Search for Subsolar-Mass Binaries in the First Half of Advanced LIGO's and Advanced Virgo's Third Observing Run
Abbott, R and Abe, H and Somala, Surendra Nadh and et al, . (2022) Search for Subsolar-Mass Binaries in the First Half of Advanced LIGO's and Advanced Virgo's Third Observing Run. Physical Review Letters, 129 (6). pp. 1-16. ISSN 0031-9007
Text
PHYSICAL_REVIEW_LETTERS_.pdf - Published Version Restricted to Registered users only Download (562kB) | Request a copy |
Abstract
We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 M-circle dot and 1.0 M-circle dot in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend our previous analyses in two main ways: we include data from the Virgo detector and we allow for more unequal mass systems, with mass ratio q >= 0.1. We do not report any gravitational-wave candidates. The most significant trigger has a false alarm rate of 0.14 yr(-1). This implies an upper limit on the merger rate of subsolar binaries in the range [220 - 24200] Gpc(-3) yr(-1), depending on the chirp mass of the binary. We use this upper limit to derive astrophysical constraints on two phenomenological models that could produce subsolar-mass compact objects. One is an isotropic distribution of equal-mass primordial black holes. Using this model, we find that the fraction of dark matter in primordial black holes in the mass range 0.2 M-circle dot < m(PBH) < 1.0 M-circle dot is f(PBH) equivalent to Omega(PBH)/Omega(DM) less than or similar to 6%. This improves existing constraints on primordial black hole abundance by a factor of similar to 3. The other is a dissipative dark matter model, in which fermionic dark matter can collapse and form black holes. The upper limit on the fraction of dark matter black holes depends on the minimum mass of the black holes that can be formed: the most constraining result is obtained at M-min = 1 M-circle dot, where f(DBH) equivalent to Omega(DBH)/Omega(DM) less than or similar to 0.003%. These are the first constraints placed on dissipative dark models by subsolar-mass analyses.
IITH Creators: |
|
||||
---|---|---|---|---|---|
Item Type: | Article | ||||
Additional Information: | This material is based upon work supported by NSF's LIGO Laboratory which is a major facility fully funded by the National Science Foundation. The authors also gratefully acknowledge the support of the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Netherlands Organization for Scientific Research (NWO), for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigacion, the Vicepresid`encia i Conselleria d'Innovacio, Recerca i Turisme and the Conselleria d'Educacio i Universitat del Govern de les Illes Balears, the Conselleria d'Innovacio, Universitats, Ci`encia i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and the European Union-European Regional Development Fund; Foundation for Polish Science (FNP), the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concertees (ARC) and Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO), Belgium, the Paris Ile-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, the Natural Science and Engineering Research Council Canada, Canadian Foundation for Innovation (CFI), the Brazilian Ministry of Science, Technology, and Innovations, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan, the United States Department of Energy, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN, and CNRS for provision of computational resources. Funding for this project was provided by the Charles E. Kaufman Foundation of The Pittsburgh Foundation and the Institute for Computational and Data Sciences at Penn State. This article has been assigned the document number LIGO-P2100163-v8. | ||||
Uncontrolled Keywords: | GW190412,MERGER,COALESCENCE,PARAMETERS | ||||
Subjects: | Civil Engineering | ||||
Divisions: | Department of Civil Engineering | ||||
Depositing User: | Mr Alauddin Shan Khan | ||||
Date Deposited: | 25 Nov 2022 11:28 | ||||
Last Modified: | 25 Nov 2022 14:19 | ||||
URI: | http://raiithold.iith.ac.in/id/eprint/11429 | ||||
Publisher URL: | https://doi.org/10.1103/PhysRevLett.129.061104 | ||||
OA policy: | https://v2.sherpa.ac.uk/id/publication/13640 | ||||
Related URLs: |
Actions (login required)
View Item |
Statistics for this ePrint Item |