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A B S T R A C T

Numerical simulation of flow past a circular cylinder across the ‘‘drag-crisis’’ region is extremely challenging
for turbulence models because the boundary layer undergoes laminar–turbulent transition and variable-locus
separation. We investigate the SA-DDES hybrid model along with two variants, namely, SA-kLES and SA-ILES,
based on Spalart–Allmaras (SA) model, and include for comparison the SA-BCM transition and the SA-URANS
models, for 𝑅𝑒 ranging from 50,000 to 5 million, using an in-house unstructured grid solver. All hybrid
RANS-LES models produced clearly turbulent-like behavior, as evident from the Q-criterion, while the URANS
models did not. A decline in the drag coefficient is noticed in all the turbulence models, but not the sharp
decrease observed experimentally, with one exception: the SA-BCM transition model, which predicted the drag
coefficients much closer to the experiments. The hybrid RANS-LES models outperformed the URANS SA-BCM
model only in the fully turbulent trans-critical region and better represent the physics in the wake region for all
Reynolds numbers studied. All the hybrid RANS-LES models produced similar results, suggesting comparatively
equal performance in predicting separated flows. We believe that the performance of a hybrid model for mid-
range Reynolds numbers will be greatly enhanced if the model is equipped to handle the laminar–turbulent
transition.
1. Introduction

Determining the appropriate flow characteristics around bluff bod-
ies plays a crucial role in determining forces on the body. This has
various applications in many fields, including ocean and marine en-
gineering. A typical example of a bluff body is a circular cylinder.
Numerically capturing the flow physics past a circular cylinder with
a smooth surface has been a challenging test case due to the fact that
the flow separation is not fixed by the geometry of the object. In a
square cylinder, the 90-degree bend at the corner of the square fixes the
separation point. In contrast, in a circular cylinder, due to the smooth
curvature of the object, the separation is determined by the nature of
the boundary layer.

Depending on the Reynolds number, Roshko (1954) classified the
flow regimes into four categories: (a) sub-critical (𝑅𝑒 < 2 × 105), (b)
critical (2 × 105 < 𝑅𝑒 < 5 × 105), (c) super-critical (5 × 105 < 𝑅𝑒 <
5×106), and (d) trans-critical (𝑅𝑒 ≥ 5 × 106). In the sub-critical regime,
the contribution of the shear stresses to the overall drag is lower in
comparison to the pressure (or form) drag as the flow separates at
around 80 degrees (measured from the front stagnation point of the
cylinder), preventing pressure recovery in the wake side. However, in
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the critical regime, the boundary layer transitions to a fully turbulent
one, thereby delaying the flow separation to around 120 degrees and
thus reducing the pressure drag on the cylinder significantly. This
phenomenon is known as the ‘‘drag crisis’’.

Many researchers have experimentally studied the drag-crisis phe-
nomenon. Williamson (1996) summarized the flow instabilities ac-
cording to different flow regimes. Skin-friction distribution and local
pressure coefficients for a wide range of sub- and super-critical 𝑅𝑒
were measured by Achenbach (1968). Schewe (1983) studied the force
fluctuations on a cylinder for sub- and trans-critical Reynolds num-
bers. Shih et al. (1993) measured the drag coefficient and Strouhal
number up to 𝑅𝑒 = 8 × 106. The region between sub- and super-critical
regions was studied by Bearman (1969) and Farell and Blessmann
(1983). The influence of inlet turbulence on the drag crisis was stud-
ied by Pfeil and Orth (1990). Cantwell and Coles (1983) extensively
measured various quantities like Reynolds stresses and time-averaged
velocities in the wake region. Wieselsberger (1922) studied the flow
past the cylinder for sub-critical Reynolds numbers. Vortex shedding
past a circular cylinder for 1.5 × 105 < 𝑅𝑒 < 5 × 105 was investigated
by Desai et al. (2020). For 𝑅𝑒 = 1.4 × 105, Particle Image Velocimetry
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(PIV), stereoscopic PIV, and time-resolved PIV experiments were con-
ducted by Perrin et al. (2007, 2008) to compare the mean and phase
averaged values of turbulent quantities in the cylinder wake to the
numerical results obtained from DES.

In previous numerical studies, flow past a circular cylinder was
solved using techniques like Unsteady Reynolds-Averaged Navier–
Stokes (URANS), Large Eddy Simulation (LES), and hybrid RANS-LES
methods. URANS results did not predict the drag crisis, possibly due
to their inability to predict the boundary layer transition (Vaz et al.,
2007; Ye and Wan, 2017). Travin et al. (2000) performed simulations
using a hybrid RANS-LES technique called Detached Eddy Simulation
(DES) by assuming laminar separation (LS, which assumes a laminar
inlet flow) for 𝑅𝑒 = 5 × 104 and 𝑅𝑒 = 1.4 × 105 and turbulent
eparation (TS, assuming a turbulent inlet) for 𝑅𝑒 = 1.4 × 105 and
𝑒 = 3 × 106. The drag coefficient and pressure coefficient of 𝑅𝑒 =

1.4×105 using LS gave a better match in comparison to the experimental
data, while TS largely under-predicted it. Significant disparities in the
skin friction distribution were reported for 𝑅𝑒 = 3 × 106. There are
tudies performed using hybrid RANS-LES simulations (Moussaed et al.,
014; Lakshmipathy and Girimaji, 2010; Pereira et al., 2018). For
nstance, Lakshmipathy and Girimaji (2010) simulated Partially Aver-
ged Navier–Stokes (PANS) method for flow past a cylinder at 𝑅𝑒 =

1.4×105; Pereira et al. (2018) simulated PANS for 𝑅𝑒 = 3900; Moussaed
t al. (2014) combined the RANS model with variational multiscale
ES and studied the problem for 𝑅𝑒 = 1.4 × 105 and 1.25 × 106. There

were also several LES studies of the problem. Breuer (2000) performed
a detailed numerical investigation on the influence of the sub-grid
scale (SGS) model and grid refinement on the quality of predicted
results. One of his key findings is that the grid refinement did not
necessarily provide a better match with the experiments. Another LES
study by Catalano et al. (2003) for 𝑅𝑒 = 5 × 105 and 106 showed
ncouraging results in predicting the local pressure coefficient. How-
ver, the computed skin-friction distribution had discrepancies similar
o that of Travin et al. (2000). Two-dimensional simulations with no
GS model were performed by Singh and Mittal (2005). Although the
rend in the drag crisis near the trans-critical regime is captured, the
rag coefficients are highly over-predicted in the sub- and super-critical
egimes. Recently, Rodríguez et al. (2015) performed LES simulation
sing the WALE model for 2.5 × 105 < 𝑅𝑒 < 8.5 × 105 and captured
he drag coefficient of the critical region satisfactorily. However, the
erformance of the WALE model in sub- and super-critical regimes
s yet to be published. Kim (2006) simulated cylinder flow with LES
or sub-critical 𝑅𝑒 = 3000, 3900, 5000 and 1.4 × 105. Lee and Yang
2017) also performed LES but only for 𝑅𝑒 = 6.31 × 104, 1.26 × 105, and
2.52×105. Yeon et al. (2016) studied a wide range of Reynolds numbers
from sub-critical to super-critical Reynolds numbers, with results over-
predicting the drag coefficients in the high end of the sub-critical
regime. Lloyd and James (2016) also performed a similar study where
they also reported a drop in the drag coefficient in the critical region.
A comprehensive picture of the drag crisis obtained from experiments
and LES numerical studies (single data point studies are omitted here)
is shown in Fig. 1.

In an LES simulation, the mesh should locally resolve 80% of the
turbulent kinetic energy. This increases the mesh requirement enor-
mously when compared to a RANS simulation. Choi A N and Moin
(2011) estimated that the number of grid points in wall-resolved LES
is one to three orders of magnitude greater than that in wall-modeled
LES in the near-wall regions. This is evident from the simulations
of Rodríguez et al. (2015) and Yeon et al. (2016): the control volumes
in their meshes went as high as 100 million in the high sub-critical
regime. The other LES simulations (Lee and Yang, 2017; Lloyd and
James, 2016) also used meshes having 5–10 million elements for sub-
critical Reynolds numbers. The mesh size can be reduced drastically
by performing a hybrid RANS-LES simulation. For instance, Travin
et al. (2000) used a mesh having only half a million cells; Vaz et al.
2

(2007) and Moussaed et al. (2014) used meshes having 1.2 million
cells. This has motivated the present authors to perform hybrid RANS-
LES simulations with meshes having 0.5–1 million cells while resolving
80% turbulent kinetic energy only in the wake region where the LES
is used by the hybrid method. The use of unstructured meshes has
aided in refining the grid in the areas of interest, thereby increasing
the numerical accuracy of the scheme at a lower computational cost.
We will also present a detailed study on the effect of grid refinement
and hybrid models on finer grids.

There are many numerical studies that are constrained to a particu-
lar regime of the cylinder flow and a particular technique. The objective
of this study is to investigate the performance of various turbulence
models, namely, Spalart–Allmaras (SA)-URANS (Spalart and Allmaras,
1994; Eça et al., 2007) and three hybrid RANS-LES turbulence models
(SA-DDES, SA-kLES and SA-ILES methods) for a wide range of Reynolds
numbers ranging from 5 × 104 to 5 × 106. This study was undertaken to
tudy the current capabilities of hybrid RANS-LES turbulence models
n accurately simulating flows with strong separation features. We
lso simulate using the SA-BCM transition model (Çakmakçıoğlu et al.,
020) in comparison to other hybrid models to study the role of
ransition in the drag crisis. All the turbulence models mentioned here
re implemented in an in-house solver developed for the purpose of
imulating three-dimensional (3D) compressible flows in an unstruc-
ured mesh environment (Athkuri and Eswaran, 2020; Assam et al.,
018).

This paper is organized as follows: in Section 2, we describe the
overning equations underlying compressible flows and the SA, SA-
DES, SA-kLES, SA-ILES, SA-BCM turbulence models. In Section 3, we
iscuss the case setup and the numerical settings used. In Section 4, we
how the grid sensitivity study for the hybrid models. In Section 5, we
iscuss the effect of hybrid models on finer grids. Results of the drag
risis are presented in Section 6, with concluding remarks in Section 7.

. Governing equations

The compressible form of Navier–Stokes (NS) equations is solved for
imulating the flow past a circular cylinder. The vector integral form of
he NS equations for an arbitrary control volume 𝛺 enclosed by surface
𝛺 can be written as (Blazek, 2015):
𝜕
𝜕𝑡 ∫𝛺

𝐖𝑑𝛺 + ∮𝑑𝛺
(𝐅𝐜 − 𝐅𝐯)𝑑𝑆 = 0, (1)

here 𝐖, 𝐅𝐜 and 𝐅𝐯 represent the vectors of conservative variables,
onvective fluxes, and viscous fluxes, respectively, given as:
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(2)

In Eq. (2), 𝜌 is the density of the fluid; 𝑢, 𝑣, and 𝑤 are 𝑥, 𝑦, and 𝑧
components of velocity respectively; 𝐸 and 𝐻 are the total energy and
total enthalpy of the fluid per unit mass and 𝑝 is the pressure. Further,
𝑉 is the contravariant velocity (𝑛𝑥𝑢 + 𝑛𝑦𝑣 + 𝑛𝑧𝑤); 𝑛𝑥, 𝑛𝑦, and 𝑛𝑧 are the
𝑥, 𝑦, and 𝑧 components of the outward unit normal of the cell’s face.
The symbols 𝛩𝑥, 𝛩𝑦 and 𝛩𝑧 are given by,

𝛩𝑥 = 𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 +𝑤𝜏𝑥𝑧 + �̂� 𝜕𝑇
𝜕𝑥

,

𝛩𝑦 = 𝑢𝜏𝑦𝑥 + 𝑣𝜏𝑦𝑦 +𝑤𝜏𝑦𝑧 + �̂� 𝜕𝑇
𝜕𝑦

,

𝛩𝑧 = 𝑢𝜏𝑧𝑥 + 𝑣𝜏𝑧𝑦 +𝑤𝜏𝑧𝑧 + �̂� 𝜕𝑇
𝜕𝑧

,

(3)

where 𝜏𝑖𝑗 is the stress tensor and �̂� is the thermal conductivity of the
fluid. In a turbulent simulation, except for density and pressure which

are taken as Reynolds averaged quantities, all other flow variables in
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Fig. 1. Comprehensive summary of experimental (filled symbols) and numerical (LES) results in the drag-crisis problem.
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Eqs. (1), (2) and (3) are Favre-averaged quantities. In Eq. (3), the stress
tensor 𝜏𝑖𝑗 is given by:

𝜏𝑖𝑗 = 𝜇
(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)

− 2
3
𝜇𝛿𝑖𝑗

(

𝜕𝑢𝑘
𝜕𝑥𝑘

)

. (4)

Assuming the Boussinesq approximation for turbulent flow, 𝜇 and �̂� are
iven by:

= 𝜇𝐿 + 𝜇𝑇 , (5)

�̂� = �̂�𝐿 + �̂�𝑇 = 𝑐𝑝

(

𝜇𝐿
𝑃𝑟𝐿

+
𝜇𝑇
𝑃𝑟𝑇

)

, (6)

where 𝜇𝐿 and 𝜇𝑇 are laminar and turbulent dynamic viscosities wherein
the latter depends on the choice of turbulence model; 𝑐𝑝 is the specific
heat coefficient at constant pressure, 𝑃𝑟𝐿 is the laminar Prandtl number
(0.72 for air), and 𝑃𝑟𝑇 is the turbulent Prandtl number (here taken as
0.9). The laminar dynamic viscosity is given by the Sutherland formula,

𝜇𝐿 = 𝜇0

(

𝑇
𝑇0

)1.5 (𝑇0 + 𝑆
𝑇 + 𝑆

)

, (7)

where 𝜇0 is taken as 1.716 × 10−5 kg/ms, 𝑇0 is 273.11 K, and 𝑆 is
110.33 K.

2.1. Unsteady Reynolds Averaged Navier–Stokes (URANS) models

In this section, we briefly describe the URANS models employed in
the study to investigate the drag crisis problem. The Spalart–Allmaras
one-equation turbulence model and its transitional counterpart are
described in this section.

2.1.1. Spalart–Allmaras model
We use the Spalart Allmaras-noft2 model (Spalart and Allmaras,

1994; Eça et al., 2007) as the base model in this study. We set 𝑓𝑡2 as 0
in the original SA model to arrive at the SA-noft2 model (from here on,
3

SA-noft2 model is referred to as the SA model). The transport equation
for the eddy viscosity variable (�̃�) reads as:

𝜕(𝜌�̃�)
𝜕𝑡

+ 𝜕
𝜕𝑥𝑗

(𝜌�̃�𝑢𝑗 ) = 𝑃�̃� +
1
𝜎

{

𝜕
𝜕𝑥𝑗

[

(𝜇𝐿 + 𝜌�̃�) 𝜕�̃�
𝜕𝑥𝑗

]

+ 𝐶𝑏2𝜌
𝜕�̃�
𝜕𝑥𝑗

𝜕�̃�
𝜕𝑥𝑗

}

− 𝐶𝑤1𝑓𝑤𝜌
( �̃�
𝑑

)2
. (8)

The terms on the right side of Eq. (8) correspond to the production (𝑃�̃�),
diffusion, and destruction, respectively. Further, 𝑑 is the distance from
the cell center to the nearest wall. The production term 𝑃�̃� is:

𝑃�̃� = 𝐶𝑏1�̃�𝜌�̃�. (9)

Now, the turbulent viscosity (𝜇𝑆𝐴
𝑇 ) is calculated as:

𝜇𝑆𝐴
𝑇 = 𝜌�̃�𝑓𝑣1; 𝑓𝑣1 =

𝜒3

𝜒3 + 𝐶3
𝑣1

; 𝜒 = �̃�
𝜈𝐿

. (10)

The term �̃� in Eq. (9) is given as:

̃ = 𝛺 + �̃�
𝜅2𝑑2

𝑓𝑣2; 𝑓𝑣2 = 1 −
(

𝜒
1 + 𝜒𝑓𝑣1

)

, (11)

where 𝛺 is the mean rotation rate magnitude (note that here, 𝛺 is not
the control volume) which is given by 𝛺 =

√

2𝛺𝑖𝑗𝛺𝑖𝑗 , where 𝛺𝑖𝑗 is the
otation rate tensor. Further, 𝑓𝑤 in Eq. (8) is given as:

𝑤 = 𝑔

(

1 + 𝐶6
𝑤3

𝑔6 + 𝐶6
𝑤3

)
1
6

; 𝑔 = 𝑟 + 𝐶𝑤2(𝑟6 − 𝑟); 𝑟 = �̃�
�̃�𝜅2𝑑2

. (12)

The standard model constants are listed below.

𝐶𝑏1 = 0.1355 𝐶𝑏2 = 0.622 𝐶𝑣1 = 7.1 𝜅 = 0.41

𝜎 = 2
3

𝐶𝑤1 =
𝐶𝑏1

𝜅2
+

1 + 𝐶𝑏2
𝜎

𝐶𝑤2 = 0.3 𝐶𝑤3 = 2

The validation of the SA model implementation in the solver can be
found in the works of Assam et al. (2018) and Joshi et al. (2019).
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Table 1
Experimental and numerical conditions for the zero pressure gradient natural transition
flat plate.

Case Ma 𝑅𝑒𝐿 𝜈𝑖𝑛𝑖𝑡𝑇 𝑇 𝑢∞(%)

Schubauer and Klebanoff (1955) 0.14 3.4 × 106 0.02 0.18
T3A (Savill, 1993) – 3.7 × 105 0.02 3
T3B (Savill, 1993) – 6.3 × 105 0.02 6

2.1.2. Spalart–Allmaras BCM transitional model
The SA-based transition model activates the production term (𝑃�̃�) by

checking for the onset transition location. This is achieved by compar-
ing the locally computed momentum thickness Reynolds number (𝑅𝑒𝜃)
with the experimental critical momentum thickness Reynolds number
(𝑅𝑒𝜃𝑐 ). An intermittency function (𝛾𝐵𝐶 ) is introduced for this purpose.
The production term in Eq. (9) is modified to

𝑃 𝑆𝐴𝐵𝐶𝑀
�̃� = 𝛾𝐵𝐶𝐶𝑏1�̃�𝜌�̃�, (13)

where 𝛾𝐵𝐶 is the intermittency function.
The previous version of SA-BC (Spalart–Allmaras Bas–Cakmakcioglu)

transitional model is not Galilean invariant (Cakmakcioglu et al., 2018).
However, the intermittency function (𝛾𝐵𝐶 ) was corrected to make it
Galilean invariant to obtain the SA-BCM model (Çakmakçıoğlu et al.,
2020), and we present the corrected form:

𝛾𝐵𝐶 = 1 − exp
(

−
√

𝑇 𝑒𝑟𝑚1 −
√

𝑇 𝑒𝑟𝑚2

)

, (14)

here 𝑇 𝑒𝑟𝑚1 and 𝑇 𝑒𝑟𝑚2 are:

𝑒𝑟𝑚1 =
max(𝑅𝑒𝜃 − 𝑅𝑒𝜃𝑐 , 0.0)

𝜒1𝑅𝑒𝜃𝑐
; 𝑇 𝑒𝑟𝑚2 = max

(

𝜇𝑇
𝜒2𝜇𝐿

, 0.0
)

, (15)

where the momentum thickness Reynolds number (𝑅𝑒𝜃) is given by:

𝑅𝑒𝜃 =
𝑅𝑒𝜈
2.193

; 𝑅𝑒𝜈 =
𝑑2

𝜈𝐿
𝛺. (16)

he critical momentum thickness Reynolds number (𝑅𝑒𝜃𝑐 ) depends on
he free stream turbulence intensity (𝑇 𝑢∞) and is given as:

𝑅𝑒𝜃𝑐 = 803.73(𝑇 𝑢∞ + 0.6067)−1.027. (17)

The constants 𝜒1 and 𝜒2 are 0.002 and 0.02, respectively. In the next
ection, we present the validation of the SA-BCM model in the solver.

.1.3. Validation of SA-BCM model
To validate the implementation of the SA-BCM transition model in

he solver, experiments conducted by Schubauer and Klebanoff (1955)
or zero pressure gradient natural transition flat plate and the experi-
ents of Savill (1993) (T3 A and T3B test cases) for bypass transition

re used. The free-stream conditions for the flat plate are shown in
able 1.

Activation of the intermittency function results in a sudden increase
n the skin-friction coefficient (𝐶𝑓 ) at the transition location. The

model is validated for three free-stream turbulence intensities (𝑇 𝑢∞)
for the flat plate. The skin-friction distribution along the plate for
three cases are shown in Fig. 2. For the purpose of verification, the
results of Çakmakçıoğlu et al. (2020) are also shown. The skin-friction
coefficient matched well with the results of Çakmakçıoğlu et al. (2020)
and with the experiments, thereby verifying and validating the SA-BCM
model employed in the present solver.

In the next section, we introduce three hybrid RANS-LES models
considered in this study.

2.2. Hybrid RANS-LES models

In this section, we describe the hybrid RANS-LES methods employed
in this study to simulate flow past a circular cylinder with a smooth
surface. The base model used in all the hybrid simulations is the
SA (SA-noft2) model. Hence the role of SGS models can be studied
4

systematically. The following hybrid models are investigated. w
2.2.1. SA-DDES model
The Detached Eddy Simulation (DES) technique was first introduced

by Spalart (1997). It is argued that by replacing the wall distance
𝑑 with the cell dimension (𝛥), the production and destruction terms
in Eq. (8) balance each other, resulting in a Smagorinsky-type eddy
viscosity. The Spalart–Allmaras - Delayed Detached Eddy Simulation
(SA-DDES) method was later introduced (Spalart et al., 2006) to make
DES resistant to ambiguous grid spacing and thus shield the turbulent
boundary layer near the wall. The wall distance 𝑑 is modified to 𝑑 as
follows:

𝑑 = 𝑑 − 𝑓𝑑 max
(

0, 𝑑 − 𝐶𝐷𝐸𝑆𝛥
)

, (18)

where 𝛥 is the characteristic cell dimension (computed here as the cube
root of cell volume), while the model constant 𝐶𝐷𝐸𝑆 is 0.65. Further,
𝑓𝑑 is given by:

𝑓𝑑 = 1 − tanh
(

[

8𝑟𝑑
]3
)

, (19)

where

𝑟𝑑 =
𝜈𝐿 + 𝜈𝑇

√

𝑈𝑖𝑗𝑈𝑖𝑗𝜅2𝑑2
; 𝑈𝑖𝑗 =

𝜕𝑢𝑖
𝜕𝑥𝑗

, (20)

where 𝜈𝐿 and 𝜈𝑇 are laminar and turbulent kinematic viscosities, with
the latter one being the solution obtained by solving the SA equation.

2.2.2. SA-kLES model
From Kolmogorov’s theory of turbulence, the turbulent energy in

larger scales is cascaded to smaller scales at a constant dissipation rate
(𝜀). By determining the dissipation rate (𝜀) we can devise an SGS model
which has a scaling proportional to 𝛥

4
3 , i.e.,

𝜈𝑆𝐺𝑆 = 𝐶0𝜀
1
3 𝛥

4
3 , (21)

where 𝐶0 is the model constant. This idea has been previously intro-
uced by Wong and Lilly (1994) and has been pursued in the works
f Carati et al. (2002). In their work, the dimensional quantity 𝐶0𝜀

1
3 is

assumed to be insensitive to the grid filter width 𝛥 and is determined
in a dynamic fashion (Germano et al., 1991; Lilly, 1992). Later, De
Langhe et al. (2005a,b) employed a similar expression for determining
SGS eddy viscosity for Very Large Eddy Simulations (VLES) where they
solved for an equation to determine the dissipation rate 𝜀. However,
the previous work used different turbulence models to estimate 𝜀. In
the present study, we estimate 𝜀 through the SA model, which is also
being used for the RANS part of the hybrid RANS-LES formulations
being discussed. However, the SA model does not directly provide the
dissipation rate (𝜀), so we estimate the 𝜀 from the SA turbulent viscosity
(𝜈𝑆𝐴) and the strain rate magnitude (𝑆) by the following expression

𝜀 = 𝜈𝑆𝐴𝑆
2, (22)

where 𝑆 is
√

2𝑆𝑖𝑗𝑆𝑖𝑗 with strain rate tensor (𝑆𝑖𝑗) given by

𝑖𝑗 =
1
2

(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)

. (23)

ence to obtain 𝜀, the SA eddy viscosity equation has to be solved
hroughout the domain, not merely in the RANS-modeled region of
he flow. The constant 𝐶0 in Eq. (21) is taken as 0.068 as per the
ef. Sagaut (2006, p. 114). The SGS eddy viscosity (Eq. (21)) and the
A eddy viscosity (Eq. (10)) are then blended in a linear fashion by the
arameter 𝑓𝑑 in Eq. (19) to obtain the hybrid eddy viscosity as

ℎ𝑦𝑏𝑟𝑖𝑑 = 𝜈𝑆𝐴𝑓𝑑 + (1 − 𝑓𝑑 )𝜈𝑆𝐺𝑆 . (24)

The resulting hybrid eddy viscosity replaces 𝜇𝑇 ∕𝜌 in Eq. (6). We call
his model the SA-kLES model, where the lower-case k serves to remind
hat the LES model uses Kolmogorov scaling and not the more common
magorinsky model. The key difference between the SA-DDES and the
A-kLES formulations is that the length scale in DDES switches from

all distance to 𝛥 and uses a Smagorinsky-type formula, whereas in
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Fig. 2. Validation of SA-BCM model for zero pressure gradient flat plate; 𝜈′ is the inlet viscosity ratio initialized to activate the eddy viscosity in Eq. (8); 𝑇 𝑢 is the inlet turbulence;
The 𝑥-axis is the local Reynolds number 𝑅𝑒𝑥 given by 𝜌𝑈∞𝑥

𝜇𝐿
. For the sake of completeness, the result of SA model is also shown.
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the SA-kLES approach, the eddy viscosity changes from SA viscosity to
SGS viscosity based on Eq. (21). Since the same parameter 𝑓𝑑 (limiting

ANS model to near wall region) is used to blend length scales and
iscosities, with the base model unchanged, the effect of these two
GS models on the results like drag coefficient can be systematically
nvestigated.

.2.3. SA-ILES model
This model is inspired by the Implicit LES (ILES) approach. In an

LES method, no explicit SGS viscosity is added to the NS equations to
apture the sub-grid scale eddies and their kinetic energy. Rather, it
s left to the numerical dissipation to act for the turbulent dissipation
n the flow. A similar line of thought is pursued in SA-ILES hybrid
odel, i.e., we use the SA model near the wall and no model (turbulent

iscosity 𝜈𝑇 is set to 0) in the away regions. This was previously
xplored for the DES97 model (Islam and Thornber, 2016). However,
ere the term 𝑓𝑑 in Eq. (19) is employed for a smooth transition from
A viscosity to laminar viscosity. The term 𝑓𝑑 in Eq. (19) is employed to
imit the SA viscosity to the near wall region. Hence the hybrid SA-ILES
odel eddy viscosity will be:

= 𝜈𝑆𝐴 × (1 − 𝑓 ). (25)
5

ℎ𝑦𝑏 𝑇 𝑑 M
. Computational setup

In this section, we describe the numerical setup followed in the
resent study. We use an in-house solver to simulate the flow past a
ircular cylinder with a smooth surface, which uses an unstructured
inite volume method to solve the compressible NS equations (Nived
t al., 2022). The Spalart–Allmaras (SA) model in the solver has been
xtensively verified and validated from the data available in the NASA
urbulence Modeling Resource website (Resource, 2021) and has been
sed previously in the works of Assam et al. (2018), and Joshi et al.
2019). The following section presents the optimal meshes (different
or each 𝑅𝑒) employed in the drag crisis study. Before the drag crisis
tudy, we performed a detailed grid sensitivity study with grids coarser
nd finer than the grid chosen as optimal. Also, we study the effect of
ybrid models on the finer mesh.

.1. Computational grids for the drag crisis simulations

In an LES simulation, performing a mesh independence study is
mpractical since the SGS eddy viscosity is directly dependent on the
rid cell size 𝛥. However, it is a standard practice that the mesh should
ocally resolve at least up to 80% turbulent kinetic energy (Versión and

enter, 2012). To achieve this, the ratio of the integral length scale
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Table 2
First wall spacing, number of cells in the spanwise direction, and grid sizes of the ‘R’ computational grids for varying Reynolds numbers.

Reynolds number (𝑅𝑒) First wall spacing (×𝐷) No. of cells in 𝑧 (𝑁𝑧) Grid size

5 × 104 3 × 10−4 24 519k
1.4 × 105 1 × 10−4 26 543k
4.15 × 105 4 × 10−5 28 809k
106 1.8 × 10−5 28 853k
5 × 106 4 × 10−6 28 962k
Fig. 3. The precursor SST 𝑘−𝜔 simulation (𝑅𝑒 = 106) to determine 𝐿0∕4.8 in the wake
region.

(𝐿0) to the cell dimension 𝛥 has to be greater than 4.8 as given by Pope
(2001, chapter 6). So we need to ensure that the grid spacing 𝛥 satisfies

𝛥 ⩽
𝐿0
4.8

(26)

where the integral length scale is computed as 𝐿0 =
√

𝑘∕(0.09𝜔) where
𝑘 is the turbulent kinetic energy and 𝜔 is the specific dissipation rate.
In Eq. (26), 𝛥 is computed as the cube root of the cell volume. A pre-
cursor 2D RANS (SST 𝑘 − 𝜔) simulation is performed to determine the
integral length scale. Fig. 3 shows the contours of 𝐿0∕4.8 obtained from
this pre-cursor simulation. The computational grids used for the hybrid
RANS-LES simulations are generated such that the grid 𝛥 ≤ 𝐿0∕4.8 in
the wake region of the cylinder, where the LES model will become
operational in the hybrid calculations. The grid cells there are made
hexahedral with equal sides (see Fig. 4).

The use of unstructured type meshes enables us to refine the grids
locally to ensure Eq. (26) is satisfied. Five different meshes are created
separately for each of the Reynolds numbers (𝑅𝑒 = 5 × 104, 1.4 × 105,
4.15×105, 106, and 5×106) used in this study. For each of these meshes, a
separate 𝑘−𝜔 precursor simulation was used to determine the optimal
𝛥 in the wake. The immediate vicinity of the cylinder’s wake (up to
2 times the diameter of the cylinder) has 𝛥 values even finer than in
the wake region. These five meshes are henceforth referred to as the
‘R’ meshes. In all the meshes, the circumference of the unit diameter
(𝐷 = 1) cylinder has 201 grid points. The near-wall grid spacing is
also decided based on the Reynolds number, and the non-dimensional
distance of the first grid point is shown in Table 2. To create the 3D
grids, the 2D grid on the cylinder is extruded in the third dimension
to two times the diameter of the cylinder. The wake refinement starts
from 2𝐷 to 10𝐷 downstream of the cylinder. The far-field boundary is
situated at 50𝐷 units. The general structure of the R grid is shown in
Fig. 4.
6

The non-dimensional distance (𝑦+) for the least and highest 𝑅𝑒
(50,000 and 5 million) is shown in Fig. 5 and is less than 1.5, as also
is ensured for the other meshes. The cell dimension 𝛥 in the wake
region (extending up to 10𝐷 downstream of the cylinder) is taken as
0.09𝐷 for 𝑅𝑒 = 50,000 and 0.06𝐷 for 𝑅𝑒 = 5 million, compatible
with Eq. (26). The simulations are all three-dimensional, as required
in LES, with the symmetry condition imposed on the boundaries of the
spanwise direction 𝑧. The domain aspect ratio (𝐿𝑧∕𝐷) is chosen to be 2
with 24–28 planes in the spanwise direction, resulting in approximately
cubic-shaped cells in the wake region. The value of 𝐿𝑧 = 2𝐷 has been
used previously in the literature (Travin et al., 2000; Moussaed et al.,
2014) to obtain reasonable predictions of flow over a circular cylinder
for various 𝑅𝑒. Higher domain aspect ratios also directly increase the
computational expense per simulation, which has resulted in restricting
it to 𝐿𝑧∕𝐷 = 2.

3.2. Time-step

A second-order dual time-stepping algorithm is employed to solve
the unsteady flow past the circular cylinder. The physical (outer loop)
time-step (𝛥𝑡) is determined by the Courant number such that the
temporal error would not exceed the spatial error (Versión and Menter,
2012). However, as the algorithm is implicit, the Courant number
restriction need not be applied strictly, i.e., being satisfied at all cells.
Instead, a constant 𝛥𝑡 is chosen, using data from a precursor SST 𝑘−𝜔
simulation, such that the Courant number condition is satisfied in the
wake region (where LES will be used). In conformity with the Courant
condition for the strictest case, 𝛥𝑡 is chosen to be 0.0005 s for all hybrid
RANS-LES simulations. The number of inner loop iterations of the dual-
time stepping is such that the residual of eddy viscosity (�̃�) residual is
allowed to reduce for more than two orders of magnitude in the inner
loop, which requires approximately 20 inner iterations for marching
each physical time-step.

3.3. Numerical setup

Although the flow is incompressible, as a compressible flow unstruc-
tured solver (with a Mach number of 0.2) is used in this work, the
convective flux computation requires a differential treatment of upwind
and downwind fluxes on the face. Second-order accuracy is achieved
by employing the Circle Green–Gauss gradient method (Athkuri and
Eswaran, 2020; Athkuri et al., 2022). The use of uniform cells in
the wake region produces second-order accurate gradients and hence
lower numerical diffusion in the area of interest. The laminar dynamic
viscosity is obtained by the Sutherland formula (Eq. (7)). The free-
stream temperature is 300 K, and the characteristic length is 1 m. Travin
et al. (2000) followed a ‘laminar separation’ approach for 𝑅𝑒 = 5 ×
104 and 1.4 × 105 by initializing the flow field without feeding the
turbulence from the inlet. Moussaed et al. (2014) performed hybrid
simulations with ‘turbulent separation’ setup by including turbulence
in the inlet flow. In the present work, we also investigate only the
turbulent separation initiation where turbulence is fed from the inlet
throughout the simulations. The reason for this is that, at the Reynolds
numbers relevant to the drag crisis, the flow can be expected to be
turbulent. Furthermore, the main purpose of this study is to check the
models’ performance under expected conditions (i.e. turbulent inlet)
rather than fine-tune those conditions to obtain the ‘best’ results.
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Fig. 4. The common structure of the grid used in the circular cylinder computations.
Fig. 5. Non-dimensional distance (𝑦+) on the cylinder.

The free-stream conditions and other solver settings are summarized
in Table 3. In reference to the experiments (Schewe, 1983; Desai et al.,
2020), 𝑇 𝑢∞ in SA-BCM simulations is taken as 0.4% with an initial
viscosity ratio of 0.02. In this study, we do not explore the effect
of free-stream turbulence intensity (𝑇 𝑢∞) variation on the drag crisis
problem.

All the simulations, both URANS and hybrid RANS-LES, have been
performed with the same solver settings. Hence, this study should
provide unambiguous results on the effect of different SGS models on
flow predictions.

4. Grid sensitivity study

As discussed previously, a mesh independence study is not usually
presented in LES simulation studies due to the fact that the SGS eddy
viscosity is a function of grid cell size 𝛥. Following the standard practice
that the mesh should locally resolve at least 80% turbulent kinetic
7

energy (Versión and Menter, 2012), we have created ‘R’ grids, as
explained in the previous section. Although we use these R meshes for
the final simulations, we now also perform a grid sensitivity study with
the SA-DDES model to study the effect of different grid resolutions.
We study the role of the wake region’s grid resolution on parameters
like drag coefficient (𝐶𝑑), Strouhal number (𝑆𝑡), and the base pressure
coefficient (𝐶𝑝𝑏) at 𝜃 = 𝜋 on the cylinder, and also the variation of the
pressure coefficient with 𝜃.

The SGS length-scale 𝛥 plays a crucial role in determining the SGS
eddy viscosity. The 𝛥 value in a cell can be computed in several ways.
The more popular ones are: first, by taking the maximum side length
in a cell (max(𝛥𝑥, 𝛥𝑦, 𝛥𝑧)); second, by taking the cube-root of the cell
volume (vol1∕3). Another scheme was proposed by Shur et al. (2015).
In this work, we have taken 𝛥 as the cube root of the cell volume.

The meshes used in this study are summarized in Table 4. We have
considered three 𝛥 values and a varying number of grid points on the
cylinder. These mesh resolutions are comparable to that used by Travin
et al. (2000) and Moussaed et al. (2014). Travin et al. (2000) performed
grid sensitivity study with 𝛥 = 0.048 and 0.068, with results being
clearly sensitive to the 𝛥 chosen. Moussaed et al. (2014) performed the
same with 𝛥 = 0.1 and 𝛥 = 0.05.

We now perform simulations on four separate new grids for 𝑅𝑒 =
1.4×105 (G1, G2, G4, G6) with the SA-DDES model (numerical setup is
discussed in Section 3.3). Of these, G2, G4 and G6 satisfy the criterion
of Eq. (26), while G1 is coarser than allowed by the criterion (𝛥 =
0.15, compared to 𝛥 ≤ 0.09) in the wake region. However, G6 is also
somewhat coarser in the non-wake region, having only 151 points on
the cylinder surface (like G1) compared to 201 points for G2 and
G4. The number of cells in G1, G2, G4, G6 are respectively 230,000,
540,000, 1.7M, and 500,000. We report the time-averaged drag coeffi-
cient, cylinder’s base pressure, and Strouhal number obtained on these
meshes in Table 4.

The meshes G1, G2 and G6 give comparatively close values for these
quantities, which is evidence, as the meshes are roughly comparable in
size (230k–500k cells), of the consistency of the simulations. However,
the finest mesh G4 (1.7M cells) yields somewhat lower values for 𝐶𝑑
and 𝐶𝑝𝑏, indicating a possible grid-size effect on the simulations. That
grid refinement produces a decrease in 𝐶𝑑 has been reported by many
researchers (Travin et al., 2000; Moussaed et al., 2014; Lo et al., 2005;
Breuer, 2000). However, the results of all the G meshes are within the
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Table 3
Solver settings followed in the simulations.

Flow conditions/Solver settings Value/Method

Mach number (𝑀𝑎) 0.2
Temperature (𝑇 ) 300 K
Dynamic viscosity (𝜇) 1.846 × 10−5 kg

ms
Characteristic length (𝐿) 1 m
Turbulent Prandtl number 0.9
�̂�
𝜈𝐿

(except SA-BCM) 5
�̂�
𝜈𝐿

, 𝑇 𝑢∞ (for SA-BCM) 0.02, 0.4%
Gradient scheme Circle Green–Gauss (CGG) method (Athkuri and Eswaran, 2020; Athkuri et al., 2022)
Time-stepping Second-order implicit dual time-stepping (Weiss et al., 1999; Chandra, 2022)
Table 4
Results of grid sensitivity study performed with DDES model for 𝑅𝑒 = 1.4 × 105 unless specified. The simulations here use 𝛥 = vol1∕3. The DES of Travin et al. (2000) was done with
𝛥 = max(𝛥𝑥, 𝛥𝑦, 𝛥𝑧).

Grids 𝑁𝑐 𝛥 𝑁𝑐𝑣 𝐶𝑑 −𝐶𝑝𝑏 𝑆𝑡

G1 151 0.15 230k 0.757 1.029 0.250
G2 201 0.09 540k 0.744 0.926 0.261
G4 201 0.05 1.7M 0.671 0.786 0.265
G6 151 0.09 500k 0.741 0.982 0.257

HRLES (𝑅𝑒 = 105) (Hodara and Smith,
2017)

256 – 9.6M 0.76 – –

DES (B1-4 (Lo et al., 2005)) 100–240 – 0.42–0.96M 0.62–0.704 0.83–0.91 0.287–0.305
SST DES (Lakshmipathy and Togiti,
2011)

– – 2M 0.847 0.892 0.26

DES (TS 2 (Travin et al., 2000)) 150 0.05 680k 0.59 0.67 0.31
DES (TS 4 (Travin et al., 2000)) 118 0.07 370k 0.64 0.7 0.28

Roshko (1961) (𝑅𝑒 > 3.6 × 106) – – – 0.62–0.74 0.85 0.27
Achenbach (1968) (3.6 × 106) – – – 0.76 0.85 0.27
i

range of values obtained by other hybrid RANS-LES results by previous
authors, also shown in Table 4.

We have also included experimental data from Roshko (1961)
and Achenbach (1968) in Table 4, which have 𝐶𝑑 , 𝐶𝑝𝑏 and 𝑆𝑡 values
that compare well with our simulation results. However, these data
are for 𝑅𝑒 = 3.6 × 106 while our simulations were for 𝑅𝑒 = 1.4 × 105.
This suggests that the present SA-DDES and other RANS-LES models in
Table 4 at 𝑅𝑒 = 1.4×105 are actually simulating the flow with post-crisis
fully turbulent boundary layer, which is seen experimentally at 3.6×106.
This suggests these models will not capture the drag crisis because they
cannot simulate the laminar–turbulent boundary layer transition.

Consider Fig. 6 that shows the coefficient of pressure 𝐶𝑝 vs. 𝜃
for the 𝑅𝑒 = 1.4 × 105 case on the grids G1, G2, G4 and G6. We
have included the numerical data of Travin et al. (2000) for their
‘turbulent separation’ case. We also show the high 𝑅𝑒 results of Roshko
1961), James et al. (1980) and Achenbach (1968). The 𝐶𝑝 profile
btained on the G1, G2, G4 and G6 meshes fall within the experimental
ata as does the numerical result of Travin et al. (2000). In fact, the
atch with the experiments is very good. These results reinforce the

uggestions made above that the hybrid RANS-LES models are actually
imulating the higher 𝑅𝑒 post-crisis flow field because they lack a
echanism for the laminar–turbulent transition.

The plots of Q-criterion colored by viscosity ratio obtained from sim-
lations performed on G1, G2, and G4 grids are shown in Fig. 7. As we
an see, the coarsest mesh G1 clearly produced two-dimensional vorti-
al structures, while G2 and G4 produced turbulent three-dimensional
ortical structures. The finest mesh G4 has a better Q-criterion qual-
tatively. This seems to suggest that while the criterion specified by
q. (26) is adequate, it may be bettered by using an even smaller grid
nterval. The G2 mesh is chosen to perform simulations of drag crisis
t 𝑅𝑒 = 1.4× 105 (in Section 6) as it has 201 points on the cylinder and
s finer enough in the wake to resolve at least 80% turbulent kinetic
nergy. The finer G4 mesh having 1.7 million cells is used to study
he effect of various hybrid models in predicting the drag and Strouhal
umber for the same 𝑅𝑒 in the next section.

The conclusion that can be drawn from all of the above is that the
8

A-DDES hybrid RANS model does not capture the drag crisis because d
Fig. 6. Variation of mean pressure coefficient along the cylinder computed for 𝑅𝑒 =
1.4 × 105 compared with experimental data of James et al. (1980) (𝑅𝑒 = 3.8 ×
106), Achenbach (1968) (𝑅𝑒 = 3.6 × 106), Roshko (1961) (𝑅𝑒 = 8.4 × 106) and numerical
results of Travin et al. (2000) (TS2).

it lacks a laminar–turbulent transition mechanism. We will see that this
is also true of the other two hybrid models considered in this study.

5. Comparison of the three hybrid models

We have simulated SA-DDES, SA-kLES, and SA-ILES on the G4 grid.
The simulations are performed for more than 25 shedding cycles. The
values of 𝐶𝑑 , 𝐶𝑝𝑏, and 𝑆𝑡 obtained for the three models are shown
n Table 5. The results are remarkably close, suggesting almost no
ifference in the quantitative predictions. The Q-criterion (colored by
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Fig. 7. Q-criterion (= 0.5 1
𝑠2

) colored by viscosity ratio 𝑟 (= 𝜈𝑡∕𝜈). Here, the blue color denotes a ratio of 0 or less, and red denotes a ratio of 100.
Fig. 8. Q-criterion (= 0.5 1
𝑠2

) colored by viscosity ratio 𝑟 (= 𝜈𝑡∕𝜈) for SA-DDES, SA-kLES and SA-ILES models. The blue color of viscosity ratio 𝑟 denotes 1 and red denotes 196.
Table 5
Effect of hybrid models.

Hybrid models 𝑁𝑐 𝛥 𝑁𝑐𝑣 𝐶𝑑 −𝐶𝑝𝑏 𝑆𝑡

SA-DDES 201 0.05 1.7M 0.671 0.786 0.265
SA-kLES 201 0.05 1.7M 0.668 0.799 0.263
SA-ILES 201 0.05 1.7M 0.683 0.798 0.268

viscosity ratio = 𝜈𝑆𝐺𝑆∕𝜈𝐿) produced by the SA-DDES, SA-kLES, and SA-
ILES is shown in Fig. 8. We can conclude that qualitatively all three
models show turbulent-like vortical structures in the wake. However,
the magnitudes of the eddy viscosity ratio 𝑟 (= 𝜈𝑡∕𝜈) differ significantly
for all the three hybrid models. The SA-kLES model is observed to have
a higher value of 𝑟 in the wake region away from the cylinder as it
uses a different subgrid model (Eq. (21)) compared to the Smagorinsky
model in SA-DDES. In SA-ILES, the value of 𝑟 remains unity except for a
small region very close to the cylinder, as there is no LES subgrid model
used in the away wall regions, as given by Eq. (25). The intermittent
nature in the evolution of 𝐶𝑑 and 𝐶𝑙 plotted in Fig. 9 suggests that
all the three models produce similar random unsteady turbulent-like
behavior.

The pressure coefficient profiles for the case of 𝑅𝑒 = 1.4 × 105 are
shown in Fig. 10. We see that the three models’ results match closely
with each other and also with high 𝑅𝑒 experiments in the transcritical
regime. For the case of 𝑅𝑒 = 106, shown in Fig. 11, we see that the
SA-ILES profile is somewhat different from those of SA-DDES and SA-
kLES which are again identical. Surprisingly, the profile of the SA-ILES
model matches excellently with that from the high 𝑅𝑒 experiments and
with that of Travin et al. (2000) more than the other two models. As
seen before, all three models do not match with the experiments of
the approximately same Reynolds numbers (850k, 1.2M), the probable
reason for which has been discussed above.
9

All the coefficients, Q-criterion, and the 𝐶𝑝 profiles suggest that
the SA-DDES and SA-kLES give almost identical results, while the SA-
ILES gives close but not identical results. The SA-DDES and SA-kLES
models have non-zero turbulent viscosity, while the SA-ILES does not.
The turbulent viscosities in SA, SA-DDES, and SA-kLES increase with 𝑅𝑒
due to increased turbulent production. However, in the SA-ILES model,
there is no external turbulent viscosity to account for the increase in
𝑅𝑒. Hence the model is largely insensitive to 𝑅𝑒. This can be seen from
Fig. 12 where the pressure coefficient variation of the SA-ILES model
(simulated on the ‘R’ meshes) along the cylinder for 𝑅𝑒 = 5 × 104,
1.4 × 105, 4.15 × 105, and 106 is compared with high 𝑅𝑒 experiments.
For 𝑅𝑒 = 1.4 × 105, 4.15 × 105, and 106, the SA-ILES model is almost
insensitive to 𝑅𝑒 and matched well with numerical data of Travin et al.
(2000) and high 𝑅𝑒 experiments of Roshko (1961) and James et al.
(1980). The differences in the wake region pressure coefficient are
mainly due to the SA model that is employed in the close proximity
of the cylinder.

6. Results of drag crisis simulations

In this section, we present the results of the simulations with all the
turbulence models discussed in Section 2.2 over the range of Reynolds
numbers of the drag crisis. We have used separate meshes for each
𝑅𝑒, as discussed in Section 3.1. The meshes all meet the criteria of
resolving 80% turbulent kinetic energy and produce three-dimensional
vortical structures for the Q-criterion in the LES zones in the wake of
the cylinder.

Our analysis will be mainly focused on comparing, across the entire
range of Reynolds numbers, important flow features like drag coeffi-
cient, base pressure coefficient, pressure distribution, and flow separa-
tion angle along the cylinder’s azimuth. Each simulation is performed
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Fig. 10. Comparison of pressure profiles at 𝑅𝑒 = 1.4 × 105 of SA-DDES, SA-kLES, SA-
LES models with experiments data of James et al. (1980) (𝑅𝑒 = 3.8 × 106), Achenbach
1968) (𝑅𝑒 = 3.6 × 106), Roshko (1961) (𝑅𝑒 = 8.4×106) and numerical results of Travin
t al. (2000) (TS2).

Fig. 11. Comparison of pressure profiles at 𝑅𝑒 = 106 of SA-DDES, SA-kLES, SA-
LES models and Travin et al. (2000) (TS2) with experiments data of James et al.
1980) (𝑅𝑒 = 3.8 × 106), Achenbach (1968) (𝑅𝑒 = 3.6 × 106, 8.5 × 106), Roshko (1961)
𝑅𝑒 = 8.4 × 106), Warschauer and Leene (1971) (𝑅𝑒 = 1.2 × 106).
10

b

Fig. 12. Variation of mean pressure coefficient along the cylinder computed with SA-
ILES model for the 𝑅𝑒 across the drag crisis compared with experimental data of James
et al. (1980) (𝑅𝑒 = 3.8 × 106), Achenbach (1968) (𝑅𝑒 = 3.6 × 106), Roshko (1961)
𝑅𝑒 = 8.4 × 106) and numerical results of Travin et al. (2000) (TS2).

or more than 20 shedding cycles. The average values reported are
veraged over the 20 shedding cycles after the ‘‘dynamic steady-state’’
s achieved in the simulation.

Consider the flow over the cylinder for 𝑅𝑒 = 5 × 104. The time-
ependent drag and lift coefficients for all the models are shown in
ig. 13. The SA and SA-BCM URANS models predict very similar 𝐶𝐷
nd 𝐶𝐿 that lack intermittent behavior. On the other hand, a strong
ntermittent behavior is evident from the 𝐶𝐿 plots of all the hybrid
ANS-LES simulations. Despite their intermittent behavior, their time-
veraged drag coefficients are only slightly different from each other.
his is observed for other Reynolds numbers also.

The experimental data on recirculation length for critical and super-
ritical Re is limited in the literature, so we do not compare the
ecirculation length.

The Q-criterion (see Fig. 14) also suggest more turbulence-like
ehavior in the hybrid models than in the URANS models. Two-
imensional vortical structures are dominantly seen in the URANS
odels (SA and SA-BCM), while the hybrid models produced three-
imensional vortical structures in the wake. It is worthy of note that
A-DDES and SA-ILES models produced similar vortical structures in
he wake, while the SA-kLES model had a mixture of two-dimensional
nd three-dimensional structures. This can possibly be attributed to the
act that 𝜈𝑆𝐺𝑆 (= 𝐶0(𝜈𝑆𝐴)

1
3 (𝑆𝛥2)

2
3 ) of the SA-kLES model depends on

oth the SA eddy viscosity and the Smagorinsky type SGS viscosity.
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Fig. 13. Time dependent parameters for cylinder flow 𝑅𝑒 = 5 × 104; upper curve —𝐶𝐷 , lower curve —𝐶𝐿.
Fig. 14. Instantaneous velocity contours projected on Q-criterion for 𝑅𝑒 = 5 × 104 (𝑄 = 0.5).
However, it is not the case on a finer mesh, as shown in Fig. 8(b) for
𝑅𝑒 = 1.4 × 105.

The time-averaged pressure profiles along the cylinder for 𝑅𝑒 =
5× 104, 1.4× 105, 4.15× 105, and 106 are shown in Fig. 15. We compare
these with their corresponding experimental 𝑅𝑒. The hybrid models all
show more pressure recovery and delayed separation compared to the
experiment and the SA-BCM URANS model (recall that the ‘‘turbulent
separation’’ turbulent initialization is employed, which would delay
separation). This has been previously observed by Travin et al. (2000)
and Moussaed et al. (2014) also. The pressure distribution results
of Travin et al. (2000) for 𝑅𝑒 = 1.4 × 105 had a better match for
the ‘‘laminar separation’’ laminar initialization while the turbulent
separation had an increased pressure recovery (and thus decreasing the
drag coefficient) when compared with the experiments. This was also
11
observed by Moussaed et al. (2014). Interestingly, the pressure coeffi-
cient distribution of the SA-ILES model is different from other hybrid
models at these angles, but its pressure recovery is almost identical to
those of the SA-DDES and SA-kLES models at all 𝑅𝑒 considered.

The SA-BCM transition model predictions of 𝐶𝑝 are quite different
from others. The pressure recovery close to the base of the cylinder
is predicted much better than by the other models. For instance, the
experimental trends of Cantwell and Coles (1983) for 𝑅𝑒 = 1.4×105 are
well predicted; the trend of Achenbach (1968) for 𝑅𝑒 = 8.5×105 is also
captured at the base of the cylinder. As a result, the SA-BCM model
performs better than all other models in predicting the base pressure
coefficients across the range of Reynolds numbers of the drag-crisis, as
seen in Fig. 16. Similarly, in terms of the 𝐶𝑑 , the SA-BCM model seems
to be the only model that captures the drag crisis as shown in Fig. 17. It
is worth noting that grids employed in the LES simulations (Rodríguez
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Fig. 15. Pressure distribution along the cylinder surface.
Fig. 16. Base pressure coefficient 𝐶𝑝𝑏 variation w.r.t the Reynolds number 𝑅𝑒.
12
Fig. 17. Drag coefficient 𝐶𝑑 variation w.r.t the Reynolds number 𝑅𝑒.
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Fig. 18. 𝛾𝐵𝐶 contours of the transition model; Red region indicates the turbulent region and blue one indicates laminar region. The arrows indicate the start of the turbulent
boundary layer (as observed directly in the figures after magnification).
Fig. 19. Variation of separation angle with change in Reynolds number.
et al., 2015; Yeon et al., 2016) that also captured the drag crisis (see
Fig. 1) had cells varying from 38 million to 100 million, whereas, in
the present study, the grids used have at most 1 million cells. For all
the other models, there is a decline in the drag coefficient, but it is a
smooth decline rather than a sharp decline like that of the experiments
and the SA-BCM. The reason for this can be attributed to the boundary
layer transition, which none of the models except SA-BCM take into
account.

We have the data of the hybrid RANS-LES (HRLES) and transition
hybrid RANS-LES (tHRLES) results of Hodara and Smith (2017) in
13
Fig. 17 for the sake of comparison. It is noteworthy that the hybrid
model gives almost identical results to the present models of this
study, while the transition model does better in predicting the drag
crisis. This enforces our study’s conclusion that transition effects are
very important in this problem and must be incorporated into hybrid
RANS-LES models used for bluff bodies in mid-range Reynolds numbers.

Beyond the drag crisis, however, the drag coefficients obtained
from the SA, SA-DDES, and SA-kLES models at the trans-critical 𝑅𝑒 =
5 × 106 matched well with the experiments, while SA-BCM under-
predicted the drag values. Due to the boundary layer being turbulent at
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Fig. 20. Comparison of resolved Reynolds stresses of hybrid models and modeled Reynolds stresses of URANS models with the experiments for 𝑅𝑒 = 1.4 × 105 in the wake region
(𝑥∕𝑑 = 1). Refer to Appendix for the averaging procedure.
p
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this trans-critical 𝑅𝑒, the SA, SA-DDES, and SA-kLES performed better
than the SA-BCM transition model. The effect of transition modeling
in SA-BCM can be directly seen. The time-averaged contours of the
intermittency function (𝛾𝐵𝐶 ) of the SA-BCM model are shown in Fig. 18.
The function 𝛾𝐵𝐶 effectively checks for the experimental momentum
thickness Reynolds number and activates the turbulent production term
if it reaches the threshold. The red region depicts the presence of
turbulent activity, and the blue one indicates its absence. The contours
suggest that the wake is turbulent and the cylinder surface is laminar
for Reynolds numbers 5 × 104 and 1.4 × 105, with the boundary layer
becoming turbulent earlier as 𝑅𝑒 is increased.

The separation angle (𝜃𝑆 ) is also better predicted (see Fig. 19) by the
SA-BCM model compared to the other models. For example, 𝜃𝑆 is least
for 𝑅𝑒 = 5×104 and 1.4×105 with almost the same angle, beyond which
there is a sudden increase due to turbulent boundary layer transition,
as can be seen from Fig. 19. The other models, however, predicted a
higher 𝜃𝑆 by around 15 degrees at 𝑅𝑒 = 5×104 and 1.4×105 due to the
fully turbulent boundary layer assumed there.

The frequency of vortex shedding should be higher after turbulent
boundary layer transition. This is evident from the experimental data
and is also seen in the LES study of Rodríguez et al. (2015). The
Strouhal number (𝑆𝑡) for various models is shown in Table 6. For the

5 6
14

sub-critical 𝑅𝑒 = 1.4 × 10 and the supercritical 𝑅𝑒 = 10 , the 𝑆𝑡 t
prediction of SA-BCM is superior to other models. The reason for this
can be attributed to a better prediction of the separation angle. The
separation angle predicted by the SA-BCM model at 𝑅𝑒 = 1.4 × 105

is close to 87 degrees (compared to the experimental value of 80
degrees Achenbach, 1968), whereas other models predicted around 100
degrees. Hence a significant difference in 𝑆𝑡 can be seen in this case. For
𝑅𝑒 of 1 million, none of the models predicted the exact experimental
𝑆𝑡, with SA-BCM being the closest.

The comparison of Reynolds stresses, computed for 𝑅𝑒 = 1.4 ×
105, one diameter downstream of the rear stagnation point with the
experiments of Cantwell and Coles (1983), for the same 𝑅𝑒, are shown
in Fig. 20. The averaging procedure followed to obtain the Reynolds
shear stresses is given in Appendix. It is seen that the SA-BCM and
SA poorly predict the form and peak of 𝑢′𝑢′, 𝑢′𝑣′ and 𝑣′𝑣′, while the
redictions of all three hybrid models are quite good.

This suggests that the RANS-LES hybrid models do capture the
urbulent flow field well and better than the RANS models, but only
here the flow field is actually turbulent, i.e., not complicated by

aminar–turbulent transition, etc. This is encouraging, as hybrid models
re seen as the future of turbulence modeling for practical engineering
lows. But it also suggests that it is important that hybrid models are
quipped to handle the laminar–turbulent transition to become robust
ools for such simulations.
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Table 6
Strouhal number comparison with experiments.

Re Exp. Roshko (1954) Exp. Bearman (1969) SA SA-BCM SA-DDES SA-kLES SA-ILES

1.4 × 105 0.19 0.185 0.256 0.199 0.258 0.259 0.246

106 0.38 0.43 0.271 0.31 0.27 0.265 0.26
R

A

A

7. Conclusion

In the present study, we simulated the drag crisis problem for 𝑅𝑒
50,000 to 5 million with two URANS models: the SA model and the
SA-BCM transition model, and with three hybrid RANS-LES models,
namely, the SA-DDES, SA-kLES, SA-ILES models. All the models were
implemented in an in-house solver with a second-order method. The hy-
brid models and the SA model are simulated with turbulent initiation,
while the SA-BCM model is initiated with free-stream turbulence of
0.4%. A grid sensitivity study was performed with the SA-DDES model.
The study on the effect of hybrid models (SA-DDES, SA-kLES. SA-ILES),
which are very different LES models, surprisingly, gave quite similar
results for the problem. Further comparative study of the models is
warranted.

The drag crisis simulations were performed with grids that resolve
80% turbulent kinetic energy, as recommended for LES studies. The
URANS transition SA-BCM model best predicted the experimental trend
of drag coefficients, base pressure coefficients, and separation angles
for the Reynolds numbers studied except in the trans-critical (5 × 106)
regime, where the hybrid RANS-LES models did better. Only the SA-
BCM model could be said to have captured the drag crisis, and it did
this as well as the best LES studies. The hybrid RANS-LES models could
not predict the sharp transition of 𝐶𝑑 at the drag crisis but rather gave
a smooth decline of 𝐶𝑑 .

In the wake region, however, the hybrid RANS-LES models gave
etter predictions of the Reynolds stresses than the two URANS models.
hey also showed typically turbulence-like behavior, based on the
-criterion, compared to URANS models.

The overall performance of the SA-BCM model in comparison to the
ybrid RANS-LES models is strikingly better for drag crisis Reynolds
umbers, apparently due to the prediction of laminar–turbulent tran-
ition. However, this should not be viewed as a failure of the hybrid
odels; rather, the hybrid models should be combined with the tran-

ition models to get the best out of both for accurately predicting
omplex flows involving transition and separation features.

This study suggests that while the drag crisis is better captured by
he transition model, the hybrid RANS-LES models better capture the
urbulence in the wake. This underlines the role of laminar to turbulent
ransition for the critical regime Reynolds numbers of the drag crisis
nd encourages us to include transitional features in the hybrid models
o exploit the best of both. It would suggest that the performance of
he hybrid RANS-LES models in regions of flow separation could be
mproved if there is more focus on the laminar–turbulent transition in
hese models.

To summarize other key findings, the SA-kLES and SA-ILES models
erformed on par with the DDES model and gave results similar to the
atter. This warrants further study in future work.
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Appendix. Averaging analysis

In this section, we briefly describe the averaging procedure per-
formed on the hybrid RANS-LES simulation data. The instantaneous
velocity vector is split into two components, namely, the time-averaged
and fluctuating components (here bar denotes the time-averaged com-
ponent, and the prime denotes the fluctuating component):

𝑢𝑖 = �̄�𝑖 + 𝑢′𝑖 . (A.1)

The averaged quantity �̄�𝑖 is obtained by performing a time-averaging
operation over 200-time units. Similarly, the fluctuating part 𝑢′𝑖 by
subtracting the time-averaged component from the instantaneous field.

𝑢′𝑖 = 𝑢𝑖 − �̄�𝑖. (A.2)

The resolved Reynolds stress tensor 𝑖𝑗 per unit density is computed
by performing a time averaging operation on term 𝑢′𝑖𝑢

′
𝑗 .

𝑖𝑗

𝜌
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⎛
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(A.3)

The modeled Reynolds stress tensor for a URANS model is obtained
from its turbulent viscosity.

𝑢′𝑖𝑢
′
𝑗 = −

𝜏𝑖𝑗
𝜌
. (A.4)

where the shear stress 𝜏𝑖𝑗 is given as:

𝜏𝑖𝑗 = 2𝜇𝑡

(

�̄�𝑖𝑗 −
1
3
𝜕�̄�𝑘
𝜕𝑥𝑘

)

. (A.5)
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