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ABSTRACT
Various real world applications in science and industry are often
recorded over time as asynchronous event sequences. These event
sequences comprise of the time of occurrence of events. Differ-
ent applications including such event sequences are crime analysis,
earthquake prediction, neural spiking train study, infectious disease
prediction etc. A principled framework for modeling asynchronous
event sequences is temporal point process. Recent works on neural
temporal point process have combined the theoretical foundation
of point process with universal approximation ability of neural
networks. However, the predictions made by these models are un-
certain due to incorrect model inference. Therefore, it is highly
desirable to associate uncertainty with the predictions as well. In
this paper, we propose a novel model, Ensemble Neural Hawkes
Process, which is capable of predicting event occurrence time along
with uncertainty, hence improving the generalization capability.
We also propose evaluation metric which captures the uncertainty
modelling capability for event prediction. The efficacy of proposed
model is demonstrated using various simulated and real world
datasets.

CCS CONCEPTS
• Computer systems organization → Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.
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1 INTRODUCTION
Many often real-world activities are recorded over time as asynchro-
nous event sequences, which essentially means that time interval
between events are as important as order of the events. These
discrete and irregular event sequences are modeled using a prin-
cipled framework known as temporal point process (TPP) [20].
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A keytool of temporal point process is the conditional intensity
function which models the instantaneous occurrence of event. A
commonly used point process known as Hawkes process [12] has
a self-triggering property, i.e occurrence of the previous events
trigger occurrences of future events. Hawkes process has been used
in earthquake modelling [11], crime forecasting [14], finance [3, 8]
and epidemic forecasting [5, 7]. Hawkes process assumes that past
events always bring positive influence on current events. However,
such a strong assumption might lead to model misspecification.
Therefore, recent works use neural network to model conditional
intensity function.

Recent works of neural temporal point process have brought
point process to mainstream machine learning. Despite this, real
world implementation of TPP is still scarce. One of the plausible rea-
sons could be that current literature doesn’t consider uncertainty
quantification over the predictions. Uncertainty often emerges due
to limitation of modeling capabilities. Studies have shown that
DNNs are overconfident in their prediction results and produce
miscalibrated softmax output probabilities for classification [10].
This may lead to lack of confidence in the predictions, hence limit-
ing its use in real-world scenarios, e.g in critical applications like
seismology, finance and epidemiology etc. Due to this criticality,
the applications must be associated with uncertainty values along
with the predictions in order to reduce the risk. Applications of un-
certainty quantification for time-to-event modeling are promising
and can aid in better decision making. For example, it will help in
better risk assessment if we can obtain uncertainty over predicted
time of occurrence of earthquake to have a better understanding of
seismic vulnerability and hence, earthquake risk assessment. Simi-
larly, it is quintessential to model the high-frequency trading events
such that model can predict uncertainty associated with the time
of occurrence of buy-sell orders for limit book order transactions.
Awareness of such uncertainty in such settings can help to manage
resources, react to market changes accordingly and understand
market microstructure in a better way. In above examples, we can
observe that overconfident incorrect predictions can be deleterious.
Therefore, uncertainty quantification is often crucial for assessing
trustworthiness of the predictions of the time-to-event model.

Bayesian Neural Networks (BNNs) [9, 16] are widely used frame-
work to find uncertainty estimates for deep models. However, en-
sembles [13] created from different initializations have been shown
to outperform various approximate Bayesian neural network mod-
els. Deep ensembles [6] are considered to be fully congruous with
Bayesianmodel averaging which estimates posterior distribution by
marginalizing the parameters [23]. Several works have been done
in this direction for establishing effectiveness of deep ensembles in
a theoretical manner [2] and to improve the effectiveness of deep
ensembles [1, 15, 19, 26, 27]. Here, uncertainty is captured due to
optimization to different local minima. However, this setting might

228

https://doi.org/10.1145/3570991.3571002
https://doi.org/10.1145/3570991.3571002
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3570991.3571002&domain=pdf&date_stamp=2023-01-04


CODS-COMAD 2023, January 4–7, 2023, Mumbai, India Manisha Dubey, et al.

limit uncertainty estimation ability. [22] considers different hyper-
parameters to bring diversity during uncertainty quantification.

In this work, we propose a novel yet less studied problem of
uncertainty prediction over time-to-event occurrence. We base
our contribution on the insight that ensemble neural networks,
which utilizes multiple independently trained neural networks, can
be used for uncertainty modeling. Further, we propose multiple
variants to bring diversity to the network. Our work discusses pos-
sibilities to bring diversity in time-to-event models. The proposed
methods form a set of simple yet effective ways to obtain uncer-
tainty along with time of occurrence of events for event modeling.

There are few works [21, 28, 29] where uncertainty is captured
over the parameters of parametric hawkes process. In [4] authors
have proposed an adversarial non-parametric model that accounts
for calibration and uncertainty for time to event and uncertainty
prediction. Another work [24] has introduced a model for uncer-
tainty in Accelerated Failure Time (AFT) models using a combina-
tion of RNN and sparse Gaussian process. However, neural point
processes are a widely adopted model for event modeling due to
its theoretical and practical effectiveness in various applications.
Therefore, the goal of this paper is to augment the capabilities of
the neural Hawkes process to predict future events with the uncer-
tainty estimation capability. To achieve this, we propose a novel
approach which combines neural Hawkes process and ensembles
for performing uncertainty estimation for event-time prediction.
In summary, our contributions are as follows -

• We propose a novel simple and effective model, Ensemble
Neural Hawkes Process, which combines the advantages
of the neural Hawkes process and ensembles for modelling
uncertainty over time of occurrence of events.

• We develop multiple variants of Ensemble Neural Hawkes
Process to diversify the models so that it can be adapted to
varied applications for better uncertainty quantification.

• We propose new evaluation metrics for uncertainty esti-
maion which can be used for time-to-event modeling.

• We demonstrate the effectiveness of ENHP for uncertainty
modelling and prediction of event times and locations on
several simulated and real world data.

2 METHODOLOGY
2.1 Problem Definition
We consider the input sequence 𝑆 = {𝑡𝑖 }𝑁𝑖=1 in the observation
interval [0,𝑇 ] and inter-event time interval as 𝜏𝑖 = 𝑡𝑖 − 𝑡𝑖−1. Our
goal is to predict the time of occurrence of next events along with
uncertainty estimates over the predicted time.

2.2 Ensemble Neural Hawkes Process
[13] proved deep ensembles have improved performance along with
uncertainty estimation over single models. A plausible reason for
this could be attributed to the fact that deep ensembles present
different samples from various modes of the loss setting [18]. Along
this direction, a recent theoretical work [2] has suggested that
multi-view structure of data can be captured by ensemble neural
network in a better way. Leveraging these ideas, we propose Ensem-
ble Neural Hawkes Process where each model of ensemble captures

different features, hence boosting the predictive performance along
with uncertainty quantification for events as well.

Each base learner of the ensemble will be neural Hawkes pro-
cesses [17], which has modeled intensity function through the
combination of recurrent neural network followed by feedforward
neural network. Recurrent Neural Networks (RNNs) is used to
represent history using hidden representation 𝒉𝑖 at time 𝑡𝑖 , can be
denoted as 𝒉𝑖 = 𝑅𝑁𝑁 (𝜏𝑖 ,𝒉𝑖−1;𝑊𝑟 ) where𝑊𝑟 represents the param-
eters associated with RNN. This is used as input to a feedforward
neural network to compute the hazard function which is used for
computing the likelihood of event occurrences. In the proposed
model, we consider input to the feed-forward neural network 1)
hidden representation from RNN, 2) time of event occurrence and
3) elapsed time from the most recent event. To better capture the
uncertainty in predicting points in future time, we considered the
time at which the intensity function needs to be evaluated. We
model the conditional intensity as a function of the elapsed time
from the most recent event _(𝑡 |𝐻𝑡 ) = _(𝑡 − 𝑡𝑖 |𝒉𝑖 , 𝑡𝑖 ) where _(·) is a
non-negative function referred to as a hazard function. Therefore,
we define cumulative hazard function in terms of inter-event in-
terval 𝜏 = 𝑡 − 𝑡𝑖 as Φ(𝜏 |𝒉𝑖 , 𝑡) =

∫ 𝜏

0 _(𝑠 |𝒉𝑖 , 𝑡)𝑑𝑠 . Cumulative hazard
function is modeled using a feed-forward neural network (FNN) as
Φ(𝜏 |𝒉𝑖 , 𝑡) = 𝐹𝑁𝑁 (𝜏, ℎ𝑖 , 𝑡 ;𝑊𝑡 ).

We use a combination of𝑀 such models to create a more power-
ful model (ENHP)which is capable of giving better predictions along
with the uncertainty quantification. The recurrent neural network
of each base model can be denoted as 𝒉 𝑗

𝑖
= 𝑅𝑁𝑁 (𝜏𝑖 ,𝒉 𝑗𝑖−1;𝑊

𝑗
𝑟 ).

Feed-forward neural network (FNN) models cumulative hazard
function for each base model separately which can be expressed
as Φ𝑗 (𝜏 |𝒉 𝑗

𝑖
, 𝑡) = 𝐹𝑁𝑁 (𝜏, ℎ 𝑗

𝑖
, 𝑡 ;𝑊 𝑗

𝑡 ). Here,𝑊
𝑗
𝑡 represents the param-

eters associated with feed-forward neural network for 𝑗𝑡ℎ base
model. Combining this, the log-likelihood can be modified as -
1
𝑀

𝑀∑︁
𝑗=1

𝑁∑︁
𝑖=1

(
log( 𝜕

𝜕𝜏
Φ𝑗 (𝜏𝑖 |𝒉 𝑗𝑖−1, 𝑡𝑖 ;𝑊

𝑗 )) − Φ𝑗 (𝜏𝑖 |𝒉 𝑗𝑖−1, 𝑡𝑖 ;𝑊
𝑗 )
)
(1)

where 𝜏𝑖 = 𝑡𝑖 − 𝑡𝑖−1 and𝑊 𝑗 = {𝑊 𝑗
𝑟 ,𝑊

𝑗
𝑡 } represents the combined

weights associated with RNN and FNN for 𝑗𝑡ℎ ensemble model.
For promoting diversity in ensemble, one can go beyond relying

on random initializations in order to avoid redundancy in model
averaging. Several works [15, 26] have introduced methods to bring
diversity in the ensembles.Wewill use the combination of following
ways to consider variety into ensembles - 1) Random initializa-
tion: The loss landscape of neural networks in non-linear due to
incorporation of activation functions. Therefore, random initial-
ization in neural network can lead to different training results. 2)
Data shuffling: In practical settings, neural networks are trained
in a better way with the use of mini-batches. Hence, data shuffling
can lead to variety in base learners. 3) Bootstrapping: This allows
to vary the distribution of the training set by sampling new sets of
training samples for different base learners. 4) Different Network
Architecture: Upon using different network architectures, one can
use a combination of different loss landscapes, hence bringing in
the variety in ensembles.

The advantage of the approach is that these individual networks
can be trained in parallel to get𝑀 values of cumulative intensity
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for each event. These 𝑀 cumulative intensities are then used to
predict future events. Further we discuss prediction methodology.

2.3 Prediction and Uncertainty Estimation
For prediction, ensemble models performmodel combination where
a weighted combination of all the base learners are used to predict
time of occurrence of next event rather than a point estimate of the
parameters. This allows them to make robust predictions and model
uncertainty over the predictions. The probability of predicting the
time of next event given the history of previous event times with
last event at 𝑡𝑁 is computed as

𝑝 (𝑡∗ |H) = 1
𝑀

𝑀∑︁
𝑗=1

𝑝 (𝑡∗ |H ;𝑊 𝑗 )

where𝑊 𝑗 represents the weights from 𝑗𝑡ℎ model of ensemble. For
each network, we use the bisection method [17] to predict the
time of the next event. Bisection method provides the median 𝑡∗ of
the predictive distribution over next event time using the relation
Φ(𝑡∗ − 𝑡𝑁 |𝒉 𝑗

𝑁
, 𝑡∗;𝑊 𝑗 ) = log(2). We obtain 𝑆 median event times,

with each median event time 𝑡∗𝑗 obtained using a network with
weight𝑊 𝑗 . The mean event time 𝑡∗ is then found by averaging
𝑀 times obtained from different sampled weights. The variance of
predicted time is obtained as 𝑉𝑎𝑟 (𝑡∗) = 𝜎∗2 = 1

𝑀

∑𝑀
𝑗=1 (𝑡∗𝑗 − 𝑡∗)2.

We also define lower and upper bound of predicted time as -
𝑡𝐿∗ = 𝑡∗ − 𝑘𝜎∗ 𝑡𝑈∗ = 𝑡∗ + 𝑘𝜎∗ (2)

3 EXPERIMENTS
Dataset Details. We extensively perform experiments on six

datasets including two synthetic and four real-world datasets. 1)
Simulated Poisson (Sim-Poisson): We simulate a homogeneous
poisson process with conditional intensity _ = 1. 2) Simulated
Hawkes (Sim-Hawkes): We use the Hawkes process, in which
the kernel function is given by the sum of multiple exponential
functions. The conditional intensity function is given by _(𝑡) =

` + ∑
𝑡𝑖<𝑡

∑2
𝑗=1 𝛼 𝑗 𝛽 𝑗 exp (−𝛽 𝑗 (𝑡 − 𝑡𝑖 )). We have used ` = 0.05,

𝛼1 = 0.4, 𝛼2 = 0.4, 𝛽1 = 1.0, 𝛽1 = 20.0. 3) Crime: This dataset
contains the records of the police department calls for service in
San Francisco 1. Each record contains the crime and timestamp as-
sociated with the call along with other information. 4) Music: This
dataset contains the history of music listening of users at lastfm 2.

Baselines. To the best of our knowledge, this is the first work in
this direction. Therefore, we propose our own baselines which are
as - NHP: Neural Hawkes process (NHP) [17] serves as a baseline
for evaluating the performance of predicted time of occurrence of
event. SHP: We consider the standard Hawkes Process with expo-
nential kernel as another baseline. NHP and SHP model probability
distribution over event times 𝑝 (𝜏 |ℎ𝑖 ), though they do not model
epistemic uncertainty. EnsembleHawkes (EH):We propose a new
baseline capable of modelling epistemic uncertainty - an ensemble
of parametric HP using exponential kernels with different hyper-
parameters. To avoid convergence issues, we use least-square loss
[25] for training EH. Due to this, MNLL of EH won’t be comparable

1https://catalog.data.gov/dataset/police-calls-for-service
2https://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html

with other methods which use survival likelihood. Each ensemble
consists of 5 models with decays ranging between 0.001 to 0.1.

Evaluation metrics. We consider these metrics for evaluation 1)
Mean Negative Log Likelihood (MNLL): Log-likelihood con-
siders the probability of predicting the actual observations, and
we expect a good model to have a lower MNLL score. 2) Mean
Absolute Error for prediction (MAE): The measure computes
purely the absolute error in predicting the time without considering
the probability. A model with low MAE will reflect a better model.
3) Prediction Ratio (PR): We propose this metric to determine
quality of intervals for event prediction task. It represents the ratio
of number of times an actual event occurs within the estimated
interval out of total number of events. Different values of 𝑘 are
used while finding interval in (2). Higher PR will represent a better
model. 4) Prediction Bounds (PB): It represents the length of
difference between upper bound and lower bound of the predicted
interval (Refer (2)). We can’t always consider that higher PB will
be better because too large intervals may not represent meaningful
uncertainty. So, we use this metric for qualitative evaluation.

Implementation Details. Our ensemble includes 5 neural Hawkes
process as base learner. We investigate techniques mentioned in
Section 2.2 to diversify the samples. We report results on the vari-
ants of the models as discussed below - ENHP-Model1: Each base
learner of ensemble uses different initializations. Also, training
data is shuffled for modeling diverse distributions. The dropout
rate and regularization constant is 0.2 and 1e-2 respectively for
this. ENHP-Model2: Each model of ensemble uses different initial-
izations, hyperparameters and shuffled training data. Training data
is shuffled for modeling diverse distributions. The dropout rate and
regularization constant for each model is randomly sampled from
[0.1, 0.2, 0.4, 0.5, 0.8, 0.9] and [1e-1, 1e-2, 1e-3] respectively. ENHP-
Model3: In addition to the settings of ENHP-Model2, this model is
fed bootstrapped samples of input. The inputs are sampled with
replacement with probability 0.2 to get input for each base-learner.
ENHP-Model4: In addition to the settings of ENHP-Model3, this
model consists of ensemble of feed-forward network which mod-
els cumulative hazard function but it contains common recurrent
neural network. For aggregation, we perform uniform weights for
each deep ensemble base learner. We perform single step lookahead
prediction on test inputs.

4 RESULTS AND ANALYSIS
4.1 Results
We report our results in Table 1. We can observe that methods
from the proposed methodologies are performing better in terms of
predictive evaluation for all datasets. The variants of ENHP model
achieve lower MNLL, implying better predictive performance. Also,
MAE is lowest for the proposed methods for all the datasets. We
can also observe that proposed methodologies are better in terms of
uncertainty quantification. ENHP variants are showing better cov-
erage as compared to baselines. Therefore, we have created wider
intervals for time-to-event modeling which can capturemore events
within the predicted intervals. We can observe that among the vari-
ants of ENHP, there is no model which performs for all datasets.
We can select the model whichever better suits our needs for a
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Dataset Method MNLL MAE PR@1 PR@2 PR@5 PB
Sim-Poisson SHP 1.21 0.81 0.0 0.0 0.0 0.0

NHP 1.36 0.76 0.0 0.0 0.0 1e-6
EH * 0.172 0.019 0.031 0.061 0.0361

ENHP-Model1 -1.023 0.071 0.009 0.017 0.043 0.0019
ENHP-Model2 -1.015 0.071 0.006 0.011 0.028 0.0012
ENHP-Model3 -1.014 0.071 0.009 0.017 0.043 0.0019
ENHP-Model4 -1.013 0.071 0.005 0.0.011 0.026 0.0019

Sim-Hawkes SHP 1.08 0.382 0.0 0.0 0.0 0.0
NHP 1.26 0.83 0.0 0.0 0.0 1e-6
EH * 0.234 0.012 0.029 0.058 0.0431

ENHP-Model1 -0.503 0.114 0.055 0.112 0.246 0.017
ENHP-Model2 -0.507 0.109 0.235 0.433 0.756 0.071
ENHP-Model3 -0.523 0.109 0.204 0.379 0.724 0.061
ENHP-Model4 -0.470 0.109 0.251 0.441 0.701 0.074

Crime SHP 1.809 0.903 0.0 0.0 0.0 0.0
NHP 1.42 0.82 0.0 0.0 0.0 1e-6
EH * 0.242 0.002 0.005 0.015 0.0515

ENHP-Model1 -1.051 0.172 0.174 0.531 1.000 0.218
ENHP-Model2 -1.045 0.103 0.559 0.945 1.000 0.218
ENHP-Model3 -1.048 0.101 0.564 0.945 1.000 0.215
ENHP-Model4 -0.917 0.067 0.152 0.297 0.661 0.031

Music SHP 1.239 0.997 0.0 0.0 0.0 0.0
NHP 0.97 0.58 0.0 0.0 0.0 1e-6
EH * 0.104 0.265 0.312 0.458 0.045

ENHP-Model1 -1.519 0.074 0.048 0.277 0.679 0.047
ENHP-Model2 -1.278 0.061 0.464 0.542 0.965 0.093
ENHP-Model3 -1.186 0.054 0.471 0.531 0.775 0.089
ENHP-Model4 -1.148 0.046 0.177 0.338 0.491 0.018

Table 1: Comparison of the proposed approaches against the
baselines (Please note that 1) EH uses least square loss and
hence MNLL for EH is not comparable to our results, hence
MNLL for EH is marked with ’*’. 2) We can’t always consider
wider intervals are better because uncertainty might lose its
importance in that case, so we have not boldfaced PB )

particular application. For example, if we consider Music dataset,
if we need tighter bounds we can use ENHP-Model1 which ex-
hibits lower PR@1 and PB. However, if we want wider intervals, we
should use ENHP-Model2. So, the choice of model will depend on
the requirement of the application and how we need to set trade-off
between predictive performance and uncertainty quantification.

4.2 Qualitative Evaluation of Prediction Bounds
An important aspect of uncertainty quantification for time-to-event
modeling is the evaluation of the predicted uncertainty bounds.
Ideally, a more confident model will exhibit smaller uncertainty for
correct predictions. So, prediction bound should be low for correct
predictions and incorrect prediction bounds should have larger
prediction bound. Also, correct predictions should have lower MAE
and incorrect predictions will have higher MAE. So, an ideal model
should lead to lower prediction bound for lower MAE and larger
prediction bound for higher MAE. We acknowledge this behavior
by finding correlation between MAE and PB. Positive correlation
implies that when model is predicting correctly, the predictions
bounds are of smaller length, hence implying that model is more
confident about the predictions. Table 2 displays the correlation
coefficient between MAE and PB. We can observe that there is a
positive correlation for all dataset, which is congruous with the
expected behavior.

Table 2: Correlation between MAE and PB
Dataset Model1 Model2 Model3 Model4

Sim-Poisson 0.004 0.148 0.249 0.149
Sim-Hawkes 0.073 0.0004 0.004 0.0005

Crime 0.067 0.026 0.006 0.063
Music 0.134 0.236 0.709 0.407

Table 3: Effect of using weighted base learner in Ensemble
Sim-Hawkes Crime

Model2 Model4 Model1 Model3
MAE 0.109 0.109 0.171 0.098
PR@1 0.220 0.249 0.169 0.559
PB 0.069 0.070 0.216 0.211

4.3 Discussion
We have considered uniform weights to combine outputs of the
ensemble in the experimental results. This is done because our goal
is to improve predictive performance (MNLL and MAE) as well as
uncertainty modeling ability (PR@k, PB). Using a weighted com-
bination of ensemble could improve the predictive performance
but can affect the uncertainty modeling. This is because, typically
weights are learnt from the validation data based on predictive per-
formance. Moreover, weighted ensemble will imply using weighted
mean and weighted variance. The weighted variance would be
lower if the weights are not uniform (high weights for one or a
few models), since weighted average will be close to the values of a
base learner with high weight and a base learner with high devi-
ation will have low weights and vice-versa. Consequently, PR@k
and PB metrics considering the prediction interval gets affected,
worsening the uncertainty quantification ability of the model. This
behavior is reflected in the results displayed in Table 3, where we
considered the weights of 5 ensembles as [0.5, 0.1, 0.1, 0.1, 0.2] and
choose the best weight combination from the validation data. We
can observe that although weighted model gives better predictive
performance, their uncertainty quantification ability is lower than
their unweighted counterparts. Therefore, we use unweighted com-
bination of ensembles to better capture uncertainty in predictions.

5 CONCLUSION
We propose Ensemble Neural Hawkes Process, a framework com-
bines the advantages of neural Hawkes process and ensembles for
time-to-event prediction along with uncertainty quantification over
the predicted time. We also propose different variants of Ensemble
Neural Hawkes Process which can help in diversifying each neural
Hawkes process. We also propose evaluation metrics for uncer-
tainty quantification suited towards time-to-event modeling. The
proposed framework improves the predictive performance along
with providing uncertainty estimates for the time of occurrence
of event. Our experiments on several simulated and real world
datasets showcase the efficacy of the proposed approach. For future
work, we want to consider uncertainty modeling for neural marked
temporal point process where we can consider uncertainty over
marks along with time of occurrence of event, hence can be useful
for more applications.
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