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Siamese Cross-Domain Tracker Design for Seamless
Tracking of Targets in RGB and Thermal Videos

Chandrakanth V. , V. S. N. Murthy, and Sumohana S. Channappayya , Senior Member, IEEE

Abstract—Multimodal (RGB and thermal) applications are
swiftly gaining importance in the computer vision community with
advancements in self-driving cars, robotics, Internet of Things, and
surveillance applications. Both the modalities have complementary
performance depending on illumination constraints. Hence, a ju-
dicious combination of both modalities will result in robust RGBT
systems capable of all-day all-weather applications. Several studies
have been proposed in the literature for integrating the multimodal
sensor data for object tracking applications. Most of the proposed
networks try to delineate the information into modality-specific
and modality shared features and attempt to exploit the modality
shared features in enhancing the modality specific information. In
this work, we propose a novel perspective to this problem using
a Siamese inspired network architecture. We design a custom
Siamese cross-domain tracker architecture and fuse it with a mean
shift tracker to drastically reduce the computational complexity.
We also propose a constant false alarm rate inspired coasting
architecture to cater for real-time track loss scenarios. The pro-
posed method presents a complete and robust solution for object
tracking across domains with seamless track handover for all-day
all-weather operation. The algorithm is successfully implemented
on a Jetson-Nano, the smallest graphics processing unit (GPU)
board offered by NVIDIA Corporation.

Impact Statement—Surveillance and tracking systems form an
integral part of our society today. However, most of the systems are
deployed in a non-real-time fashion where data is saved and pro-
cessed later. Typical examples include traffic cameras, surveillance
systems etc. Deep learning (DL) networks have paved the way to
automate this application with minimal manual intervention. They
work with RGB and thermal data independently to cater for all-day
all-weather operation. However, with the architecture presented in
this paper, we have demonstrated that a custom-designed single
Siamese network can handle cross-domain data effectively and
can operate continuously day and night. With automated day and
night detection, the operator can be alerted based on the trained
urgency minimizing the reaction time and operational costs. With
the proposed network we are looking at a potential overhaul of
the existing manual surveillance systems to automated Artificial
Intelligence (AI) based systems.

Index Terms—Convolutional neural network (CNN), domain
translation, generative adversarial network (GAN), mean-shift
algorithm, Siamese networks, target tracking.
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I. INTRODUCTION

TARGET tracking is the task of predicting and correlating
the range of the objects of interest in consecutive scans

of the scene. This is a well-established application in the radar
literature, where state-space models are successfully employed
for tracking the objects of interest in the field. Recently, this
problem has received widespread attention in the computer
vision community with the evolution of advanced driver assis-
tance systems, robots, and automated surveillance systems. In
imaging-based systems, the tracking problem is translated to
localizing the object of interest with a bounding box (BB) in
the input frame. Several studies have been reported on image
tracking in the RGB domain [1]–[4]. While RGB systems have
high spatial resolution and clean contours of objects amidst
the background, their performance largely depends on the il-
lumination of the scene. Hence, RGB systems are not suitable
for application in low illumination conditions. Infrared systems
(IR), on the other hand, work with the surface temperatures of
objects and can ideally be applied in all-day and all-weather
scenarios. However, they suffer from low spatial resolution and
blurry edges, sensitivity to temperature variations, and high cost.
Even with these limitations, detection in thermal imagery is
becoming increasingly important today for ensuring round the
clock capability because visible light is suboptimal in extreme
weather situations (e.g., fog, heavy rain, etc.) and at night [5].
With the proliferation of Internet of Things, security-related
applications, and the requirement of large-scale production, the
cost per unit of the thermal sensor has significantly reduced,
making them economical for commercial applications.

These dual-sensor (RGB and thermal) systems are termed
as RGBT systems in the literature. In recent years, several
studies have been carried out to prove that integrating data
from RGB and thermal modalities can effectively improve
tracking performance. They can reinforce each other and pro-
vide complementary information to promote the robustness and
adaptability of trackers [6]. While several methods have been
proposed for RGBT tracking [7]–[10], the core problem of data
correlation across domains for effective tracker design is still
an open challenge. Existing methods largely concentrate on
extracting domain-specific and domain-independent features for
cross-domain data and fuse the information to obtain improved
tracking performance. In this work, we address the problem of
surveillance and tracking of targets in RGB and thermal data
for continuous and real-time operation with a Siamese network
inspired architecture termed as Siamese cross-domain tracker
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(Siam-CDT). The proposed approach is inspired by the work
done by Iwashita et al. [11]. In [11], they tried to establish a
relation between RGB and thermal data empirically by correlat-
ing reflection, absorption, and emission coefficients of incident
light on the object. We make a similar assumption and pose
this problem in the supervised setting of the domain translation
framework.

GANs [12]–[15] are extensively applied in domain translation
problems for computer vision applications. The problem is
studied in both the supervised (ST) and unsupervised (UST)
settings. In both supervised and unsupervised settings, domain
translation is seldom the final step. The transformed images are
further processed to extract information for the final application.
For example, when trying to identify a person whose appearance
has changed over time, we try to generate images with different
styles (e.g., hair, beard, glasses, etc.) using GANs. However,
the final application is the correlation of the images with the
original dataset for identifying the person. This task can be
greatly simplified by considering the final application a priori
and then trying to extract the information from the intermediate
layer. For the above-mentioned application, we can try to extract
a common feature vector for all the possible variations (or
styles) and compare it with the original feature vector from
the ground truth data. In this work, we attempt to converge
the cross-domain information onto the assumed shared latent
space and directly integrate the application in this space. The
results obtained with “Siam-CDT” assert the existence of shared
space for supervised networks as claimed in [11]. The proposed
“Siam-CDT” network is independent of the input domains and
can be applied to multiple image palettes in a supervised setting.

The rest of this article is organized as follows. Section II
presents related work and Section III discusses the proposed
methodology. Section IV explains the results followed by con-
cluding remarks in Section V.

II. RELATED WORK

The proposed method combines three different techniques to
realize the tracking application. We present a brief literature
survey of all the relevant techniques followed by a review of
existing literature on RGBT systems.

A. Domain Translation

As mentioned earlier, domain translation is studied in two
modes: 1) supervised translation (ST) mode and 2) unsupervised
translation (UST) mode. In ST, example image pairs (X,Y ) are
available. For each image xi ∈ X in the source domain, there
is a corresponding yi ∈ Y in the target domain, and we wish to
find a mapping G : X → Y such that G(xi) ≈ yi. Some of the
works for ST are given in [16] and [17] and the more general
Pix2Pix [18]. However, a major drawback with ST is the lack
of labeled training data in the source and target domains. UST
methods attempt to address this problem by trying to find a
mapping function between independent source and target do-
mains without any pairing information. Some of the successful
recent approaches include UNIT [19], CycleGANs [15], Co-
GAN [14], and Disco-GAN [12]. GANs are very effective tools

for generative modeling of images; however, they operate under
restrictive assumptions that question the efficacy of translations.
Recently, semisupervised translation has been proposed where
labeled datasets in the source domain are available which will
be paired with unlabeled target domain datasets [20], [21]. The
final application is implemented using the domain translated
data. In this work, we propose a novel method of integrating the
final application in the shared latent space and thereby avoiding
complete domain translation.

B. Siamese Networks

In general, convolutional neural networks (CNNs) require
large training datasets to train the network for successful de-
ployment. However, with every new input or task, the network
has to be retrained to accommodate this new information. To
address this problem, Koch et al. [22] proposed a Siamese
inspired CNN for one-shot image identification by employing
a distinct way to triage inputs depending on their similarity.
Siamese networks have already been successfully applied in di-
mensionality reduction [23], face verification [24], and signature
verification [25] problems. Zhang et al. [26] proposed SiamFT
and [27] DSiamMFT for an RGBT application. They proposed
two parallel Siamese network architectures for each modality
and used the cropped ground truth image as a reference in both
modalities for training the Siamese network. Finally, the output
information from both modalities is fused to get an improved
output. Peng et al. [28] present SiamIVFN for fusing RGB and
thermal data using two subnetworks, complementary feature
fusion network, and contribution aggregation network. They
progressively couple filter coefficients throughout the network
and finally fuse the original and processed feature vectors to
derive the output tracking vector. In this work, we propose a
single channel Siamese network with shared weights trained
to converge cross-modality data onto a common shared space,
thus significantly reducing the computational complexity for
cross-domain object tracking.

C. Video Tracking

Video analysis captures the temporal variations in the scene
for understanding the target and environmental dynamics. The
analysis can be specifically focused on selected regions with
targets for designing relevant applications like motion detection
and target tracking [29]. Motion-based approaches can be di-
vided into two main categories: 1) background subtraction [30],
[31] and 2) optical flow [32], [33]. They are used in surveillance
applications to alert the user against unauthorized movements.
Video tracking, on the other hand, is the process of tracking
the object of interest continuously to extract target parame-
ters. Video tracking methods can be broadly categorized as 1)
classical video tracking for single modality data, 2) artificial
intelligence (AI) based video tracking for single modality data,
and (3) AI-based RGBT video tracking.

1) Classical Video Tracking: In the classical video tracking
problem, the position of the target in the first frame is known.
From this information, a technique has to be designed to au-
tomatically detect the target in subsequent frames of the video.
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This seemingly simple problem becomes extremely challenging
because of practical issues such as the orientation of the target,
occlusions, movement of the target, and related scale variations.
Mean-shift tracking algorithms [34] use the Centroid of the im-
age as a reference parameter to predict the position of the target
in the next frame. This method fails whenever there is target
maneuver (scaling), target orientation change, ambient illumi-
nation change, strong background clutter, or occlusion. Also, this
method relies only on the pixel data and not on the features of the
target which makes the algorithm unreliable. To take the features
of the target into account for detection, correlation processing or
template matching was proposed. This method uses a reference
template or appearance model of the target which is compared
with the input data in a sliding window fashion storing the
correlation coefficient for each pixel shift in a vector. If the corre-
lation coefficient exceeds a preset threshold, the target presence
is declared. Several variations of this method are proposed in
the literature [35]–[37]. Among these, discriminative correlation
filters (DCFs) have proven successful on benchmark tracking
datasets [38], [39]. However, DCF-based approaches [40], [41]
suffer from boundary overlap because of the circular convolution
property of fast Fourier transform causing data corruption. To
overcome this, Danelljan et al. [36] proposed spatially regular-
ized DCF (SRDCF). Even with SRDCF, the above methods are
still vulnerable to scaling, illumination changes, and occlusions.
Lowe [42] addressed some of these issues by proposing the
scale invariant feature transform. However, better performance
was reported using histogram-based feature vectors for tracking.
Feature representations such as histogram of gradients [43] and
deformable parts model [44] have been extremely successful in
tracking of pedestrians. All the methods mentioned above use
handcrafted features for the detection and tracking of the target.

2) AI-Based Video Tracking for Single Domain Data: Deep
learning ushered a new era in image and video processing push-
ing toward automated detection, classification, and localization
of targets. However, deep learning networks, by design, work
on the principle of frame-independent processing. For a CNN,
every frame is a new input and the network has to process every
image to detect the presence of a target. However, to track the
target, information from past data is necessary. Long short-term
memory [45] and gated recurrent unit [46] propose two different
methods to propagate past information to the current scan. They
are successfully applied in time series based data analysis. Some
of the other works published on deep learning based tracking are
as follows. SiamRPN [37] uses image correlation to track objects
of interest in the video. Danelljan et al. [47] proposed ATOM net-
work which discriminates between target and background and
provides improved performance over SiamRPN. Danelljan et al.
[36] also present a variant of DCF using CNNs for object
tracking. They used activations from convolutional layers to
train the DCF and achieved good results. Milan et al. [48]
proposed recurrent neural network (RNN) based multitarget
tracking where the RNN learns the target models in the field
and uses the model to predict target trajectories in unseen data.

3) AI-Based RGBT Video Tracking: We briefly review some
of the works published on RGBT tracking next. Xu et al. [6]
proposed CBPnet with channel attention, bilinear pooling, and

quality-aware fusion modules and evaluated the performance
of the network on GTOT [49] and custom RGBT234 [50]
datasets. Li et al. [51] proposed a challenge-aware RGBT tracker
where they design two parallel CNN networks for each modality
and divide the processing challenges into modality-specific and
modality shared components. They also propose sharing of
the information across domains to enhance the performance of
single modality networks with this additional information. In the
final stage, they adaptively aggregate the information from both
networks to realize a robust tracker. Zhu et al. [52] proposed
TFNet with a feature aggregation block which combines feature
vector outputs from multiple modalities followed by a feature
pruning block to remove redundant features to reduce overfitting
and a feature fusion module to integrate the information from
individual modalities with past aggregated module data for
accurate classification.

The RGBT trackers proposed above have considered the
problems of scaling and illumination changes but ignored the
case of occlusion and track loss scenarios. “Siam-CDT” network
addresses these problems using the coasting technique widely
used in radar literature. Coasting is the process of predicting
the probable location of the target in the next frame from
previous state information for a few predefined scans trying to
reacquire the target. Two possibilities can occur during coasting:
1) the object changes its trajectory while passing through the
occlusion or during the time taken for realigning the source; 2)
the current trajectory is maintained and the object is reacquired
after n frames. In 1), the track vector will be flushed out after
n scans and the algorithm reinitiates the search for the target in
incoming frames to establish a new track, and, in 2), the target
will fall in the predicted coasting window after n scans and the
track is continued. We address both the scenarios in this work
and our results demonstrate the efficacy of the “Siam-CDT”
in cross-domain object tracking applications. All the networks
discussed above used two parallel Siamese channels, CNN1
(RGB) and CNN2 (thermal), for each mode of processing. In
this work, we propose a novel approach using single-channel
processing by fusing the final application in the shared latent
space.

III. PROPOSED METHOD

In this work, we propose the fusion of a mean-shift tracker
(MST) with a custom Siamese network (Siam-CDT) to realize
a computationally efficient architecture for seamless track han-
dover across domains. The proposed architecture is divided into
three stages as enumerated below.

1) Design of a fully convolutional Siamese CNN (FCV)
to extract common features for multidomain data in the
assumed shared latent space.

2) Design of a fully connected network (FCN) to integrate
the tracking application.

3) Fusion of an MST with “Siam-CDT” to design a com-
putationally efficient robust tracker capable of tracking,
coasting, and target reacquisition.
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A. Siamese FCV Design

Siamese networks are a class of CNNs proposed to work with
limited datasets for probabilistic data association. Apart from
the applications discussed above, some literature has also re-
ported Siamese network implementation for the object tracking
problem. We briefly discuss some of the works for comparison
with the proposed method. He et al. [55] proposed the SA-SIAM
network derived from SiamFC [56] for real-time object tracking.
They proposed a combination of appearance features trained on
the similarity learning problem and semantic features trained
on the image classification problem for tracking the target.
Dong et al. [57] proposed a novel triplet loss for the Siamese
framework to extract robust features for object tracking. Wang et
al. [58] proposed RASNet tracker for online target tracking and
validated the performance on object tracking benchmark (OTB)
and visual object tracking (VOT) datasets.

The RGB and thermal domains capture information in com-
pletely different and unrelated ways. Theoretically, we cannot
establish a correlation between RGB and thermal information
derived from the same object. Iwashita et al. [11] present
a logical explanation for the probable existence of a shared
latent space for RGB and thermal images for the interested
reader.

Fig. 1 shows the proposed Siamese FCV architecture. First,
both the visual and thermal sources are aligned to view the same
space for getting supervised inputs into the Siamese network.
The network attempts to converge these inputs from both the
modalities to a common feature vector representation which is
propagated to FCN for integrating the final application. During
training, the cost function converged to zero, resulting in the
vanishing gradient problem during back-propagation. To over-
come this, a small perturbation around zero (ε) is introduced
into the desired vector input. The convergence of feature vectors
(f1, f2) in Fig. 1 corroborates this assumption of a shared latent
space proposed in [11]. We considered two input configurations
for the FCV network as shown in Fig. 1(a) parallel RGBT
input and Fig. 1(b) alternating sequential input. For parallel
configurations, the output of both RGB and thermal input is
available simultaneously. So the difference vector is calculated
and the network is trained to map the difference vector to an
ε-perturbed zero vector. In the sequential configuration, the
difference vector is calculated for every alternate cycle which
is back-propagated for updating the network. We formulated
consistency checks in both configurations to ensure that the
generated feature vector is a weighted combination of individual
inputs based on illumination constraints.

B. Fully Connected Neural Network

The output of the FCV network now represents a unified
representation for RGB and thermal data. This unified rep-
resentation is used to train a fully connected neural network
(FCN) to predict the BB coordinates of the target of interest in
the input image. The loss function considered for this regres-
sion problem is the Euclidean distance between the predicted
and ground truth BB coordinates as given in the following

Fig. 1. Block diagram of a fully convolutional Siamese network trained with
l2 loss function for optimization to encode RGB and thermal images in a shared
latent feature vector space. (I1, I2) are the input images from different domains.
Transformation functions g1(x), g2(x)map (I1, I2) to feature vectors (f1, f2)
[g1(i1) → f1, g2(i2) → f2]. (a) and (b) Two input configurations considered
for FCV design.

equation:

Rloss = ||BBGT − BBPr||2 (1)

where Rloss is the regression loss used as a cost function,
BBGT = (xg, yg, wg, hg) is the ground truth BB, and BBPr =
(xp, yp, wp, hp) is the BB predicted by the network.

With standard CNN architectures, the network could not con-
verge because of the large variations in the statistics of the data
across the domains. To understand the variation in cross-domain
data, we quantified the difference information using mean square
error (mse) and the structural similarity (SSIM) index [63]. The
parameters are shown in Table I for paired RGB and thermal
images from KAIST [64] and VOT [53] datasets. After the
FCV-FCN network is trained for BB predictions, the target
tracker is designed for trajectory estimation and tracking as
explained in the next section.

C. Tracking by Fusion of CNN and Mean-Shift Algorithm

Tracking a target in the RF domain is accomplished using
interacting multiple model filters [65] and their variants that use
precise positional information obtained from an active transmit
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TABLE I
METRICS FOR CROSS-DOMAIN IMAGE COMPARISON

∗VOT 2020 Dataset
†KAIST Dataset
MSE ≈ 0, SSIM = 1

signal. In video-based tracking, no such reference is available for
range measurement. However, the video allows us to spatially
localize the target and track the same by storing the infor-
mation from previous frames. Classical autonomous tracking
algorithms, namely mean-shift algorithm [66] and correlation
algorithms [67], use Centroid (2)–(3) and target templates as

TABLE II
COMPARISON OF MODEL PARAMETERS FOR STANDARD NETWORKS

reference parameters for target tracking. However, classical
target tracking methods have a few problems: 1) In Centroid
processing, initial BB coordinates have to be specified which
requires a human in the loop to start the track, and 2) if the
track is lost due to target passing behind occlusions, illumination
changes, locking to false alarms, etc., it cannot be resuscitated,
and 3) it is not possible to store templates for all possible
scenarios and correlate in real time. All these problems are suc-
cessfully addressed in CNN-based target tracking. However, a
major disadvantage of CNNs is their computational complexity.
Every forward pass of CNN for BB prediction requires a large
number of computations. Table II presents the parameters for
standard CNNs and “Tiny VGG”[61].

At a frame rate of 30 fps, a typical target moves very slowly
between successive frames and the computation of all the CNN
parameters for every single forward pass is redundant. In cases
where the target is stationary for some frames, these compu-
tations can be completely avoided. As empirical evidence, we
observed that, on average, the MST was predicting erroneous BB
coordinates every 60 frames where a correction from the CNN
channel was required. This number varies with the quality of data
and the speed of the target. So, we predicted the BB coordinates
from the CNN channel every 60th frame. A reasonable assump-
tion of the search window space for the MST is of the order
of 60× 60 pixels (these numbers depend on the distance of the
target from the source). The number of computations required
for calculating the Centroid of the image of this size is “7200.”
Therefore, by computing the CNN output every 60 frames, we
significantly reduce the number of computations. The saving
is directly proportional to the size of the network. Therefore,
to make the system power efficient, we propose a fusion of
the mean-shift algorithm with the CNN-based object detector.
The CNN is used for initial target detection to avoid manual
intervention, and, in subsequent scans, the track is continued
using the mean-shift algorithm. However, since the mean-shift
algorithm is susceptible to changes in orientation, illumination,
scale variation, and occlusions, it occasionally locks on to false
targets, from which it cannot recover. To solve this problem,
we propose periodic CNN computation to correct the offsets
in the mean-shift algorithm and to provide reference data for
trajectory correction. Fig. 2 shows the complete architecture
for the proposed method. The CNN channel is connected to
the mean-shift channel to provide initial BB coordinates for
MST to start the track. In subsequent frames, the input image
is passed intermittently through the CNN channel indexed by
counter k in Fig. 2. p is inversely proportional to the speed of
targets in the field. For every p (p = 60 in our case) iteration, the
input frame is passed once through the CNN channel for offset
correction. From the initial BB input from the CNN channel,
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Fig. 2. Block diagram of the proposed architecture for computationally efficient fusion of CNN with mean-shift tracker. The CNN predicts the initial BB
coordinates and passes them to the mean-shift tracker to start the track. The CNN is invoked at fixed intervals and under track loss scenarios to reduce computational
load. The output of the mean-shift tracker is stored in the kth-order delay filter bank operating in LIFO mode. In the event of track loss, the output of the tracking
filter predicts the coasting window coordinates for n frames. If the target is not reacquired, track loss is declared invoking the CNN to search and reacquire the
target in incoming frames. This method addresses the problem of track loss due to occlusions in the field and target maneuvers.

Fig. 3. Tracking results for VOT2020 dataset [53] with moving car target in sequential frames of RGB and thermal videos. (a)–(d) Output of the network for
RGB images. (e)–(h) Output of the same CNN for thermal images. In both the cases, track is consistent as observed.

the MST predicts the subsequent search space by extrapolating
the Centroid data computed from (2) and (3), where M is the
moment (zeroth and first-order) of the image I(x, y).

There are two possibilities for track loss with this architecture:
1) the first case corresponds to the scenario that the predicted
BB by the MST lies outside the frame size (i.e., the case of
a target moving out of search space BB coordinates) and 2)
the l2 distance between the adjacent BB exceeds a predefined
threshold ε as shown in (4). In both cases, track loss is declared
and the tracking filter predicts the coasting BB for n iterations,
where n is a predefined constant. During this phase, the search
window for MST is updated by the coasting BB coordinates. If
the adjacent BB predictions do not converge for n (n = 5 in our
case) scans, track loss is declared invoking the CNN channel
for updated BB. On rare occasions when the output is generated

by the tracking filter and the CNN channel simultaneously, the
CNN channel output holds priority to prevent deadlock

Cx =
M10

M00
and Cy =

M01

M00
(2)

Mij =
∑
x

∑
y

xiyjI(x, y) (3)

∥∥∥∥
(

MSTk − MSTk−1

)∥∥∥∥
2

< ε (4)

where MST = output of the MST (x, y, w, h), k = time stamp,
(Cx, Cy) are the Centroid coordinates of the target, and ε is a
small value close to zero.

In the event of track loss, the output of the MST is passed
through a unit delay filter bank working in last-in first-out
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Fig. 4. Tracking results for VOT2020 dataset [53] with person on moving bike target in sequential frames of RGB and thermal videos. (a)–(d) Output of the
network for RGB images. (e)–(h) Output of the same network for thermal images.

Fig. 5. Tracking results for OSU dataset [54] with pedestrian target in RGB and thermal frames. (a)–(d) Output for RGB images. (e)–(h) Output of the network
for thermal images.

(LIFO) mode storing the information from previous k images.
The stored information is accessed by the tracking filter to
output filtered BB. We designed a tracking filter inspired by
the cell averaging constant false alarm rate (CA-CFAR) [68]
technique from radar literature for the proposed application.
After training the complete network, the network is tested using
a random mix of RGB and thermal data for multiple datasets.
The proposed method successfully tracked the target of interest
seamlessly without losing track across domains. Algorithm 1
briefly explains the sequence of operations for tracking. The
results presented in the next section validate the performance of
the proposed architecture.

IV. RESULTS AND DISCUSSION

We evaluated the performance of “Siam-CDT” for cross-
domain tracking of selective targets in multiple open-source
datasets. The network is designed with only a regression head
and the performance is quantified with standard regression met-
rics like R2 score, explained variance score (EVS) and mse.
The dataset consists of multiple classes of targets to analyze the

performance of the network in varied scenarios. Each dataset is
split into training (64%), validation (16%), and testing (20%)
subsets. The batch size is chosen to be one for all experiments
except for sequential processing where a batch size of two was
considered. The training is done using NVIDIA Quadro P4000
GPU and tested in real time on NVIDIA Jetson Nano board.
Figs. 3 and 4 present the results of tracking a car and a person
on a bike from VOT 2020 dataset. Both the targets were tracked
successfully across domains with seamless track handover and
without track loss. Fig. 5 shows the pedestrian tracking per-
formance from the OSU dataset. The OSU dataset presented a
potential problem that could occur in cross-domain applications.
In some of the frames, the orientation of the camera blocked
the RGB image information, which was visible in the thermal
domain. Fig. 6(a) and (b) shows this partially occluded pedes-
trian in RGB images. Fig. 6(c) and (d) shows the completely
captured thermal camera data. These cases will be outliers in
Siamese implementations as the reference input images will have
contradictory information. Therefore, the location of the camera
plays a pivotal role in dual-sensor cross-domain applications.
By fine-tuning the network with these outliers independently,
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Fig. 6. (a) and (b) Partially occluded legs in RGB images which are fully
visible in (c)–(d) of thermal images. These occluded images will be outliers
in RGB/thermal tracking. Siamese method fails to handle this scenario, but
fine-tuning the network can still successfully track the target with these outliers.

Fig. 7. (a) and (b) Tracking performance of the network for RGB input from
the KAIST dataset. (c) and (d) Performance of the same network for thermal
input of the KAIST dataset. Since the network was trained only on RGB data,
the network could not detect the target in thermal images.

the network could successfully detect these outliers. We also
incorporated l2 norm check between consecutive feature vec-
tors which checks for consistency of predictions and detects
such outliers. The problem of standard CNNs working with
multidomain data is explained in Figs. 7 and 8. We trained
a “Tiny VGG” with only RGB data from the KAIST dataset
and tested the network for both RGB and thermal datasets.
Fig. 7(a) and (b) shows the tracking performance of the network
for RGB (trained domain) data where the network successfully
tracked the target. Fig. 7(c) and (d) shows the performance
of the network for the thermal dataset. Though the images
represent the same scene, the network could not detect the target
in cross-domain data. We repeated the experiment by training
“Tiny VGG” with only thermal data from VOT 2020 dataset
and tested the network with both RGB and thermal images.
The results obtained replicated the behavior of the previous
experiment with the target being successfully tracked only in
the trained domain and failing to do so in the other domain. The

Fig. 8. (a) and (b) Tracking performance of network for RGB input from VOT
2020 dataset. (c) and (d) Performance of the same network for thermal version
of same dataset. Since the network was trained only on RGB data, it could not
detect the target in thermal images.

TABLE III
PERFORMANCE COMPARISON FOR SIAMESE AND SINGLE-DOMAIN NETWORK

comparison metrics in Table I indicate the variation in data justi-
fying these observations. Table III shows the comparison of per-
formance metrics for the Siamese network and a single-domain
RGB/thermal network. It can be observed that the performance
of the Siamese network is almost similar to a single-domain
network and, in some cases, even better. Table IV shows the
cross-domain performance comparison of the Siamese network
and single-domain RGB/thermal network. The performance of
the Siamese network remains unchanged for cross-domain data,
whereas single-domain trained CNNs demonstrate significant
performance degradation for cross-domain data. In the KAIST
dataset, the optical source is mounted on a moving vehicle and
data is collected along the streets with vehicles, shops, and
pedestrians. In this dataset, most of the targets of interest are
close to the camera and quickly move out of the frame. So
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Fig. 9. Tracking results for KAIST [64] dataset with moving car target in consecutive frames of RGB and thermal videos. (a)–(d) Output of the network for RGB
images. (e)–(h) Output of the same CNN for thermal images.

TABLE IV
PERFORMANCE COMPARISON FOR SIAMESE AND SINGLE-DOMAIN NETWORK

FOR CROSS-DOMAIN INPUT

for this dataset, we selected some instances from the videos
where the target is visible at a distance and the camera mounted
vehicle is trailing the target. Fig. 9 shows the performance of our
algorithm for one such scenario. In all the cases, the test images
were input sequentially from one domain and also a random
mix of images across domains. In multiple target scenarios, the
algorithm is susceptible to cross target tracking. This is more
so in the thermal domain because of limited information about
the target. To avoid this, we designed a selective region search
technique based on initial target detection as shown in Fig. 10.

In CNN-based processing, every target in the frame is de-
tected. Tracking a specific target among other potential targets
is a challenging task. With the proposed method of fusing the
mean-shift algorithm with a CNN, the search space is con-
strained around the predicted BB. We predict secondary search
windows in directions other than target movement as shown
in Fig. 10(a) and (b) to detect track changes. In case of track

Fig. 10. (a) and (b) Search space in azimuth (x-axis) and elevation (y-axis)
for tracking the target. (c) and (d) Coasting search space in the event of track
loss. Blue windows show azimuth plane search space, green windows show the
search space in elevation, and brown window shows the coasting search space.
During coast phase, the search space in the direction of motion is propagated
and other windows hold the same space in anticipation of acquiring maneuvered
target as shown in (c) and (d).

loss, the forward window (the window in the direction of target
movement) is propagated and the remaining secondary search
windows are locked in the space of last known detection as
shown in Fig. 10(c) and (d) waiting for reacquisition of the target.
If the target changes direction, based on the number of secondary
windows designed, it is most likely to be detected in one of
the secondary search spaces. Once the target is detected in
the jth (one of the secondary search spaces) search window,
it will be designated as the primary window and the track is
continued.

To further validate the performance of “Siam-CDT,” we gen-
erated tSNE plots for cross-domain data to understand the map-
ping of cross-domain data by “Siam-CDT” and standard single-
domain networks. Fig. 11 shows the tSNE plot for cross-domain
feature vectors at the output of the Siamese FCV network. It can
be observed that the Siamese FCV network converges the cross-
domain information to a similar feature vector representation as
evident in Fig. 11(a), (d), and (g). However, the single-domain

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on August 21,2023 at 10:58:01 UTC from IEEE Xplore.  Restrictions apply. 



170 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 4, NO. 1, FEBRUARY 2023

Fig. 11. Cross-domain performance of Siamese, RGB, and thermal networks for KAIST, OSU, and VOT dataset is compared with tSNE output. It can be observed
that the feature vectors for cross-domain data in Siamese FCV network as shown in (a), (d), and (g) converge to a similar representation, whereas the performance
of single-domain trained networks vary drastically as shown in (b), (c), (e), (f), (h), and (i). Blue dots represent RGB data points and orange dots represent thermal
data points.

TABLE V
SPECIFICATIONS OF JETSON NANO

networks represent cross-domain data very differently as seen
in the RGB and thermal network plots in Fig. 11(b), (c), (e),
(f), (h), and (i). We used “Tiny VGG”[61] as the backbone for
‘Siam-CDT” design. The network is successfully implemented
on NVIDIA Jetson Nano board [69] and the results presented are
obtained in hardware running the network in real time. Table V
shows the specifications of the Jetson Nano board, the smallest
GPU board offered by NVIDIA [69].

V. CONCLUSION

In this work, we addressed the problem of cross-domain
tracking applications in computer vision and specifically imple-
mented selective target tracking applications with seamless track
handover across domains. We proposed a three-stage processing
solution as shown in Fig. 2. The first stage of the solution is
designed to generate a common feature vector representation for
supervised cross-domain inputs using a Siamese FCV network.
The converged Siamese FCV network is further augmented with
an FCN to integrate the application in the shared latent space
by directly predicting the BB coordinates. The final stage is
designed to track the target continuously across domains with
seamless track handover. We further proposed the fusion of
the mean-shift algorithm with a CNN-based detector which
drastically reduced the computational load by intermittently
processing the data through the CNN channel. The proposed
method is tested with multiple open-source datasets and for
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different types of targets. The results obtained conclusively
prove the efficacy of Siamese-based design for RGBT systems.
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