular stress responses and diminished

expression of insulin. (b) Endogenous pathways of b-cell regeneration; (i) neogenesis through differentiation from stem cells or progenitor cells and

(ii) replication of existing pancreatic b cells. (c) The balance between the extent of loss of b-cell mass as a result of SARS-CoV-2 infection and the

islet regeneration potential of the patient is likely to determine the outcome, including new-onset type 1 diabetes. Tc, cytotoxic T cell.
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type I IFN, such as IFNa, triggers overexpression of the

MHC-I protein in infected and noninfected cells. The high

level of MHC-I molecules contributes to the unabated

presentation of b-cell epitopes to the immune system

causing an autoimmune response.87 Ex vivo experiments

detected the SARS-CoV-2 nucleocapsid protein and spike

protein in b cells following infection.18 Nucleocapsid

protein and viral RNA were detected in the autopsy

samples of patients with COVID-19.20 Another study with

autopsy samples revealed that SARS-CoV-2 infection was

present in most of the pancreatic cells, indicating a

systemic infection rather than exclusively b-cell–specific
tropism. Further immunohistopathological analysis

revealed that a small fraction of pancreatic islet b cells

underwent virally induced necroptosis.88 Two recently

published studies showed that direct SARS-CoV-2

infection results in b-cell apoptosis,18 morphological and

functional changes in b cells affecting their insulin-

secretion19 and b-cell trans-differentiation.20 Experimental

evidence from the delivery of a synthetic double-stranded

RNA consisting of poly-inosine-cytidine (poly I:C), which

mimics an intermediary stage of viral replication, into

b cells affected their function89 and possibly induced

dedifferentiation. These different outcomes of b-cell fate

are not mutually exclusive and eventually may cause

reduced b-cell mass. All of these mechanisms, including

destruction by activated CD8+ T cells, are likely to cause

transient loss of b cells and are likely to be replenished by

regeneration. Contrastingly, b-cell infection by SARS-CoV-2

could also be noncytopathic, characterized by a modest

inflammatory response restricted to infected cell

subsets.21 Importantly, the loss of regulatory “hub cells”90

or “leader cells”91 may be particularly consequential for

overall islet function. This apparent contradiction could

arise from the copy number of viral particles used for

in vitro infection. Indeed, the presence of excess

SARS-CoV-2 (high multiplicity of infection) in ex vivo

experiments promotes interactions via pathogen-

associated molecular patterns that may lead to enhanced

IFN responses and b-cell death.92 Therefore, direct loss of
b cells by SARS-CoV-2 infection notwithstanding, a

noncytopathic infection could also contribute to b-cell
destruction by activating the autoimmune response

(Figure 2a, iii). One of the mechanisms of type-I IFNs in

autoimmune diseases is directly inducing TREG-cell

apoptosis.93,94 Sadeghi et al.95 reported a significant

decline in TREG-cell number in intensive care unit

patients with COVID-19 when compared with healthy

controls. They also observed a decrease in FoxP3

messenger RNA expression levels in patients. Using

single-cell RNA-seq analysis Kalfaoglu et al.96 observed

that FoxP3 expression was remarkedly reduced in patients

with severe COVID-19, although CD25 expression was

higher in T cells. Loss of FoxP3 expression in TREG cells

can occur as a result of strong T-cell receptor interaction

with autoantigens and proinflammatory cytokines.97 Type

I IFNs are also known to limit both TREG-cell number

and function in cancer microenvironments.98–100

Given the protective nature of TREG cells in blocking

hyperactivation of the immune system in patients with

severe COVID-19, the depletion of TREG cells as a result

of virus infection could be responsible for increased

mortality. Mice lacking TREG cells also showed increased

mortality when infected with murine coronavirus.101 It

should also be noted that obesity is one of the factors

that decrease TREG-cell number in circulation.102

The most compelling evidence that SARS-CoV-2

infection may indeed significantly lower SARS-CoV-2–
reactive TREG cells in hospitalized patients with COVID-19

compared with nonhospitalized patients came from

comprehensive single-cell analysis of viral antigen–reactive
CD4+ T cells from patients with COVID-19.103

Contrastingly, there are reports suggesting that increased

TREG-cell numbers and a higher level of FoxP3 expression

are correlated with COVID-19 severity.104,105 Biasi et al.106

showed that SARS-CoV-2 infection resulted in higher

proportions, but not absolute numbers, of TREG cells.

Although it is still not resolved whether there were changes

in the absolute and relative numbers of TREG cells in the

circulation in patients with COVID-19, it could be

speculated that in the early stage of infection, an increased

number of activated TREG cells may reduce antiviral defense

by inhibiting the immune responses against SARS-CoV-2.

By contrast, a reduction in the number of TREG cells in

severe cases or later stages of the disease may contribute to

the excessive production of proinflammatory cytokines that

lead to acute respiratory distress syndrome.107 If there is

indeed diminished function of TREG cells in patients with

severe COVID-19, this might lead to further breakdown of

immune tolerance.108,109 With limited epidemiological data

available to support this now, it would be difficult to

predict whether the compromised immune tolerance will

translate into an increase in the T1D burden in the general

population. As the function of TREG cells is known to be

impaired in patients with T1D,110 the likelihood of

developing T1D among patients with COVID-19 with

prolonged illness, associated with elevated levels of type I

IFN, cannot be ruled out.

VARIED ETIOLOGY OF T1D AND
CLINICAL EVIDENCE IN PATIENTS WITH
COVID-19

As T1D represents the outcome of a constant battle

between autoimmune destruction of b cells and self-

renewal of b-cell mass (Figure 2b, i–ii), the kinetics of
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both events are crucial (Figure 2c).111 Evidence of

dysfunctional b cells accumulating and secreting

proinsulin was reported in many cases of T1D,112–114

where significant b-cell mass was retained at disease

onset. Similarly, many reports support the possibilities of

a residual population of b-cell mass, islet regeneration

and complete recovery from T1D.115–118 A fundamental

understanding that emerged from decades of studies on

T1D is that there is an extreme level of heterogeneity

between individual patients. The heterogeneity lies in

residual b-cell mass at disease onset,119–122 the severity of

presentation unmatched to mass121,123 and in the

distribution of insulitis profile.25,121,124 Richardson and

colleagues125 found differential insulitic profiles and

extent of b-cell destruction based on age at the onset of

T1D before age 7 or after teenage years, where the latter

retained nearly 40% of the b-cell mass.

Development and progression of autoimmune (type

1A) diabetes, as best understood from the “Eisenbarth

model,”126 follow a series of distinct stages that most

often starts with genetic predisposition. A critical

pathophysiological event usually triggers the production

of one or more islet antibodies in the susceptible

individual, which eventually may (or may not) lead to

the onset of autoimmunity, progressive loss of b cells and

insulin secretion, and overt diabetes. Some of the best

characterized autoantigens known in T1D are glutamic

acid decarboxylase (GAD65), tyrosine phosphatase (IA-2),

insulin and ZnT8127 and in clinical settings, the presence

of two or more autoantibodies has proven to be highly

predictive of subsequent development of type I diabetes

among relatives.128,129 Severe diabetic ketoacidosis has

frequently been reported in severely ill patients with

COVID-19 at hospital admission.130,131 Transient drug-

induced or glucocorticoid-induced hyperglycemia during

treatment of COVID-19 usually resolves within

3–6 months.132,133 Sudden loss of b-cell mass or function

can trigger insulin-dependent T1D but without

autoimmune etiology.134 The possibility of post-COVID-19

new-onset autoimmune T1D without genetic

susceptibility seemed rather rare from the low number of

reported cases. In one study, a 17-year-old male patient

who had persistent fever and cough for 4 weeks and

pneumonia, SARS-CoV-2 reverse transcriptase-PCR–
positive infection, acute pancreatitis, HbA1c (glycated

hemoglobin) of 14.7% and severe diabetic ketoacidosis at

hospital admission was later diagnosed with new-onset

autoimmune T1D.135 In another case, an 8-year-old boy

with an asymptomatic course of SARS-CoV-2 infection of

unknown duration presented with symptoms of new-

onset T1D and autoantibodies against GAD65, IA-2 and

insulin. This patient’s laboratory findings, however,

showed genetic susceptibility because of the presence of

high-risk loci for autoimmune diseases, and additionally,

his high HbA1c value (11.6%) led to the authors

speculating that his diabetes manifestation was already

“on the way,” only to be accelerated by COVID-19.136

Another study reported severe hyperglycemia in two male

patients who were diagnosed with autoimmune type 1

diabetes mellitus within 3 months following COVID-19

infection. These patients were positive for autoantibodies

and had reduced C-peptide, which are indicative of

autoimmune insulitis and b-cell destruction.137 Although

the underlying mechanisms, pathogenesis and incidence

remain unclear at present, these pieces of evidence

suggest possibilities of autoimmune insulitis and

pancreatic beta-cell destruction triggered by COVID-19.

Type 1A diabetes often coexists in patients with other

organ-specific autoimmune diseases such as autoimmune

thyroid disease.127 SARS-CoV-2 infection was reported to

trigger multiple endocrine dysfunctions apart from

hyperglycemia,138,139 including hypopituitarism, thyroid

abnormalities, adrenal insufficiency and male

hypogonadism. Thyroid dysfunction was diagnosed in

several patients with COVID-19 who were biochemically

euthyroid earlier and a majority had euthyroid sick

syndrome and atypical thyroiditis.140,141 In one particular

study with 204 patients,142 it was observed that thyroid

function abnormality resolves at a median of 89 days

(81.4%), and persistence was rare (1.9%). Interestingly,

the authors observed autoimmune antithyroid peroxidase

positivity in 5.5% of the patients who were antithyroid

peroxidase antibody negative at presentation.142 The

appearance of autoantibodies hints at the breakdown of

immune tolerance following SARS-CoV-2 infection.

Considering the existing epidemiological evidence, a

systematic review and meta-analysis of 26 qualified

articles showed a clear increase in new-onset T1D,

diabetic ketoacidosis and severe diabetic ketoacidosis in

the pediatric group during the first year of the COVID-

19 pandemic by 9.5%, 25% and 19.5%, respectively,

when compared with the prevalence before pandemic.143

Another separate hospital-based study noted an excessive

increase in the incidence of T1D between October 2020

and April 2021 when compared with the same period

during the previous 5 years. The authors also noted a

significantly higher (5.6 times) incidence of COVID-19 in

the T1D group compared with the general pediatric

population in the region and proposed a plausible

causative role of SARS-CoV-2 in triggering the immune

response underlying T1D pathology.144 COVID-19 was

equally prevalent across all pediatric age groups, but

children, in general, had a milder course of the disease

when compared with adults.145,146 Fewer children became

seriously ill after SARS-CoV-2 infection and needed

admission to the pediatric intensive care unit, although a
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fraction of them developed a multisystem inflammatory

syndrome associated with COVID-19 (MIS-C). A

multicentric study reported that patients with MIS-C

were older than those without MIS-C (P = 0.002):

9.4 years of age (interquartile range 5.5–11.8) versus

3.4 years of age (interquartile range 0.4–9.4) in their

study population.147 In another study,148 younger

children (≤ 4 years of age) needed longer time for their

lung lesions to disappear compared with 5–14-year-old
children when followed up after hospital discharge. The

MIS-C in the pediatric group, which usually presented

about 4–6 weeks after infection with high fever, organ

dysfunction and high inflammation, seemed to have a

profile that is different from cytokine storm (discussed

earlier). MIS-C shared features of Kawasaki disease and,

although the pathogenesis of MIS-C remains unknown, a

likely autoimmune etiology was suggested because of the

presence of several autoantibodies.149

Evidence from across the spectrum of human diseases

supports the view that SARS-CoV-2 infection can

accelerate the progression of, or exacerbate, an already set

disease. For example, one population that was found to

be at a higher risk of a poor prognosis was patients with

hypertension who were undergoing drug therapy with an

ACE inhibitor and/or angiotensin receptor blockers.

These data from southern Italy indicated that the patients

were at a higher risk of contracting a serious COVID-19

infection.150 During the pandemic, it became clear that

hyperglycemia was a risk factor for worse prognosis in

patients with COVID-19.150–152 Patients with

hyperglycemia with moderate-to-severe COVID-19

showed very little response to tocilizumab, which is

known to suppress cytokine release by targeting IL-6

receptors.153 Poor glycemic control was also found to

reduce the efficacy of vaccination.154 In addition, SARS-

CoV-2 infection, including asymptomatic infection, could

cause endothelium dysfunction and result in myocardial

infarction, pericarditis, myocarditis and heart failure.155

Thus, patients with adverse cardiovascular events could

also be included as populations that are at higher risk.

In summary, although the risk of direct virally induced

islet b-cell damage among patients with COVID-19

appears to be less, more research is needed to clarify

long-term trends in new-onset T1D at a population level

among patients with COVID-19. If hyperactivated or

sustained for a very long period, a type I IFN response

can also lead to a breakdown of immune tolerance and

the development of autoimmune diseases, including T1D.

However, with limited epidemiological data presently

available, it is difficult to suggest whether noncytopathic

infection and an autoimmune response would, and if so,

to what extent, contribute to an increase in the T1D

burden. As autoantibodies were not monitored rigorously

as part of routine laboratory investigations in patients

with COVID-19, it is also difficult to say whether

COVID-19 is a risk factor for new-onset autoimmunity.

It may be worth considering the benefits of periodically

screening for seroconversion of islet autoantibodies in

recovered high-risk group patients, as it may help in the

prognosis and management of their condition.

CONCLUSIONS

COVID-19 caused by SARS-CoV-2 was declared a

pandemic by the World Health Organization in 2020.

Since then, it devastated public health worldwide.

COVID-19 is known to cause multiple organ damage as

well as metabolic abnormalities. This review aimed to

discuss published literature to ascertain whether SARS-

CoV-2 infection of pancreatic b cells can promote new-

onset T1D associated with impaired pancreatic b-cell
function. Based on the available scientific evidence, we

can conclude that SARS-CoV-2 infection damages

pancreatic b cells. Whether this would cause sufficient

cell/tissue damage to induce T1D would depend on the

extent of b-cell loss compared with the regeneration

potential of endogenous b-cell mass. At present, the

epidemiological data do not identify a clear increase in

T1D incidence worldwide since the beginning of the

pandemic. Whether such a change will be observed over

time remains to be determined but, as suggested here,

would seem worthy of close monitoring.
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