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Abstract—It is still challenging to accurately localize
unmanned aerial vehicles (UAVs) from a ground con-
trol station (GCS) using various sensors. The mmWave
frequency-modulated continuous wave (FMCW) radars offer
excellent performance for target detection and localization in
harsh environments and low lighting conditions. However, the
estimated angle of arrival (AoA) of targets in the captured
scene is quite poor. This article focuses on improving AoA
estimation by combining the cutting-edge machine learn-
ing (ML) algorithms with a mechanical radar rotor setup.
An mmWave FMCW radar system is mounted on a program-
mable rotor to capture range–angle maps of targets at vari-
ous locations. The range–angle images are then labeled and
trained further with the Yolov3 algorithm. Subsequent testing
reveals that for detected target objects, the centroid of the
bounding boxes from the detected objects provides accurate
AoA estimation with very low root mean square error (RMSE).
The results show that the proposed approach outperforms
traditional methods in terms of performance and estimation
accuracy.

Index Terms— Angle of arrival (AoA), frequency-modulated continuous wave (FMCW), mmWave FMCW radars, root
mean square error (RMSE) and Yolov3, unmanned aerial vehicles (UAVs).

I. INTRODUCTION

AS THE popularity of unmanned aerial vehicles (UAVs)
increases, there is a growing demand for better detection,

localization, and tracking techniques. Ground control stations
(GCSs) are equipped with sophisticated sensor technologies
for improved UAV localization. Some of these sensors are red
green blue (RGB) cameras, ultrasonic sensors, light detection
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and rangings (LiDARs), etc. However, most of these sensors
fail in adverse weather and lighting conditions. In this regard,
the mmWave frequency-modulated continuous wave (FMCW)
radars have shown superior performance compared with other
sensors. The mmWave FMCW radars are small, lightweight,
and compact radars that offer excellent performance for target
detection. The radars provide a radial distance measurement
range from 0.2 to 300 m in addition to excellent velocity
estimation performance. In addition, they offer high range and
velocity resolutions. Furthermore, their performance in adverse
weather and environmental conditions makes them a suitable
choice for UAV and GCS applications.

Despite the above-mentioned advantages, the mmWave
FMCW radars suffer from poor angle of arrival (AoA) estima-
tion and AoA resolutions [1]. Accurate AoA estimation from a
single target requires at least one transmitter and two receivers
for the radar. Increasing the number of transmitter and receiver
pairs can effectively improve the AoA estimation; however,
this results in a tradeoff with increased size and hardware
complexity. Furthermore, estimation of AoA from multiple
objects for better target localization is even more challenging,
and hence it is still an ongoing research topic.

There have been several attempts in the literature to improve
the AoA estimation. Yang et al. [2] propose an adaptive
radar signal processor for detection of multiple UAVs in the
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range–Doppler domain. The radar signal processor operates
by initially performing pulse compression (PC), fast Fourier
transform (FFT), and beamforming on the received signal
samples. The processed signal is then evaluated for a possible
detection based on constant false alarm rate (CFAR) logic for
each range–Doppler angle bin. Both the single- and multitarget
scenarios are considered and the angular parameters of the
targets are retrieved. The simulated and real-world experiment
results indicate that the proposed method is able to detect
and resolve two UAVs placed ≈8◦ apart with satisfactory
performance. Aubry et al. [3] attempt to solve the problem
of adaptive radar detection in the presence of limited training
data. The proposed method consists of three generalized
likelihood ratio test (GLRT)-based detection schemes which
is based on the assumption of linear combination for inverse
covariance matrices. The reported results show that the pro-
posed GLRT-1 and GLRT-3 exhibit significant performance
gain over conventional adaptive detectors in the presence of
limited training samples. In [4], a novel direction of arrival
(DoA) estimation algorithm based on 2-D spectrum sensing
is developed. The proposed approach exploits the intrinsic
block sparsity of the 2-D space–frequency profile to obtain 2-D
occupancy awareness. By including a term to account for the
block sparsity, a non-convex regularized maximum likelihood
(RML) estimation problem is solved using the block sparse
learning via the iterative minimization (BSLIM) algorithm
to obtain the space–frequency profile. The BSLIM algorithm
exhibits superior performance in terms of detection rate and
false alarms over traditional approaches. Aubry et al. [5] devise
a novel set of covariance matrix estimators called median
matrices that are independent of the probability distribution
of the samples. The matrices are constructed by exploiting
its positive definite attributes. Based on the output from the
new estimators, a generalized inner product (GIP) selection
criterion is used to discard the secondary outliers in the train-
ing data. The reported results indicate that the log-Euclidean
median-based estimator outperforms other estimators in terms
of selection probability of secondary outliers in the training
data. Other covariance estimators that can also be used to
infer radar disturbances and aid in accurate UAV detection
and localization include the fast maximum likelihood (FML)
covariance estimator [6] and the multiclass inverse Wishart
mixture (MC-IWM) filter [7].

Wei et al. [8] use a fast iterative adaptive algorithm using a
time-shared method to accurately estimate the AoA. The first
phase of the technique involves a coarse azimuth angle esti-
mation that is performed using just a single mmWave FMCW
radar. The obtained intermediate results are then fed into a
more refined iterative algorithm to accurately determine the
DoA estimations within a small region. However, this method
relies on multiple mmWave FMCW radars during the second
phase making it computationally intensive. Another approach
by Ikram et al. [9] uses linear algebraic techniques to jointly
calibrate the antennas and estimate the AoA. The iterative
optimization technique provides excellent performance when
there is an effective coupling between the antennae elements.
In addition, the algorithm is shown to work well in the pres-
ence of several sensors and transmitter–receiver pairs. Oh and

Lee [10] proposed a joint angle and delay estimation algorithm
which uses the dual-shift-invariant structure of the received
signal to extend the 1-D pseudospectrum searching. The Monte
Carlo simulations were used to gauge the performance of the
proposed method. The reported results show that the proposed
technique exhibited superior performance with respect to the
state-of-the-art algorithms. However, the technique is compu-
tationally intensive and requires further experimentation with
complex real-world scenarios. Kim and Lee [11] combine the
advantages of the 2-D-FFT and MUSIC algorithms to develop
a low complexity estimation method to approximate various
FMCW radar parameters such as AoA. However, this method
fails to provide any performance insight when used to detect
multiple targets. Gupta et al. [12] and Cenkeramaddi et al. [13]
use the notion of rotating the radar about its axis to scan an
area. The signals obtained in each frame of the rotating radar
are used to construct the range profile for the respective field
of view (FoV). All the range profiles are then stitched and
combined together to get the range–angle maps that offer a
180◦ view of the scene. However, the work by Gupta et al. [12]
focuses on target detection and classification and does not pro-
vide enough information for AoA estimation. Cenkeramaddi
et al. [13] have provided a novel AoA estimation technique
with relatively good performance; however, this can be further
improved using the machine learning (ML) techniques. Our
work will be an extension to this work, where we will use the
state-of-the-art ML techniques to estimate the AoA from the
range–angle maps. We will be using the convolutional neural
network (CNNs)-based algorithms which will serve to be
useful for embedded and the Internet-of-Things (IoT)-related
applications.

Hence, in this work, we propose a multitarget AoA estima-
tion method that uses rotating mmWave FMCW radars. The
proposed method uses a mechanical rotor setup for rotating
the mmWave FMCW radar along the azimuthal axis followed
by Yolov3 for postprocessing the range–angle heatmaps. The
AoA estimate is calculated from the centroid of the detected
bounding box.

The remaining sections of this article are structured as
follows. Section II gives an overview of mmWave FMCW
radars and signal processing aspects. Section III gives a brief
overview of the machine algorithm that is used on the collected
dataset. Section IV defines the various metrics used to measure
the performance of the proposed method. Section V provides
a high-level system description along with the measurement
and dataset details. Section VI summarizes the obtained results
using the proposed method. Finally, Section VII concludes
the article by providing a brief summary and potential future
research directions.

II. MMWAVE FMCW RADARS AND SIGNAL PROCESSING

The mmWave FMCW radars operate by transmitting
high-frequency chirp signals on to the scene. The transmitted
chirp signal is reflected back upon encountering obstacles in its
path. The reflected chirp is captured by the receiving antennae
for further processing. The transmitted and received chirp
signals are then fed into a mixer to obtain the intermediate
frequency (IF) signal. The IF signal is further fed into an
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analog-to-digital converter (ADC) which samples the analog
signal and provides digital values. The raw IF samples then
undergo additional processing to obtain the radial range, radial
velocity, and AoA estimation of the target [14].

Range estimation involves performing an FFT transform
over the captured IF signal samples [15]. The range R is
calculated as

R = c fIF

2S
(1)

where fIF is the frequency of the IF signal, c is the velocity
of light in vacuum (3 × 108 m/s), and S is the slope of the
radar.

Velocity estimation exploits the phase of the IF signal.
The change in distance within a short time may not be
accurately captured by the range estimation (due to limitations
in range resolution) procedure. However, these changes can
be captured using the phase difference between the received
chirps. To obtain velocity estimation, we initially compute
the range profile. Next, we perform a second FFT across the
received chirp signals to capture the small phase changes that
can provide the velocity estimation values.

AoA estimation involves using the number of receiver
antennas on the mmWave FMCW radar. A differential distance
exists from an object to each of the receiving antennas.
This differential distance corresponds to a phase change that
can be obtained by performing a second FFT on the output
of the range profile. The second FFT is applied across the
different receiver antennas so as to obtain the angle-FFT. The
angle-FFT can then be used to obtain AoA estimation of target
objects in the scene. Note that in angle-FFT, the 2-D-FFT is
performed over the different receiver antennas separated in
space, whereas for velocity estimation the 2-D-FFT uses the
phase difference between the different chirps that are separated
in time [16]. If φ is the phase difference between the received
chirp signals and d the distance between adjacent receiving
antennas, then the following holds true:

φ = 2πd sin θ

λ
(2)

where λ is the wavelength of the chirp signal. Thus, AoA
estimation θ is given as

θ = sin−1
(

λφ

2πd

)
. (3)

Fig. 1 gives a pictorial representation of the estimation of
AoA. As seen from (2) and (3), when θ = 0◦, φ is more
sensitive to the changes in θ . As θ increases, the sensitivity
of φ to θ decreases. This is due to the fact that φ and θ
share a nonlinear relationship as φ ∝ sin θ and sensitivity
of sin θ decreases as θ increases. Thus, AoA estimation is
more accurate when the target is placed perpendicular to the
radar [16].

Similar to AoA estimation, calculation of AoA resolution is
also important to correctly distinguish between targets placed
close to each other with a small AoA difference. AoA resolu-
tion is defined as the least angle required between two targets
so that they can be easily distinguished as separate objects in
the angle-FFT [17]. The AoA resolution for mmWave FMCW

Fig. 1. Angle of arrival estimation.

radars is given as

θres = λ

Nd cos θ
(4)

where N is the number of receiver antennas on the radar. If it
is assumed that d = λ/2 and θ = 0, then the expression for
θres reduces to

θres = 2

N
(5)

implying that AoA resolution improves with increased number
of receiver antennas. For example, with four receiver antennas,
the AoA resolution is 0.5 radians which is equivalent to
28◦, a relatively high value. Since increasing the number of
antennas can also increase space and hardware complexity,
there is active research to improve the AoA resolution with
minimum constraints.

III. YOU LOOK ONLY ONCE (YOLO) ARCHITECTURE

AND WORKING

Yolov3 is a state-of-the-art multiscale object detection algo-
rithm that can detect and classify objects from images and
video with very fast inference time [18]. Just as the name
suggests, the algorithm performs only a single-stage forward
pass over the whole image to determine the class probabilities
and predictions. In this work, we are using the Yolov3 version
for our AoA estimation from range–angle maps.

The Yolov3 algorithm is based on the Darknet-53 archi-
tecture [19] that uses a combination of convolution layers
and skip connections as shown in Fig. 2. Inspired by ResNet
and other architectures [20], Darknet-53 primarily consists of
feature extraction and feature detection stages. The feature
extraction stage comprises 53 convolution layers that are
arranged as 3 × 3 and 1 × 1 consecutive layers followed by a
skip connection. On the other hand, the feature detection stage
is made up of 53 layers that helps enhance the accuracy of the
predictions when compared with previous versions. Thus, the
algorithm uses a sum total of 106 convolutional layers, both
for feature extraction and feature detection.

The Yolov3 algorithm operates by initially passing the input
image through the feature extractor to obtain multiscale feature
embeddings. Yolov3 supports three different feature scales,
namely, 13 × 13, 26 × 26, and 52 × 52. The obtained feature
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Fig. 2. Yolov3 Darknet architecture.

maps are then fed into the feature detection stage to predict
bounding boxes on the detected object. To predict bounding
boxes, each feature map is divided into a collection of grid
cells. Each grid cell is capable of predicting three bounding
boxes. Each bounding box “B” consists of “5 + C” attributes
and class probabilities. Here, “C” represents the number of
classes in the dataset. In this work, C = 3, as we are using the
model to detect three classes: 1) UAV; 2) car; and 3) humans.
The class probabilities provide the probability of existence of
a particular class in the respective grid cell. “5” represents
bounding box attributes (tx , ty , th , and tw) and the objectness
scores. Bounding box dimensions in Yolov3 are computed
relative to the anchor box dimensions. Anchor boxes are
prior boxes that have predefined aspect ratios. The predefined
aspect ratios are determined by running a k-means algorithm
on the entire dataset prior to training. Finally, the objectness
score denotes the presence of an object in the corresponding
grid cell. Feature detection is performed by convolving the
downsampled feature maps with a 1 × 1 detection kernel
whose shape is given by 1 × 1 × (B ∗ (5 + C)). In Yolov3,
feature detection occurs at the 82nd, 94th, and 106th layers.

Once the object is detected, a maximum of three bounding
boxes per grid can be drawn based on the relative position of
the object within the grid cell. To avoid multiple bounding
boxes for the same object, a non-maximum suppression is
performed. In non-maximum suppression, the bounding box
that has the most overlapping area with the detected object
is retained while the other bounding boxes are discarded.

TABLE I
YOLOV3 CONFIGURATION PARAMETERS

A high-level Yolov3 architecture diagram is given in Fig. 2.
Table I further lists the various parameters used for the Yolov3
algorithm to detect the various classes from the range–angle
maps.

IV. PERFORMANCE METRICS

In this section, the various metrics used to quantify the
performance of the ML model are discussed [21]. An ML
model can predict the class of an object as either true (positive)
or false (negative). When the model predicts the class as true
and the actual class is positive, then the observation is defined
as a true positive (TP). Similarly, when the model predicts
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the class correctly as negative, then the observation is a true
negative (TN). However, when the predicted class is true and
the actual class is negative, then the observation is a false
positive (FP). Similarly, the observation is defined as a false
negative (FN) when the predicted class is false and the actual
class is positive.

A. Precision
Precision represents the fraction of the total number of

positively classified classes to the total number of positively
predicted classes. Precision is given as

Precision = TP

TP + FP
(6)

where TP and FP represent the true positives and false
positives from the predicted result, respectively.

B. Recall
Recall is calculated as the ratio of TP to the total number

of positive classes. Recall is computed as

Recall = TP

TP + FN
(7)

where FN is the false negatives in the predicted results.

C. F1-Score
F1-score provides a means to measure the performance

of a machine model using both precision and recall metrics.
F1-score is calculated as follows:

F1-score = 2 ∗ Precision ∗ Recall

Precision + Recall
. (8)

D. Accuracy
The accuracy metric provides an indication of the perfor-

mance of the model across all the classes. It is defined as
follows:

Accuracy = TN + TP

TN + FP + TP + FN
. (9)

E. Root Mean Square Error (RMSE)
The RMSE value provides a measure of how much the

estimated value has deviated from the actual true value. It is
given as follows:

RMSE =
√∑P

i=1 (xestimate − xactual)
2

P
(10)

where P is the sample size, xestimate is the estimated value,
and xactual is the actual or true value in the experiment. Lower
RMSE value implies that the estimated measurement is closer
to the true value and hence better model prediction.

V. SYSTEM OVERVIEW AND DATASET DETAILS

A. System Description
The AoA estimation of multiple targets using mmWave

FMCW radar is challenging. As described in Section II,
accurate AoA estimation requires an increased number of
transmitter and receiver antennas. This can lead to increased
hardware complexity. Hence in our setup, the system at the
GCS is made up of mmWave FMCW radar that uses only one
transmitter–receiver antenna to estimate the AoA.

Our setup consists of an mmWave FMCW radar that is
mounted firmly on a rotor. The rotor in itself is mounted on
a static tripod. The rotor is battery-powered, programmable,
and highly portable. The mmWave radar is mounted on the
head of the rotor. The head of the rotor can rotate the radar
through the entire 360◦ in the azimuth direction based on the
requirements.

The parameters of the rotor that can be programmed include
rotational direction, rotational velocity, and rotational angle.
The rotational velocity of the rotor can be set according to the
number of chirp frames transmitted by the radar per second.
Here, the chirp frame or simply frame is defined as a set
of K equally spaced chirp waveforms that are transmitted
by the radar [14]. The performance of AoA estimation is
directly influenced by the rotational velocity of the rotor. If the
rotational velocity of the rotor is high, then the number of
frames per second that are captured will be less. Similarly,
if the rotational velocity is low, then the captured number
of frames per second from the radar is high. Improved AoA
estimation performance requires higher number of frames
per second, as higher number of frames can capture more
information from multiple targets present in the scene. Hence
in our setup, we have programmed the rotational velocity of
the rotor to be low so as to capture at least one frame per
degree of rotation of the radar.

Based on the adjusted rotational velocity, let the desired
FoV to be covered by the rotor in t seconds be θFoV. In a t
second duration, the radar transmits n f frames. By considering
that the entire θFoV is divided into smaller angle bins (θb),
we obtain the following relation:

θb = θFoV

n f
. (11)

In our experiment scenario, the desired FoV is 180◦. The
n f is 800 and 200 frames for the radars AWR2243 [22]
and AWR1843 [23], respectively. Each frame is made up of
128 chirp waveforms transmitted by the radar. This corre-
sponds to 0.225◦ per frame for AWR2243 and 0.9◦ per frame
for AWR1843. To increase the FoV in the elevation, the radar
is placed vertical to the ground plane in our setup.

The two mmWave FMCW radars, AWR2243 [22] and
AWR1843 [23], which we use in our experiment are manufac-
tured from Texas Instruments. Both the radars have identical
frequency range spanning between 77and81 GHz. In addition,
they have identical number of transmitter and receiver pairs,
RF bandwidth, chirp slope, sampling rate, and ADC samples.
However, the number of frames used is 800 for AWR1843 and
200 for AWR2243. A detailed list of the key parameters of
the radars can be found in Table II.
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TABLE II
mmWAVE FMCW RADAR AWR1843 AND AWR2243 PARAMETERS

TABLE III
EXPERIMENT PARAMETERS

The measurement scenario is an outdoor parking setting
with UAV, car, and humans placed at varying locations with
respect to the radar. Each measurement is taken by positioning
UAV, car, and humans at different locations within a radial dis-
tance of ≈ 26 m and 180◦ FoV in front of the radar. We limit
the radial distance to ≈ 26 m to remain within the permissible
measurement area. However, the mmWave FMCW radars can
measure targets with range upto 300 m [22], [23]. Depending
on the radar version used (AWR1843/AWR2243), a total of
800/200 frames containing the raw IF signal are captured for
each measurement. Each frame of the radar has a duration
of about 40 ms and consists of 128 chirps. Furthermore, each
frame of the radar provides raw IF signal data corresponding to
0.225◦/0.9◦ FoV depending on the radar model. The collected
raw IF signal data are postprocessed in MATLAB [24] to
obtain the range profile for each frame. Finally, the range
profiles for all the frames are stitched together so as to obtain
a 180◦ FoV range–angle map of the whole measurement
scenario that comprises multiple targets [12]. Fig. 3 shows the
experimental setup of the rotating mmWave FMCW radar that
is used to capture the raw IF signals. Other relevant parameters
related to the experiment can be found in Table III.

The range–angle images obtained from MATLAB are fed
into the Yolov3 algorithm for training. We implement a
ten-fold scheme for validation. In this scheme, the training
is performed for ten folds of the experiment. In each fold,
only 80% of the dataset images are used for training and the
remaining are assigned as test images. We use the pretrained
weights available from the Darknet-53 repository to initiate
training. Upon training, the optimum weights are obtained
independently for each fold. Thus, the weights of the 1st
fold are independent of the 2nd fold, and so on. Using this

Fig. 3. Rotating mmWave FMCW radar measurement setup.

approach, we are implicitly removing any bias that is asso-
ciated with training. The weights obtained after training are
used on the test images to obtain predictions. The predictions
from the Yolov3 algorithm are range–angle images that contain
bounding boxes on the detected object. It is to be noted that
each pixel dimension in the range–angle image corresponds
to a specific range and angle in the measurement setup.
Hence, the centroid coordinates of the detected bounding box
correspond to the target object’s estimated range and AoA
in the measurement setup. Once AoA estimation is obtained,
the algorithm performance can be calculated by computing
the RMSE between the AoA estimation and the ground-truth
angle of the target.

B. Dataset Details
Based on the above measurement setup, we have collected

the raw IF signal data from two mmWave FMCW radars,
AWR2243 and AWR1843 for different target objects. The
target objects include combinations of UAV, car, and humans
positioned at various locations in front of the radar. We used
the AWR2243 mmWave FMCW radar to capture the raw
IF signals of UAV, car, and humans. Similarly, we used the
AWR1843 mmWave FMCW radar to collect the raw IF signals
of humans. The collected raw IF signals are processed in
MATLAB to obtain the range profile for each frame. The range
profiles for each frame are stitched together to obtain the radar
range–angle images. We have created three datasets based on
these range–angle images. The first dataset contains UAV, car,
and humans, while the second dataset comprises only UAV
and car combination. The third dataset contains range–angle
images of only human targets. The first, second, and third
datasets are named as Set1_UavCarHumans, Set2_UavCar,
and Set3_OnlyHumans, respectively. The range–angle images
obtained after processing from MATLAB have a resolution of
875 × 656 pixels for Set1_UavCarHumans and Set2_UavCar.
Similarly, the range–angle images in Set3_OnlyHumans have
a resolution of 1167 × 875 pixels.

The dataset measurement cases are detailed in
Tables IV–VI, respectively. The different cases are labeled
as AA, BB, and CC ….OO depending on the dataset. The
entries inside the table are represented as an object that is
positioned at a specified distance and angle with respect to
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TABLE IV
MEASUREMENT CASES FOR SET1_UAVCARHUMANS (RANGE IN METERS AND ANGLE IN DEGREES)

TABLE V
MEASUREMENT CASES FOR SET2_UAVCAR (RANGE IN METERS AND ANGLE IN DEGREES)

TABLE VI
MEASUREMENT CASES FOR SET3_ONLYHUMANS (RANGE IN METERS AND ANGLE IN DEGREES)

the radar. The abbreviations for the labels used in the table
entries are given toward the bottom of the respective tables.
Hence, the first entry in case AA of Table VI depicts a person
at 5 m and 0◦ with respect to the radar. The rest of the entries
can be interpreted as follows: a second person at 7 m and
30◦, the third person at 9 m and 60◦, the fourth person at

11 m and 90◦, and the fifth person positioned at 13 m and
120◦ with respect to the radar. Fig. 4 shows one particular
entry of the measurement setup for Set3_OnlyHumans.

The range–angle images depict the signatures of the dif-
ferent target objects, UAV, car, and humans. To train using
the Yolov3 algorithm, we draw bounding boxes on the
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Fig. 4. Measurement setup for case AA from Set3_OnlyHumans.

TABLE VII
RMSE AND ACCURACY VALUES FOR TEN FOLDS

range–angle images using the LabelImg software [25]. The
bounding boxes are drawn such that the centroid of the boxes
represents the AoA of the target object.

VI. RESULTS

The labeled range–angle images are used to train the
Yolov3 algorithm for optimum weight parameters. Training
is performed for ten folds of the experiment. In each fold
of the experiment, training is executed for 6000 iterations so
that the average loss is minimized. The average loss versus
iterations for the 7th fold of the experiment can be observed
in Fig. 5. Furthermore, the accuracy for each fold of the
experiment is listed in Table VII. As observed and calculated
from Table VII, we obtain a relatively high average classifica-
tion accuracy of 98.20%, demonstrating the reliability of our
approach. The predicted classification can be observed on the
range–angle image as shown in Fig. 6. The prediction statistics
can also be visualized with the help of a confusion matrix
as shown in Fig. 7. The confusion matrix shows that UAV,
car, and humans are classified 97.89%, 99.85%, and 99.28%,

Fig. 5. Average loss versus iteration curve for the 7th fold.

respectively. The average precision, recall, and F1-score for
ten folds of the experiment are 0.991, 0.992, and 0.991,
respectively.

The performance of the algorithm to estimate the AoA is
calculated using the RMSE value. Table VII lists the different
RMSE values obtained for each fold of the algorithm for
different test scenarios. It can be seen that the average AoA
RMSE value for UAV, car, and humans is 1.0800◦, 1.2922◦,
and 1.0225◦, respectively. Interestingly, the average RMSE
value of cars is greater than that of UAV and humans. This is
expected as it aligns with the fact that the car has more AoA
spread due to its large size. The proposed method implies that
it is difficult to accommodate the car to a single AoA due to
its large size when compared with UAV and human.

Table VIII shows the advantages of the proposed method
over other similar techniques such as 2-D-estimation of signal
parameters via rotational invariant technique (ESPRIT) [26],
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TABLE VIII
COMPARING THE ADVANTAGES OF THIS WORK WITH OTHER TECHNIQUES

Fig. 6. Images depicting Yolov3 class prediction for range–angle images from all three datasets. (a) Set1_UavCarHumans. (b) Set2_UavCar.
(c) Set3_OnlyHumans.

Fig. 7. Confusion matrix.

discrete Fourier transform-ESPRIT (DFT-ESPRIT) [27], dual-
smoothing [28], clustered ESPRIT [29], and rotating radar [13]
in terms of the number of antennas and target classifica-
tion. It is observed that the proposed method is similar
to the rotating radar technique as both use just a single
transmitter–receiver antenna for detecting multiple nonin-
teracting targets. However, our method provides an added
advantage of target classification along with AoA estimation.
In addition, the proposed method also has a lower RMSE error
when compared with the rotating radar technique.

VII. CONCLUSION

The AoA estimation using mmWave FMCW radars is not
accurate due to limited number of antennas. As a result,
target localization is imperfect in critical applications involving
UAVs and GCS. This work demonstrated that the FoV and
AoA estimation of mmWave FMCW radars can be improved
by combining a mechanical rotor setup with cutting-edge
computer vision techniques such as Yolov3. The radar setup’s
range–angle images were fed into the Yolov3 algorithm, which
detected, classified, and localized multiple targets in the scene.
The proposed method achieved very high accuracy for target
classification with low AoA estimation error outperforming

traditional techniques. Evaluating the proposed approach’s
real-time performance on UAVs and GCSs to reduce latency
in target detection and localization could be a potential future
research direction.

REFERENCES

[1] A. N. Wilson, A. Kumar, A. Jha, and L. R. Cenkeramaddi, “Embed-
ded sensors, communication technologies, computing platforms and
machine learning for UAVs: A review,” IEEE Sensors J., vol. 22, no. 3,
pp. 1807–1826, Feb. 2022.

[2] T. Yang, A. De Maio, J. Zheng, T. Su, V. Carotenuto, and
A. Aubry, “An adaptive radar signal processor for UAVs detection
with super-resolution capabilities,” IEEE Sensors J., vol. 21, no. 18,
pp. 20778–20787, Sep. 2021.

[3] A. Aubry, V. Carotenuto, A. De Maio, and G. Foglia, “Exploiting
multiple a priori spectral models for adaptive radar detection,” IET
Radar, Sonar Navigat., vol. 8, no. 7, pp. 695–707, Aug. 2014.

[4] A. Aubry, V. Carotenuto, A. De Maio, and M. A. Govoni,
“Multi-snapshot spectrum sensing for cognitive radar via block-
sparsity exploitation,” IEEE Trans. Signal Process., vol. 67, no. 6,
pp. 1396–1406, Mar. 2019.

[5] A. Aubry, A. D. Maio, L. Pallotta, and A. Farina, “Median matrices
and their application to radar training data selection,” IET Radar, Sonar
Navigat., vol. 8, no. 4, pp. 265–274, Apr. 2014.

[6] A. Aubry, A. De Maio, and V. Carotenuto, “Optimality claims for the
FML covariance estimator with respect to two matrix norms,” IEEE
Trans. Aerosp. Electron. Syst., vol. 49, no. 3, pp. 2055–2057, Jul. 2013.

[7] P. Braca, A. Aubry, L. M. Millefiori, A. De Maio, and S. Marano, “Multi-
class random matrix filtering for adaptive learning,” IEEE Trans. Signal
Process., vol. 68, pp. 359–373, 2020.

[8] W. Wei et al., “DOA estimation of distributed mmWave radar system
via fast iterative adaptive approach,” in Proc. Int. Conf. Control, Autom.
Inf. Sci. (ICCAIS), Xi’an, China, 2021, pp. 414–418.

[9] M. Z. Ikram, M. Ali, and D. Wang, “Joint antenna-array calibration and
direction of arrival estimation for automotive radars,” in Proc. IEEE
Radar Conf. (RadarConf), May 2016, pp. 1–5.

[10] D. Oh and J.-H. Lee, “Low-complexity range-azimuth FMCW radar
sensor using joint angle and delay estimation without SVD and EVD,”
IEEE Sensors J., vol. 15, no. 9, pp. 4799–4811, Sep. 2015.

[11] S. Kim and K.-K. Lee, “Low-complexity joint extrapolation-MUSIC-
based 2-D parameter estimator for vital FMCW radar,” IEEE Sensors
J., vol. 19, no. 6, pp. 2205–2216, Mar. 2019.

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on August 21,2023 at 10:36:08 UTC from IEEE Xplore.  Restrictions apply. 



3182 IEEE SENSORS JOURNAL, VOL. 23, NO. 3, 1 FEBRUARY 2023

[12] S. Gupta, P. K. Rai, A. Kumar, P. K. Yalavarthy, and
L. R. Cenkeramaddi, “Target classification by mmWave FMCW
radars using machine learning on range-angle images,” IEEE Sensors
J., vol. 21, no. 18, pp. 19993–20001, Sep. 2021.

[13] L. R. Cenkeramaddi et al., “A novel angle estimation for mmWave
FMCW radars using machine learning,” IEEE Sensors J., vol. 21, no. 8,
pp. 9833–9843, Apr. 2021.

[14] The Fundamentals of Millimeter Wave Radar Sensors.
Accessed: Nov. 2022. [Online]. Available: https://www.ti.com/lit/wp/
spyy005a/spyy005a.pdf

[15] FMCW Radars—Range Estimation. Accessed: Nov. 2022. [Online].
Available: https://training.ti.com/intro-mmwave-sensing-fmcw-radars-
module-1-range-estimation

[16] FMCW Radars—Angle Estimation. Accessed: Nov. 2022. [Online].
Available: https://training.ti.com/intro-mmwave-sensing-fmcw-radars-
module-5-angle-estimation

[17] Introduction to mmWave Sensing—FMCW Radars. Accessed: Nov. 2022.
[Online]. Available: https://training.ti.com/sites/default/files/docs/
mmwaveSensing-FMCW-offlineviewing_0.pdf

[18] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
2018, arXiv:1804.02767.

[19] J. Redmon. (2016). Darknet: Open Source Neural Networks in C.
[Online]. Available: http://pjreddie.com/darknet/

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015, arXiv:1512.03385.

[21] K. M. Ghori, R. A. Abbasi, M. Awais, M. Imran, A. Ullah, and
L. Szathmary, “Performance analysis of different types of machine
learning classifiers for non-technical loss detection,” IEEE Access, vol. 8,
pp. 16033–16048, 2020.

[22] Texas Instruments AWR2243. Accessed: Nov. 2022. [Online]. Available:
https://www.ti.com/document-viewer/AWR2243/datasheet

[23] Texas Instruments AWR1843. Accessed: Nov. 2022. [Online]. Avail-
able: https://www.ti.com/document-viewer/AWR1843/datasheet/device-
overview-x3342#x3342

[24] MATLAB. Accessed: Nov. 2022. [Online]. Available: https://
www.mathworks.com/products/MATLAB.html

[25] LabelImg Software. Accessed: Nov. 2022. [Online]. Available: https://
github.com/tzutalin/labelImg

[26] D. G. Oh, Y. H. Ju, and J. H. Lee, “Subspace-based auto-paired range
and DOA estimation of dual-channel FMCW radar without joint diago-
nalisation,” Electron. Lett., vol. 50, no. 18, pp. 1320–1322, Aug. 2014.

[27] S. Kim, D. Oh, and J. Lee, “Joint DFT-ESPRIT estimation for TOA and
DOA in vehicle FMCW radars,” IEEE Antennas Wireless Propag. Lett.,
vol. 14, pp. 1710–1713, 2015.

[28] D. G. Oh, Y. H. Ju, H. Nam, and J.-H. Lee, “Dual smoothing DOA
estimation of two-channel FMCW radar,” IEEE Trans. Aerosp. Electron.
Syst., vol. 52, no. 2, pp. 904–917, Apr. 2016.

[29] W.-H. Fang and L.-D. Fang, “Joint angle and range estimation with
signal clustering in FMCW radar,” IEEE Sensors J., vol. 20, no. 4,
pp. 1882–1892, Feb. 2020.

A. N. Wilson received the B.Tech. degree
in electronics and communication engineering
from the Government Model Engineering Col-
lege, Thrikkakara, Kochi, India, in 2012, and
the M.Tech. degree from the Indian Institute
of Technology Bombay, Powai, India, in 2016.
He is currently pursuing the Ph.D. degree with
the Department of ICT, University of Agder,
Grimstad, Norway.

His research interests include the different
aspects of radar signal processing, machine

learning (ML) for autonomous cyber-physical systems, and wireless
communications.

Abhinav Kumar (Senior Member, IEEE)
received the B.Tech., M.Tech., and Ph.D.
degrees in electrical engineering from the Indian
Institute of Technology Delhi, New Delhi, India,
in 2009 and 2013, respectively.

From September 2013 to November 2013,
he was a Research Associate at the Indian
Institute of Technology Delhi. From December
2013 to November 2014, he was a Postdoctoral
Fellow at the University of Waterloo, Waterloo,
ON, Canada. Since November 2014, he has

been with the Indian Institute of Technology Hyderabad, Hyderabad,
India, where he is currently an Associate Professor. His research
interests are in the different aspects of wireless communications and
networking.

Ajit Jha was born in Nepal, India, in 1984.
He received the B.Sc. degree in electronics and
communication engineering from Khulna Univer-
sity, Khulna, Bangladesh, in 2007, the European
master’s degree in photonic networks from Aston
University, Birmingham, U.K., and Scuola Supe-
riore Sant’Anna, Pisa, Italy, in 2012, and the
Ph.D. degree from the Technical University of
Catalunya, Barcelona, Spain, and the Karlsruhe
Institute of Technology, Karlsruhe, Germany,
in 2016.

From 2016 to 2019, he worked at various industries related to
autonomous vehicle working on innovative technologies such as automo-
tive Ethernet, advanced driver assistance system (ADAS), surround view
systems, camera mirror systems, and blind sport warning to name a few.
Currently, he is an Associate Professor of mechatronics at the Depart-
ment of Engineering Sciences, University of Agder, Grimstad, Norway.
He is actively involved in research focused on sensors, sensor fusion,
image/signal processing, machine learning (ML), ADAS functionalities
toward autonomous systems, and the IoT. He has (co) authored more
than 20 articles and two patents.

Dr. Jha has been an active reviewer and a member of technical
program committee of numerous international peer-reviewed journals
and conferences. He was a recipient of the Erasmus Mundus Masters
Course (EMMC) and the Erasmus Mundus Joint Doctorate (EMJD) both
funded by the European Union (EU).

Linga Reddy Cenkeramaddi (Senior Member,
IEEE) received the master’s degree in electrical
engineering from the Indian Institute of Technol-
ogy Delhi (IIT Delhi), New Delhi, India, in 2004,
and the Ph.D. degree in electrical engineer-
ing from the Norwegian University of Science
and Technology (NTNU), Trondheim, Norway,
in 2011.

He worked at Texas Instruments, Dallas, TX,
USA, on mixed-signal circuit design before join-
ing the Ph.D. program at NTNU. After finishing his

Ph.D. degree, he worked on radiation imaging for an atmosphere–space
interaction monitor (ASIM mission to the International Space Station)
at the University of Bergen, Bergen, Norway, from 2010 to 2012. He is
currently a Leader of the Autonomous and Cyber-Physical Systems
(ACPS) Research Group and a Professor with the University of Agder,
Grimstad, Norway. He has coauthored over 120 research publications
that have been published in prestigious international journals and stan-
dard conferences. His main scientific interests are in cyber-physical
systems, autonomous systems, and wireless embedded systems.

Dr. Cenkeramaddi’s master’s students won the Best Master Thesis
Awards in information and communication technology (ICT). He is a
Principal Investigator and a Co-Principal Investigator of many research
grants from the Norwegian Research Council. He is a member of
the editorial boards of various international journals and the technical
program committees of several IEEE conferences.

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on August 21,2023 at 10:36:08 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


