
Oplog log nq Worst-Case Local Decoding and
Update Efficiency for Data Compression

Shashank Vatedka˚, Venkat Chandar:, Aslan Tchamkerten;
˚Dept. of Electrical Engineering, Indian Institute of Technology Hyderabad, India

:DE Shaw, New York, USA
;Dept. of Communications and Electronics, Telecom Paris, France

Abstract—This paper addresses the problem of data compres-
sion with local decoding and local update. A compression scheme
has worst-case local decoding dwc if any bit of the raw file can
be recovered by probing at most dwc bits of the compressed
sequence, and has update efficiency of uwc if a single bit of the
raw file can be updated by modifying at most uwc bits of the
compressed sequence. This article provides an entropy-achieving
compression scheme for memoryless sources that simultaneously
achieves Oplog log nq local decoding and update efficiency. Key
to this achievability result is a novel succinct data structure for
sparse sequences which allows efficient local decoding and local
update.

Under general assumptions on the local decoder and update
algorithms, a converse result shows that the maximum of dwc

and uwc must grow as Ωplog lognq.

I. INTRODUCTION

Consider a source sequence Xn with independent and
identically distributed (i.i.d.) components having probability
mass function pX on a finite alphabet X . For simplicity we
assume here that pX is a known distribution over X “ t0, 1u.1

A fixed-length compression scheme of rate R consists of
a pair of algorithms, the encoder ENC and the decoder
DEC. The encoder maintains for every Xn, a codeword
CnR P t0, 1unR such that DECpCnRq is a good estimate of
Xn. The probability of error of the compression scheme is
defined as

Pglob – PrrDECpCnRq ‰ Xns.

From the source coding theorem, we know that there exist
sequences of codes with rate arbitrarily close to the entropy
HppXq and error probability vanishing in n.

Our goal is to design a fixed-length compression scheme
that additionally supports local encoding and decoding. A
locally decodable and updatable compression scheme consists
of a global encoder and decoder pair pENC,DECq and in
addition, a local decoder and a local updater:
‚ Local decoder: A local decoder is an algorithm which given
i P rns, probes (possibly adaptively) a small number of
bits of CnR to output pXi. Here, pXi is the ith symbol of
pXn def

“ DECpCnRq. The worst-case local decodability dwc

of the scheme is the maximum number of bits probed by

1This can be generalized to the scenario where pX is unknown to the
encoder and decoder by first estimating pX and then using this for designing
the compression scheme as in [1]. Similarly, our results can be generalized
to nonbinary alphabets.

the local decoder for the worst-case i. The average local
decodability d is the expected number of bits, averaged over
the source distribution, probed to recover any pXi for any i.

‚ Local updater: A local updater is an algorithm which given
i P rns and rXi P t0, 1u, adaptively reads and modifies a
small number of bits of CnR to give rCnR such that rCnR “
ENCpX1, . . . , Xi´1, rXi, Xi`1, . . . , Xnq. Here the modified
symbol rXi is supposed to be distributed according to pX and
independent from Xn. Also, the local updater is assumed to
have no prior knowledge of Xn or CnR and, hence, must
probe CnR to obtain such information.
The worst-case update efficiency uwc is defined as the
maximum of the sum of the bits read and written in order
to update any i. Likewise, the average update efficiency u
is the sum of the average number of bits probed and written
in order to update any Xi.

We allow the local decoder and updater to be adaptive, in
the sense that the next bit to be read/written can depend on
the values of the bits read/written so far. If the locations to
be probed/modified are independent of the realization of the
message, then we say that the algorithm is non-adaptive.

It was recently shown in [1], [2] that pd, uq “ pOp1q, Op1qq
is achievable. In that paper the authors also gave a separate
compression scheme achieving

pdwc, uq “ pOplog log nq, Oplog log nqq.

In particular, the question of whether

pdwc, uwcq “ pOplog log nq, Oplog lognqq

is achievable was left open. In this paper we answer this
question in the affirmative. We also show that under certain
additional assumptions on the local decoder and the local
updater this locality is order optimal.

Our achievability proof is based on a novel succinct data
structure for Opb{ log bq-sparse sequences of length b in the
bitprobe model which for any 0 ă δ ă 1 takes space Opδbq
while enabling local decode and update using at most Oplog bq
and Op 1

δ log bq bit reads/writes respectively. Our restricted
converse is based on an analysis of bipartite graphs that
represent the encoding and decoding algorithms.

A. Prior work

Local decoding and update for entropy-achieving compres-
sion schemes have been studied mostly in isolation. The

2371978-1-7281-6432-8/20/$31.00 ©2020 IEEE ISIT 2020

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on November 14,2022 at 08:47:14 UTC from IEEE Xplore. Restrictions apply.

problem of locally decodable source coding of random se-
quences has received attention very recently following [3],
[4]. Mazumdar et al. [5] gave a fixed-length compressor of
rate of HppXq ` ε with dwcp1q “ Θp 1

ε log 1
ε q. They also

provided a converse result for non-dyadic sources: dwcp1q “
Ωplogp1{εqq for any compression scheme that achieves rate
HppXq ` ε. Similar results are known for variable length
compression [6] and universal compression of sources with
memory [7]. Likewise, there are compressors that achieve [8]
rate R “ HppXq ` ε and update efficiency uwc “ Op1q.

In the computer science community, the literature has
mostly focused on the word-RAM model [9], [10], [11],
[12], [13], [14], where each operation (read/write/arithmetic
operations) is on words of size w “ Oplog nq bits each, and
the complexity is measured in terms of the number of word
operations required for local decoding/update. However, in this
case the number of bitprobes required is Ωplog nq. For random
messages, one can trivially achieve any rate R ą HppXq
and local decoding/update efficiency of Oplog nq bitprobes
by partitioning the n message symbols into blocks of size
Oplog nq and compressing each block separately.

II. CONTRIBUTIONS

Before we present our main results we make a few obser-
vations aimed at justifying our model, and in particular the
requirements we impose on the local decoder and updater.

In general, the local decoder could produce an estimate
pX
plocq
i which could be different from pXi with the requirement

that the probability of local decoding error

Ploc
def
“ max

i
Prr pX

plocq
i ‰ Xis

should be small. However, we will only study schemes that
satisfy the following property.

(A1) Global encoding and decoding using local algorithms:
We assume that CnR is obtained by running the local
updater on each message symbol, and pXn by running
the local decoder for each bit. In other words, there is no
separate global encoder or decoder.

Our primary motivation for assumption (A1) is that global
decoding can be sped up using parallelization. If we have a
large number of parallel processors (which grows with n),
then the runtime of global decoding can be made sublinear
in n. It must be noted that as a byproduct, the probability
of local decoding error of any symbol is also equal to op1q,
hence we are (implicitly) demanding that Ploc “ op1q. As we
outline below, having separate local and global algorithms can
potentially lead to trivial solutions.

1) No global decodability requirement: If we only require
Ploc to be small without any constraints on the global decoding
error Pglob, then we can easily achieve any R ą HppXq and

pdwc, uwcq “

ˆ

O

ˆ

log
1

Ploc

˙

, O

ˆ

log
1

Ploc

˙˙

.

This can be obtained by partitioning the n-length message
into blocks of size b0 “ Oplog 1

Ploc
q, and compressing each

block using an entropy-achieving fixed-length compression
scheme—notice that the probability of wrongly decoding any
particular block vanishes exponentially with b0. Hence, for any
small but constant Ploc “ δ we can achieve

pdwc, uwcq “ pOp1q, Op1qq.

2) Separate local and global decoders: Suppose that in
addition to 1q we also want Pglob “ op1q using a separate
global decoder to recover pXn. This can be obtained by using
a low-density parity check (LDPC) code with Op1q maximum
variable and check node degrees. The codeword consists of
two parts:

CnR “ pCnpR´δqp1q, Cδnp2qq,

where CnpR´δqp1q is obtained as in the previous case by di-
viding the message into constant size b0 blocks and separately
encoding each, while Cδnp2q is obtained as the syndrome (of
the LDPC code) of the (Hamming) error vector between Xn

and the decoding of CnpR´δqp1q.
The local decoder only probes CnpR´δqp1q, while the lo-

cal updater needs to update both CnpR´δqp1q and Cnδp2q.
Since we are using an LDPC code, Cnδp2q can be up-
dated using Op1q bit modifications. Therefore, pdwc, uwcq “

pOplog 1
Ploc
q, Oplog 1

Ploc
qq.

The global decoder decodes both CnpR´δqp1q and Cδnp2q
and can recover Xn with op1q probability of error.

We will henceforth only analyze schemes that satisfy (A1).
The main result of this article is the following:

Theorem II.1. For any ε ą 0 there exists a compression
scheme for Bernoulli(p) sources that achieves

pR, dwc, uwcq “

ˆ

Hppq ` ε, Oplog log nq, Op
1

ε
log log nq

˙

,

and the overall computational complexity of global encod-
ing/decoding is quasilinear in n.

The above theorem is formally proved in Section III-A.
Using the technique in [2, Appendix C], Theorem II.1 can also
be extended to variable-length compression with zero error,
under the relaxation that the local updater has oracle access
to Xn, and uwc only counts the number of codeword bits
that need to be modified in order to effect a single update.
The proof of the above theorem is based on a novel dynamic
succinct data structure for sparse sequences that achieves
Oplog nq locality in the bitprobe model.

Lemma II.1. Fix any δ ą 0. For every β “ opb{ log bq, there
exists a dynamic succinct data structure for b-length binary
vectors of sparsity at most β with the following properties. Any
such vector occupies at most δbp1`op1qq bits, has worst-case
local decoding Oplog bq and worst-case update efficiency at
most Op 1

δ log bq.

To prove a lower bound, we make two assumptions in
addition to (A1):

(A2) Independence to previous updates: The local update func-
tion for the t’th update and the local decode function

2372

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on November 14,2022 at 08:47:14 UTC from IEEE Xplore. Restrictions apply.

....

....

....

....

....

....

....

....

....

....

....

Encoding
graph

Decoding
graph

Fig. 1: Illustrating the encoding and decoding graphs under
assumptions (A1) and (A2). The degree of the ith left vertex
in Ge is ∆l

i, while the jth right vertex is the local encodability
of the ith symbol ej , defined in Sec. IV. The degree of a right
vertex in Gd is equal to the local decoding of the ith symbol
di.

for the t’th local decode are deterministic functions of
Xn, independent of t. In particular, conditioned on the
realization of Xn at time t, they are both independent of
the sequence of the previous t´ 1 updates.

Remark: Adaptive versus non-adaptive schemes: Under
(A1) and (A2), any adaptive scheme achieving worst-case
locality parameter l can be converted to a non-adaptive scheme
with locality parameter ď 2l. This is because the adaptive
scheme depends on at most l bits of its input, and there are at
most 2l possible configurations. The non-adaptive scheme can
go through all possible configurations. We can therefore derive
lower bounds for nonadaptive schemes, and any adaptive
scheme must have locality that is at least logarithmic in this
bound.

(A3) Bounded average-to-worst case influence: We assume
that the number of message bits that influence a codeword
bit (and number of decoded bits influenced by a codeword
bit) on average is not too far from the worst case. To be
more precise, for nonadaptive schemes, we can construct
the local encoding graph Ge and the local decoding graph
Gd. Two vertices pi, jq in Ge are adjacent if Cj is a
function of Xi. Likewise, pj, iq are adjacent in Gd if pXi is
a function of Cj . See Fig. 1. We assume that the ratio of
the average to the worst case degrees of the right vertices
of Ge and left vertices of Gd are bounded from below by
a constant independent of n.

Under (A1)–(A3),

Theorem II.2. For any adaptive scheme with R ă 1, we have

dwc ` uwc “ Ωplog log nq.

As mentioned earlier, it is possible to achieve pdwc, uwcq “

pOp1q, Op1qq without assumptions (A1)–(A3). We believe that
Theorem II.2 holds even without assumption (A3), but were
unsuccessful in proving this. We also conjecture that it holds
even without (A2). As we will see later, the construction of
Lemma II.1 does not satisfy (A2).

III. ACHIEVABILITY

The high-level structure of our scheme is inspired by the lo-
cally decodable compressor in [5]: partition the set of message
symbols into constant-sized blocks of b “ Oplog nq symbols
each and use a fixed-length compressor for each block. The
residual error vector is very sparse, which is encoded using a
novel dynamic succinct data structure that allows local decode
and update using only Oplog bq “ Oplog log nq bitprobes.

In [5], the error vector was stored using the succinct data
structure in [15] that allows local decoding of a single bit using
Op1q bitprobes. However, this data structure is static, in the
sense that it does not allow efficient updates and hence does
not get us small uwc.

A well-known dynamic data structure in the word-RAM
model is the van Emde Boas tree [16] which takes space Opbq
but allows local retrieval, insert and delete in Oplog log bq time
(equivalently Oplog b log log bq bitprobes). If we use the van
Emde Boas tree for encoding the residual error vector, then
we can achieve rate close to HppXq but a higher locality of
Oplog log n polyplog log log nqq.

A. Proof of Theorem II.1

We partition the n-length message sequence xn into
blocks xb1p1q, . . . , xb1pn{b1q of size b1 “ Oplog nq
each. Each block i is further partitioned into subblocks
(xb0pi, 1q, . . . , xb0pi, b1{b0q) of b0 symbols each. Each sub-
block is compressed independently using a fixed-length lossy
compression scheme of rate Hppq ` ε and average per-letter
distortion ε. Let cb0pHppq`εqpi, jq denote this subcodeword for
the pi, jqth subblock. In addition, the error vectors (denoted
eb0pi, jq and equal to xb0pi, jq if xb0pi, jq is atypical and
0b0 otherwise) are concatenated and for each i, eb1piq def

“

peb0pi, 1q, . . . , eb0pi, b1{b0qq is compressed using the scheme
in Lemma II.1 to give c̄εb1piq with δ “ ε. If the sparsity of
eb1piq is larger than αb1{ log b1 for a suitably chosen α ą 0,
then we say that an error has occurred.

We choose b1 “ α1plog n log log nq and b0 “ α2plog log nq.
Using Azuma’s inequality (and carefully choosing α1, α2),

the probability that the distortion in each block is greater than
α log n{ log log n falls as op1{nq.

The worst-case local decoding is at most Oplog b1q “
Oplog log nq, while the worst-case update efficiency is
Op 1

ε log log nq. The compression rate is Hppq ` 2ε, and the
overall probability of error (using the union bound over blocks)
is op1q. This completes the proof.

All that remains is to prove Lemma II.1, which is is our
main contribution.

B. A succinct data structure achieving Oplog bq locality for
sparse sequences of length b

The high-level idea in our data structure is to split the b
symbols into chunks of Oplog bq symbols each, and maintain
a dynamic memory table where we only store the chunks with
nonzero Hamming weight. Addressing is resolved by storing
for each chunk a pointer which indicates the location in the
memory table where the chunk is encoded.

2373

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on November 14,2022 at 08:47:14 UTC from IEEE Xplore. Restrictions apply.

We split the b-length sequence xb into blocks of b1 consec-
utive symbols each: xb1p1q, . . . , xb1pb{b1q. The data structure
consists of the following parts:
‚ Status bits: b{b1 many bits s1, . . . , sb{b1 , one for each block.

The status bit si is set to 1 if the Hamming weight of xb1piq
is greater than zero, and zero otherwise.

‚ Memory table: β many chunks ybmp1q, . . . , ybmpβq of bm “
b1 ` logpb{b1q bits each. The ith chunk ybmpiq is split into
two parts: yb1pi, 1q having b1 bits, and ylogpb{b1qpi, 2q having
logpb{b1q bits. Here, ybmpi, 1q is a vector which stores a
nonzero block xb1pjq for some (suitably defined later) j,
while ylogpb{b1qpi, 2q is a reverse pointer which encodes j
in logpb{b1q bits.

‚ Memory pointers: b{b1 words pbpp1q, . . . , pbppb{b1q of bp “
log β bits each, one for each block.

‚ Counter for number of nonzero blocks: clog β is a vector of
length log β bits which stores the number of nonzero blocks
in xb.

The overall codeword is a bit sequence obtained by the con-
catenation of the status bits, memory table, memory pointers
and the counter. The total space required is

kds “
b

b1
` βpb1 ` logpb{b1qq `

b

b1
log β ` log β (1)

1) Initial encoding: Let k denote the number of nonzero
blocks in xb.
‚ Status bits: If xb1piq has nonzero Hamming weight, then
si “ 1. Otherwise, it is set to zero.

‚ Memory pointers: If there are j ´ 1 nonzero blocks among
xb1p1q, . . . , xb1pi´1q and xbppiq is nonzero, then pbppiq “ j
(or more precisely, the binary representation of j).

‚ Counter for number of nonzero blocks: clog β is set to the
number of nonzero blocks.

‚ Memory table: For every i, if si “ 1 and pbppiq “ j, then
the jth chunk contains information about xb1piq. Specifi-
cally, ybmpj, 1q “ xb1 , and ylogpb{b1qpi, 2q is equal to the
binary representation of i.
2) Local decoding: Suppose that we want to recover xi

which happens to be the i1th bit in the i2th block.
‚ If si2 “ 0, then output 0. This is because si2 “ 0 implies

that the entire block is zero.
‚ If not, then read pbppi2q. If pbppi2q “ j, then output the
i1th bit in yb1pj, 1q.

The maximum number of bits probed is

dwc “ 1` bp ` 1 “ 2` log β.

3) Local update: Suppose that we want to update xi (which
happens to be the i1th bit in the i2th block) with rxi. The update
algorithm works as follows:
‚ Suppose that xi “ 0 and rxi “ 1. The updater first reads
si2 .
– If si2 “ 1, then it reads pbppi2q. Suppose that pbppi2q “ j.

Then it writes rxi into the i1th location of yb1pj, 1q.
– If si2 “ 0, then it means that the block was originally

a zero block. The updater sets si2 to 1, and increments

the counter for the number of nonzero blocks clog β by 1.
Suppose that after incrementing, clog β “ j. Then the
updater sets pbppi2q “ j, writes rxb1pi2q into yb1pj, 1q,
and sets ylogpb{b1qpj, 1q to i2.

‚ Suppose that xi “ 1 and rxi “ 0. The updater first reads
si2 . Clearly, this should be equal to 1. The updater reads
pbppi2q (suppose that it is equal to j), and then yb1pj, 1q to
compute xb1pi2q.
– If xb1pi2q has Hamming weight greater than 1, then it

flips the i1th bit of yb1pj, 1q.
– If not, then it implies that rxb1pi2q “ 0b1 . The updater

next sets si2 to 0. It then decrements clog β . It next
overwrites ybmpjq with the contents of ybmpclog βq, and
sets pbppylogpb{b1qpclog β , 2qq to j. This is to consistently
ensure that the first clog β chunks of the memory table
always contains all the information about nonzero blocks.

The maximum number of bits that need to be read and
written in order to update a single message bit is

uwc “ 2`bp`2 log β`2bm`bp “ 2`b1`4 log β`log
b

b1
.

4) Proof of Lemma II.1: Let us now prove the statement.
We use the above scheme with b1 “ O

`

1
δ log b

˘

. From (1),
the total space used is kds ď δbp1 ` op1qq. The worst-case
local decoding is equal to Oplog bq and the worst-case update
efficiency is equal to O

`

1
δ log b

˘

. This completes the proof.

Remark III.1. The succinct data structure here satisfies
(A1) but not (A2). Clearly, the order of the chunks in the
memory table depends on the sequence of updates performed
previously. For example, the first chunk could initially contain
data of the first subblock. After a number of updates (e.g.,
involving setting all bits of the first block to zero, inserting
bits in other blocks, and then repopulating the first block with
ones), the first block could be stored in chunk l ą 1.

IV. LOWER BOUNDS ON SIMULTANEOUS LOCALITY

To obtain lower bounds, we introduce an additional pa-
rameter, the worst-case local encodability, ewc, defined to
be the maximum number of input symbols that any single
codeword bit can depend on. Note that this is different from the
update efficiency.2 It has been established in the literature that
separately, each of dwc, uwc, ewc can be made Op1q for near-
entropy compression [5], [8], [17]. However, it is not known if
pdwc, uwc, ewcq “ pΘp1q,Θp1ql,Θp1qq can be simultaneously
achieved.

In this section, we assume (A1)–(A3) and that the scheme
is nonadaptive.

1) The local encoding and decoding graphs:
‚ Under (A1) and (A2), the jth compressed bit Cj can be

written as Cj “ fjpXNepjqq for some function fj , where
Nepjq is the set of message locations that Cj can depend
on. Clearly, |Nepjq| ď ewc for all j.

2This was studied in [17], where the authors related this quantity to a
problem of semisupervised learning.

2374

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on November 14,2022 at 08:47:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Illustrating various neighbourhoods used in the proofs.

‚ The ith decoded bit X̂i can be written as X̂i “ gipCNdpiqq

for some function gi, where Ndpiq is the set of codeword
locations that need to be probed in order to recover Xi.
Clearly, |Ndpiq| ď dwc.

‚ We can construct an n ˆ nR encoder bipartite graph Ge
where pi, jq is an edge only if i P Nepjq. This gives a
natural lower bound on the update efficiency for the ith
message symbol: it must be greater than or equal to the
degree of the corresponding vertex in Ge.
The average degree of a vertex in the left (corresponding to
a message symbol) is equal to R times the average degree
of a right vertex (which corresponds to codeword bits). This
implies that uwc is lower bounded by the average (arithmetic
mean of) the individual local encodabilities of the individual
codeword bits.

‚ Similarly, we can construct the nR ˆ n decoder bipartite
graph where pj, iq P rnRs ˆ n is an edge if j P Ndpiq. The
right degree of this graph is bounded from above by dwc.

‚ Let Neffpiq
def
“ tXl : l P

Ť

jPNdpiq
Nepjqu denote the effec-

tive neighborhood. The ith decoded symbol is a function of
only those symbols in Neffpiq, i.e., there exists a function
hi such that X̂i “ hipXNeff piqq.

See Fig. 1 and Fig. 2 for illustrations.
Let us now obtain a lower bound on the bit error probability

of any compression scheme satisfying the above properties.

Lemma IV.1. The probability of bit error, P piqe
def
“ PrrX̂i ‰

Xis satisfies

P piqe “

#

ě p1´ pq|Neff piq| ě p1´ pqewcdwc , or,
0.

Proof. For every i P rns, the decoded symbol X̂i is a
deterministic function (the composition of gi and fj’s) of
Neffpiq

def
“ tXl : l P

Ť

jPNdpiq
Nepjqu. But we have |Neffpiq| ď

ewcdwc. The probability of error is given by3

P ie “
ÿ

x

¨

˝

ź

lPNeff piq

PrrXl “ xls

˛

‚1
tXi‰X̂iu

ě
ÿ

x

¨

˝

ź

lPNeff piq

p1´ pq

˛

‚1
tXi‰X̂iu

.

3For an event E , 1E is the indicator function which takes value 1 if E
occurs, and zero otherwise.

If there is even a single configuration of Xn for which Xi ‰

X̂i, then P ie ě p1´ pq
|Neff piq| ě p1´ pqewcdwc .

Let ηi – |Neffpiq|. Let ui, ej , di respectively denote the
update efficiency for the ith message symbol, the local encod-
ability of the jth codeword symbol, and the local decoding of
the ith message symbol. These are also respectively greater
than or equal to the degrees of the ith left vertex in Ge, the
jth right vertex in Ge, and the ith right vertex in Gd.

Lemma IV.2. Consider any fixed-length compression scheme
achieving vanishing probability of error and nontrivial com-
pression rate R ă 1. There exists a set S Ă rns of message
symbols with S “ Θpnq such that for all i P S,

ηi “ Ωplog nq.

Due to paucity of space, we only sketch the details. We
select a subset S 1 of rns such that P ie ą 0 for all i P S 1. We
know that |S 1| ě np1 ´ Rq. A more careful rederivation of
Lemma IV.1 gives us P ie ě p1´ pq

ηi for all i P S 1. Hence,

Pe ě 1´
n
ź

i“1

p1´ P ieq (2)

ě
ÿ

iPS1

p1´ pqηi , (3)

which is nonvanishing in n if ηi ă log n for any subset of
S 1 of size np1 ´ Rq{2. Therefore, there must exist a subset
S Ă S 1 of size np1 ´ Rq{2 where ηi ą log n for all i P S .
This completes the proof.

This leads us to the following result:

Theorem IV.1. Any fixed-length compression scheme achiev-
ing vanishing probability of error and R ă 1, and satisfying
assumptions (A1)—(A3) and nonadaptive local algorithms
must have

dwcuwc “ Ωplog nq.

Proof. From Lemma IV.2, there exists a set S of size Θpnq
such that for all i P S, ηi “ Ωplog nq. However, ηi ď
dwc

ř

jPNdpiq
ei. From the graph Ge, we also have

dwc

ÿ

jPrnRs

ei “ dwc

ÿ

iPrns

∆l
i ď dwc

ÿ

iPrns

ui ď ndwcuwc, (4)

where ∆l
i denotes the degree of the ith left vertex in Ge.

Using Lemma IV.2, we have

|S|Ωplog nq ď
ÿ

iPS
ηi ď

n
ÿ

i“1

ηi ď dwc

ÿ

jPrnRs

ej .

Using (4) in the above, and using the fact that |S| “ Θpnq,
we have ndwcuwc “ Ωpn log nq, which implies dwcuwc “

Ωplog nq, completing the proof.

Using Theorem IV.1 and our remark on adaptive vs non-
adaptive schemes in Sec. II-2, we get Theorem II.2.

2375

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on November 14,2022 at 08:47:14 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. Vatedka and A. Tchamkerten, “Local decoding and update of com-
pressed data,” in Proceedings of the 2019 IEEE International Symposium
on Information Theory (ISIT), (Paris, France), 2019.

[2] S. Vatedka and A. Tchamkerten, “Local decode and update for big
data compression,” accepted, IEEE Transactions on Information Theory,
2020.

[3] A. Makhdoumi, S.-L. Huang, M. Medard, and Y. Polyanskiy, “On locally
decodable source coding,” arXiv preprint arXiv:1308.5239, 2013.

[4] A. Makhdoumi, S.-L. Huang, M. Médard, and Y. Polyanskiy, “On
locally decodable source coding,” in Proceedings of the 2015 IEEE
International Conference on Communications (ICC), pp. 4394–4399,
IEEE, 2015.

[5] A. Mazumdar, V. Chandar, and G. W. Wornell, “Local recovery in data
compression for general sources,” in Proceedings of the 2015 IEEE
International Symposium on Information Theory (ISIT), pp. 2984–2988,
IEEE, 2015.

[6] A. Pananjady and T. A. Courtade, “The effect of local decodability
constraints on variable-length compression,” IEEE Transactions on
Information Theory, vol. 64, no. 4, pp. 2593–2608, 2018.

[7] K. Tatwawadi, S. Bidokhti, and T. Weissman, “On universal compres-
sion with constant random access,” in Proceedings of the 2018 IEEE
International Symposium on Information Theory, pp. 891–895, 2018.

[8] A. Montanari and E. Mossel, “Smooth compression, Gallager bound
and nonlinear sparse-graph codes,” in Proceedings of the 2008 IEEE
International Symposium on Information Theory, pp. 2474–2478, IEEE,
2008.

[9] M. Patrascu, “Succincter,” in 2008 49th Annual IEEE Symposium on
Foundations of Computer Science, pp. 305–313, IEEE, 2008.

[10] M. Patrascu and M. Thorup, “Dynamic integer sets with optimal rank,
select, and predecessor search,” in 2014 IEEE 55th Annual Symposium
on Foundations of Computer Science, pp. 166–175, IEEE, 2014.

[11] V. Mäkinen and G. Navarro, “Dynamic entropy-compressed sequences
and full-text indexes,” in Annual Symposium on Combinatorial Pattern
Matching, pp. 306–317, Springer, 2006.

[12] K. Sadakane and R. Grossi, “Squeezing succinct data structures into
entropy bounds,” in Proceedings of the seventeenth annual ACM-SIAM
symposium on Discrete algorithm, pp. 1230–1239, Society for Industrial
and Applied Mathematics, 2006.

[13] G. Navarro and Y. Nekrich, “Optimal dynamic sequence representa-
tions,” SIAM Journal on Computing, vol. 43, no. 5, pp. 1781–1806,
2014.

[14] E. Viola, O. Weinstein, and H. Yu, “How to store a random walk,” arXiv
preprint arXiv:1907.1087, 2019.

[15] H. Buhrman, P. B. Miltersen, J. Radhakrishnan, and S. Venkatesh,
“Are bitvectors optimal?,” SIAM Journal on Computing, vol. 31, no. 6,
pp. 1723–1744, 2002.

[16] P. van Emde Boas, “Preserving order in a forest in less than logarithmic
time,” in 16th Annual Symposium on Foundations of Computer Science
(sfcs 1975), pp. 75–84, IEEE, 1975.

[17] A. Mazumdar and S. Pal, “Semisupervised clustering, AND-queries and
locally encodable source coding,” in Advances in Neural Information
Processing Systems, pp. 6489–6499, 2017.

2376

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on November 14,2022 at 08:47:14 UTC from IEEE Xplore. Restrictions apply.

