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Abstract: The identification of parameters in nonlinear systems using a partial set of
experimental measurements is considered in this paper. The estimation of these parameters
introduces an optimization problem. For parameter estimation, the use of gradient-based
optimizers often converges to a local minimum rather than the global optimum. To overcome the
local convergence of the parameters, a PD controller algorithm is implemented for estimation.
The addition of a morphing parameter with a proportional-derivative controller (PD) to
the system equation transforms the objective function into convex, and the optimization is
performed using a gradient-based optimizer. To illustrate the nonlinear parameter estimation
using the present approach, a numerical example of Van der Pol-Duffing oscillator is presented.
A comparative analysis is then carried out with global optimization methods, such as genetic
algorithm (GA) and particle swarm optimization (PSO) techniques. The numerical results
confirm that the PD controller algorithm is superior in terms of computational effort and
convergence efficiency.
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1. INTRODUCTION

System simulation requires a validated mathematical
model of the physical system, whose parameters is to be
estimated from the experimental measurements. The iden-
tification of parameters is a difficult task, especially when
nonlinearities are involved in the mathematical model.
Further, it is assumed that only a partial set of experimen-
tal measurements are available. The problem of identifying
the parameters in a mathematical model given a partial
set of experimental data is a matter of interest to many in
the field of biological and physical sciences (Gershenfeld
(1999)). The parameter estimation is generally considered
as an optimization problem, wherein the difference be-
tween experimental and model responses of the physical
system is minimized (Frewin (2013)).

The method of least squares is one of the fundamen-
tal techniques used in the parameter estimation (Ljung
and Söderström (1983)) process. Classical optimization
techniques, such as Gauss–Newton (Rao (2009)), steepest
descent, and Levenberg–Marquardt are gradient-based al-
gorithms that can be employed for estimation, provided
the objective function is convex. In other words, these
methods mostly identify the global optimum, only when
unimodal objective functions are considered. The main
limitation of the gradient-based optimization methods is
that they often converge to a local minimum instead of
global minimum unless the chosen initial guess is near

to global minimum. In many mathematical models, the
parameters appear nonlinearly in the system equation,
and therefore, the objective function becomes multimodal.
The stochastic optimization techniques such as genetic
algorithm (GA), simulated annealing (SA), and particle
swarm optimization (PSO) (Goldberg (2002); Romeijn
and Smith (1994)) can be used to obtain the global op-
timum. However, if a large number of parameters are to
be identified in the system, then these methods become
computationally expensive and time-consuming. The lack
of gradient-based algorithms for the estimation of param-
eters in the multimodal objective function is a bottleneck
in the parameter identification process.

The homotopy methods are one such candidate for ob-
taining the global optimum (Watson and Haftka (1988)).
Vyasarayani et al. (2012b) introduced the homotopy opti-
mization for parameter identification in nonlinear systems.
This method was successfully implemented for the estima-
tion of the parameter in multibody systems, wherein, the
system dynamics is governed by the differential-algebraic
equations (DAEs) (Vyasarayani et al. (2012a)). The cur-
rent work is a direct extension of the homotopy works of
Vyasarayani et al. (2012a). In the homotopy method, a
high gain observer and a morphing parameter are intro-
duced into the objective function implicitly. The original
multimodal objective function is then transformed into a
simple convex function. This convex function is slowly
morphed back to the original objective function by re-
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unimodal objective functions are considered. The main
limitation of the gradient-based optimization methods is
that they often converge to a local minimum instead of
global minimum unless the chosen initial guess is near

to global minimum. In many mathematical models, the
parameters appear nonlinearly in the system equation,
and therefore, the objective function becomes multimodal.
The stochastic optimization techniques such as genetic
algorithm (GA), simulated annealing (SA), and particle
swarm optimization (PSO) (Goldberg (2002); Romeijn
and Smith (1994)) can be used to obtain the global op-
timum. However, if a large number of parameters are to
be identified in the system, then these methods become
computationally expensive and time-consuming. The lack
of gradient-based algorithms for the estimation of param-
eters in the multimodal objective function is a bottleneck
in the parameter identification process.

The homotopy methods are one such candidate for ob-
taining the global optimum (Watson and Haftka (1988)).
Vyasarayani et al. (2012b) introduced the homotopy opti-
mization for parameter identification in nonlinear systems.
This method was successfully implemented for the estima-
tion of the parameter in multibody systems, wherein, the
system dynamics is governed by the differential-algebraic
equations (DAEs) (Vyasarayani et al. (2012a)). The cur-
rent work is a direct extension of the homotopy works of
Vyasarayani et al. (2012a). In the homotopy method, a
high gain observer and a morphing parameter are intro-
duced into the objective function implicitly. The original
multimodal objective function is then transformed into a
simple convex function. This convex function is slowly
morphed back to the original objective function by re-

ducing the value of morphing parameter in a series of
iterative steps. The optimization is carried out for each
value of the morphing parameter using a gradient-based
optimizer, considering the previous value of the minimizer
as the initial guess for the current steps. This process is
continued until the morphing parameter becomes zero, and
in the process, the original objective function is regained,
and in consequence, global parameters are obtained. To
demonstrate the efficacy of the present method, a compar-
ative analysis is performed with the stochastic optimizers,
such as GA and PSO.

In the present study, a numerical example of Van der
Pol–Duffing (VDPD) oscillator (Quaranta et al. (2010))
is presented to illustrate the parameter estimation process
in nonlinear systems. This paper is organized as follows:
The introduction about PD controller algorithm is dis-
cussed in Sec. 2. In Sec. 3, the parameter identification
of VDPD oscillators is presented, followed by comparison
with stochastic optimizers is discussed. Finally, the con-
clusion is given in Sec. 4.

2. PARAMETER ESTIMATION USING PD
CONTROLLER ALGORITHM

The differential equation governing the dynamics of the
experimental system is assumed to be of the form:

ẋ1e(t) = x2e(t)

ẋ2e(t) = f(x1e(t), x2e(t), p, t) (1)

where, x1e(t) = [x1e(t), x2e(t), ..., xne(t)]
T, contains the

time series of the n states, and p = [p1, p2, ..., pk]
T are

the parameters in the experimental system. It is assumed
that only one state x1e is measured over a time period
t ∈ [0, tf ], and other states in the experimental system
are unobserved. The mathematical model representing the
experimental system is written in a first-order state-space
form as follows:

ẋ1(t) = x2(t)

ẋ2(t) = f(x1(t), x2(t), p̂, t) (2)

where, x(t) = [x1(p̂, t), x2(p̂, t), ..., xm(p̂, t)]T. Our objec-
tive is to identify the parameters p̂ = [p̂1, p̂2, ..., p̂k]

T

in the mathematical model (Eq. (2)), such that the error
obtained between the predicted response x1(t) and the
experimental measurement x1e(t) is minimized. To identify
the parameters, the following objective function is mini-
mized:

J(p̂) =
1

2

tf∫

0

(x1e(t)− x1(p̂, t))2dt (3)

The above objective function may contain many local
minima, and the minimization may lead to one of them.
To avoid the premature convergence to the local minimum,
a high gain proportional-derivative (PD) controller with a
morphing parameter (λ) is introduced to the mathematical
model (Eq. (2)) explicitly as follows:

ẋ1(t) = x2(t) + λkd(x1e(t)− x1(t)) (4a)

ẋ2(t) = f(x1(t), x2(t), p̂, t) + λkp(x1e(t)− x1(t)) (4b)

where, x1e(t) − x1(t) in Eq. (4a) and (4b) represents the
derivative and proportional controller respectively. The
corresponding gain values are kd and kp. The following
transformed objective function is used for estimation:

J(p̂, λ) =
1

2

tf∫

0

(x1e(t)− x1(p̂, λ, t))2dt (5)

The optimization process is initiated by providing an
arbitrary initial guess for parameters, and λ is set to
1. As λ = 1, the objective function becomes convex.
The minimization of the objective function J(p̂, 1) is
carried out using Eq. (4) as the mathematical model.
Any gradient-based optimizer can be used and the global
minimum 1p̂∗ is obtained. Subsequently, we reduce λ by
a small amount δλ, and minimize J(p̂, 1 − δλ) using
1p̂∗ as the initial guess. Once we determine the optimum
1−δλp̂∗, the value of λ is reduced further to 1 − 2δλ, and
proceed the next iteration using 1−δλp̂∗ as initial guess.
This procedure is continued until λ becomes zero; by then,
the PD controller vanishes from the mathematical model.
In the last iteration where λ = 0, global optimum p̂∗ = p
is achieved.

This method has a very close resemblance to the penalty
function method. In the penalty function approach, the
constraints are added to the objective function with a
penalty parameter r, and it is transformed into an un-
constrained optimization problem. The optimization is
performed by choosing an appropriate value for r, such
that the minimizer satisfies all the constraints. If all the
constraints are not satisfied, the objective function is pe-
nalized by a factor of 10 r, and the next iteration is initi-
ated using the previous value of the minimizer as the initial
guess for the current step. This process is continued until
the minimizer satisfies all the constraints. The analogy of
penalty parameter r to the homotopy parameter λ and
penalty function to the PD controller can be easily make
out while comparing these two methods. One major draw-
back of the penalty function method is that it only achieves
near-optimal solutions, whereas the present method at-
tains the global optimum exactly. A numerical example
of Van der Pol-Duffing (VDPD) oscillator is presented in
the next section to demonstrate the parameter estimation
using the PD controller algorithm.

3. VAN DER POL-DUFFING OSCILLATORS

Van der Pol-Duffing (VDPD) oscillators are one of the
classical nonlinear systems embedded with rich dynamical
properties, and it appears in various fields of science and
engineering (Zhao and Yang (2015)). The classical duffing
oscillator augmented with linear damping is characterized
in these systems.

The experimental system governing the externally exited
VDPD oscillator (Quaranta et al. (2010)) in first-order
state-space form is given as follows:

ẋ1e(t) = x2e(t)

ẋ2e(t) = µ(1− x2
1e(t))x2e(t)− αx1e(t)− βx3

1e(t) + f(t)
(6)

where, f(t) = g cos(wt) is the input excitation, and g =
0.50, ω = 0.79 represent the amplitude and frequency of
the exited force respectively, and t is the time variable.
The behavior of the VDPD oscillator is attributed to three
important parameters:α,β and µ. The parameter α con-
trols the stiffness, β represents the amount of nonlinearity
in the system, and µ is the damping coefficient (µ > 0).
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ẋ2(t) = f(x1(t), x2(t), p̂, t) (2)

where, x(t) = [x1(p̂, t), x2(p̂, t), ..., xm(p̂, t)]T. Our objec-
tive is to identify the parameters p̂ = [p̂1, p̂2, ..., p̂k]

T

in the mathematical model (Eq. (2)), such that the error
obtained between the predicted response x1(t) and the
experimental measurement x1e(t) is minimized. To identify
the parameters, the following objective function is mini-
mized:

J(p̂) =
1

2

tf∫

0

(x1e(t)− x1(p̂, t))2dt (3)

The above objective function may contain many local
minima, and the minimization may lead to one of them.
To avoid the premature convergence to the local minimum,
a high gain proportional-derivative (PD) controller with a
morphing parameter (λ) is introduced to the mathematical
model (Eq. (2)) explicitly as follows:
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classical nonlinear systems embedded with rich dynamical
properties, and it appears in various fields of science and
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in these systems.

The experimental system governing the externally exited
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Based on the value of these parameters, VDPD oscillators
are classified into three main physical states:

• single well (α > 0, β > 0);
• double well (α < 0, β > 0);
• double-hump (α > 0, β < 0).

The system parameters must be estimated from the exper-
imental measurements, as discussed in the next section.

3.1 Parameter estimation in VDPD oscillators

The problem of parameter estimation is formulated as a
multi-dimensional optimization problem, where the argu-
ments corresponding to the minimum value of the ob-
jective function represent the optimal parameters. In the
estimation of VDPD system parameters, it is assumed that
both initial conditions and external excitation f(t) are
known a priori. With this assumption, we minimize the
objective function J(p̂) over a constrained real bounded
domain from where the parameters are to be identified.

min(J(p̂)) s.t. pl ≤ p̂ ≤ pu

where, p̂ = [α̂, β̂, µ̂] represent the parameter vector within
the search space of lower pl and upper pu bounds. Since
the stability of VDPD oscillator lies only in a certain range
of parameter values, the estimation process is formulated
as a constrained optimization problem. The experimental
parameters p = [α, β, µ] for identification in VDPD
oscillators are given in Table 1.

We begin the identification process in a single well VDPD
oscillator, where the system parameters are [α, β, µ] =
[0.5, 0.5, 0.1]. The initial conditions for the experimental
system and the mathematical model are assumed to be
[x1e(0), x2e(0)] = [x1(0), x2(0)] = [1, 0], and generate a
20 seconds experimental data using Eq. (6) as shown in
Fig. 1(A)(a). Note that only the state x1e is measured
and another state x2e is unobserved. To identify the global
parameters, we minimize the following objective function:

J (p̂) =
1

2

tf∫

0

(x1e(t)− x1(p̂, t))
2
dt (7)

We now visualize the shape of the objective function
J (p̂) in the parameter domain. A graph depicting the
variation of J(β) for constant values of α is generated in
Fig. 1(A)(b), by keeping µ = 0.1 constant. Fig. 1(A)(b)
shows the presence of peaks and valleys, and it is evident
that the existence of multiple local minima in the objective
function. A basin of attraction is presented in Fig. 1(A)(c)
to distinguish between the local and global minima in the
objective function. In Fig. 1(A)(c), the region is shown
in green color indicates the initial guess points that are
converging to global minimum (∗), while the remaining
points in the parameter domain converge to multiple local
minima as depicted in red color. The global parameters
are identified only if the chosen initial guesses fall in the
region specified in green color, which is difficult to obtain
when gradient-based optimizers are used for estimation.

To address the issue of multiple local minima in the
objective function (Eq. (7)), we introduce a high gain
proportional-derivative (PD) controller with a morphing
parameter (λ) to the objective function (Eq. (7)) implic-
itly, and to the mathematical model (Eq. (6)) explicitly.

Thus, we have the following objective function for estima-
tion:

J (p̂, λ) =
1

2

tf∫

0

(x1e(t)− x1(p̂, λ, t))
2
dt (8)

and the corresponding mathematical model is used:

ẋ1(t) =x2(t) + λ kd(x1e(t)− x1(t)) (9a)

ẋ2(t) =µ̂(1− x2
1(t))x2(t)− α̂x1(t)− β̂x3

1(t) + f(t)

+ λ kp(x1e(t)− x1(t)) (9b)

where, x1e(t) − x1(t) represents the PD controller, and
[kd, kp] = 10 is the gain value selected such that syn-
chronization (Abarbanel et al. (2009)) occurs between ex-
perimental and estimated responses of the oscillator when
initial parameter guesses are chosen.

The estimation process begins by providing initial guess
for each parameters [α0, β0, µ0] = [7.00, 8.00, 0.01], which
are far away from the actual values, and proceed the
optimization by minimizing Eq. (8) with λ = 1. As
λ = 1, the objective function becomes convex, and the
minimum of J (p̂, 1) is determined. The value of λ is now
reduced by 0.2, and the next iteration is initiated using
the previous value of minimizer as the initial guess to the
current step. This procedure is continued till λ becomes
zero, and in the process, global parameters are identified
(Table 2). The convergence of parameter estimates during
the optimization process is shown in Fig. 2(A)(a).

Similarly, the parameters in double well and double-hump
VDPD oscillators are estimated, and the simulation results
are given in Figs. 2(B)(a) and 2(C)(a). The parameter es-
timation in the double-hump oscillator is the most difficult
one, as the system response is highly unstable, as shown in
Fig. 1(C)(a). So, the time window of t ∈ [0, 2.5] seconds is
selected for the estimation process. For numerical simula-
tion, we used the fmincon built-in optimization routine in
MATLAB, along with a fourth-order Runge-Kutta method
for solving the ODEs. Sequential quadratic programming
(SQP) algorithm in the fmincon routine is used as an
optimizer with a first-order optimality tolerance of 10−6

is implemented as the termination criteria. The sensitivity
information of the parameter estimates is obtained using
finite difference methods. For basin of attraction, we used
the MultiStart routine with parallel processing option in
MATLAB to generate the multiple local minima.

3.2 Comparison with stochastic optimizers

Stochastic optimizers are the global searching techniques
adopted universally for minimizing the multimodal objec-
tive functions. The search technique employed in these
optimizers is based on the principles of evolution and
survival of the fittest strategy. We have used the genetic
algorithm (GA) and particle swarm optimization (PSO)
techniques for the estimation of the parameter in VDPD
oscillators. A comparison study is then performed between
the PD controller algorithm and the stochastic optimizers.

Firstly, we perform the estimation process using GA and
PSO algorithms and identify the optimal parameters. The
evolution of parameter estimates during the optimization
process is shown in Figs. 2(b) and 2(c) for all the three

Table 1. System parameters for identification in VDPD oscillators.

Parameter
Single well Double well Double-hump

Experimental
Value (p)

Lower
Bound (pl)

Upper
Bound (pu)

Experimental
Value (p)

Lower
Bound (pl)

Upper
Bound (pu)

Experimental
Value (p)

Lower
Bound (pl)

Upper
Bound (pu)

α 0.5 0.1 10 -0.5 -5.0 5.0 1.5 1.0 5.0

β 0.5 0.1 10 0.5 0.1 10 -0.5 -0.9 -0.1

µ 0.1 0.01 2 0.1 0.01 2 0.1 0.01 1.0
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Fig. 1. (a) Experimental data (x1e) for estimation, (b) objective function J(β) and (c) basin of attraction for (A) single
well, (B) double well and (C) double-hump VDPD oscillators keeping µ = 0.1 constant.

Table 2. Comparison of estimated parameters and relative percent errors in VDPD oscillators.

Algorithm
Single well Double well Double-hump

α̂ β̂ γ̂ α̂ β̂ γ̂ α̂ β̂ γ̂

PD controller 0.5(0.00%) 0.5(0.00%) 0.10(0.00%) 0.50(0.00%) 0.50(0.00%) 0.10(0.00%) 1.49(0.01%) -0.49(0.02%) 0.10(0%)

PSO 0.5(0.00%) 0.5(0.00%) 0.10(0.00%) 0.50(0.00%) 0.50(0.00%) 0.10(0.00%) 1.58(5.69%) -0.59(19.32%) 0.06(36.7%)

GA 0.5(0.00%) 0.5(0.00%) 0.10(0.00%) 0.50(0.02%) 0.50(0.00%) 0.10(0.00%) 1.56(3.87%) -0.57(13.2%) 0.08(24.2%)
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Fig. 2. Evolution of parameter estimates (normalized relative to the experimental values) using (a) PD controller
algorithm, (b) genetic algorithm and (c) particle swarm optimizer for (A) single well (B) double well and (C)
double-hump VDPD oscillators.
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Fig. 3. Error convergence of J(α, β, µ) in (a) single well (b) double well and (c) double-hump VDPD oscillators using
PD controller, GA and PSO algorithms.
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Fig. 4. Computational effort for parameter estimation in (a) single well (b) double well and (c) double-hump VDPD
oscillators using PD controller, GA and PSO algorithms.

Table 3. Comparison of computational effort of PD controller, GA and PSO algorithms in
VDPD oscillators.

Single well Double well Double-hump

PD controller GA PSO PD controller GA PSO PD controller GA PSO

No. Iter 19 157 99 34 266 68 26 69 192

No. Fun. Eval 114 4740 3030 186 8040 2070 186 2100 5790

Error (J) 9.89× 10−13 3.51× 10−7 2.93× 10−9 3.05× 10−13 1.79× 10−5 1.19× 10−12 5.92× 10−11 7.24× 10−5 1.56× 10−4

VDPD oscillators. We used the ga and pso built-in MAT-
LAB optimization routines with a population size of 30
in each case. The population size is 10 × n, where n is
the number of variables in the objective function. We then
compare these results with the PD controller algorithm
for error convergence and computational effort as depicted
in Figs. 3 and 4. From Figs. 3 and 4, it is clear that
the PD controller algorithm converges faster than GA
and PSO with fewer iterations and function evaluations.
As gradient-based optimizer is used in the PD controller
algorithm, convergence is faster. Contrarily, the stochastic
optimizers are working on the principle of evolution, and
hence they converge slowly and requires more iterations
and function evaluations than the PD controller algorithm.
The performance of the three algorithms based on the
convergence properties is summarized in Table 3.

4. CONCLUSIONS

In this paper, we have estimated the global parameters of
the VDPD oscillators using the PD controller algorithm.
Since gradient-based optimizers are used for identification,
global parameters are identified with a small number
of iterations and function evaluations. Comparison with
stochastic optimizers demonstrated the efficacy of the
present algorithm for error convergence and computational
effort.
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oscillators using PD controller, GA and PSO algorithms.

Table 3. Comparison of computational effort of PD controller, GA and PSO algorithms in
VDPD oscillators.
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VDPD oscillators. We used the ga and pso built-in MAT-
LAB optimization routines with a population size of 30
in each case. The population size is 10 × n, where n is
the number of variables in the objective function. We then
compare these results with the PD controller algorithm
for error convergence and computational effort as depicted
in Figs. 3 and 4. From Figs. 3 and 4, it is clear that
the PD controller algorithm converges faster than GA
and PSO with fewer iterations and function evaluations.
As gradient-based optimizer is used in the PD controller
algorithm, convergence is faster. Contrarily, the stochastic
optimizers are working on the principle of evolution, and
hence they converge slowly and requires more iterations
and function evaluations than the PD controller algorithm.
The performance of the three algorithms based on the
convergence properties is summarized in Table 3.

4. CONCLUSIONS

In this paper, we have estimated the global parameters of
the VDPD oscillators using the PD controller algorithm.
Since gradient-based optimizers are used for identification,
global parameters are identified with a small number
of iterations and function evaluations. Comparison with
stochastic optimizers demonstrated the efficacy of the
present algorithm for error convergence and computational
effort.
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