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ABSTRACT

In this paper we propose the Localized Quality Aware Im-
age Denoising (LQAID) technique for image denoising using
deep convolutional neural networks (CNNs). LQAID relies
on local quality estimates over global cues like noise standard
deviation since the perceptual quality of a noisy image is typ-
ically spatially varying. Specifically, we use localized quality
maps generated using DistNet, a spatial quality map estima-
tion method. These quality maps are used to augment the
noisy image and guide the denoising process. The augmented
noisy image is denoised using a deep fully convolutional net-
work (FCN) trained using mean square error (MSE) as the
loss function. The proposed approach shows state-of-the-art
performance both qualitatively and quantitatively on two vi-
sion datasets: TID 2008 and BSD500. We also show that the
proposed approach possesses excellent generalization ability.
Lastly, the proposed approach is completely blind since it nei-
ther requires information about the strength of the additive
noise nor does it try to explicitly estimate it.

Index Terms— Distortion map, denoising, fully convolu-
tional network and perceptual quality.

1. INTRODUCTION

Image denoising is perhaps one of the oldest and most widely
studied problems in the computer vision community. We be-
lieve that one of the primary reasons for image denoising to
be a challenge is the spatially varying perception of noise. It
is well-known that the perception of noise is influenced by
the local signal strength (or local signal variance). For ex-
ample, if we apply additive white Gaussian noise (AWGN)
noise uniformly to a pristine natural image, the human visual
system (HVS) will not perceive distortions equally across the
image. High texture regions of an image mask distortions due
to noise to a greater extent compared to low texture regions.
This perceptual property of the HVS provides us the motiva-
tion for our work. We hypothesize that image denoising that
is guided by local quality (or distortion) estimates is much
more effective than using global cues such as noise standard
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deviation. A challenge however is to be able to objectively lo-
calize image distortion. Importantly, localized noise strength
in the image cannot be obtained from a single noise parameter
like its standard deviation.

The Structural SIMilarity (SSIM) index [1], a full refer-
ence image quality assessment (FRIQA) algorithm allows us
to objectively localize image distortion, but it cannot be used
in our blind setting because it is computed using both the ref-
erence and noisy images, thereby posing a further challenge
to implementing our hypothesis. An alternative approach is
to estimate the distortion map in the blind or no reference
image quality assessment (NRIQA) setting. Several NRIQA
algorithms provide distortion maps at varying levels of spa-
tial resolutions [2] [3] [4]. Our prior work DistNet [2] has the
ability to localize distortions at a higher resolution compared
to other NRIQA techniques, and is used in this work.

Given the long, vast and rich history of the image denois-
ing problem, the literature is replete with several excellent so-
Iutions. However, we will only briefly review recent and rele-
vant methods due to space constraints. One of the early deep
learning based contributions is image denoising using stacked
auto-encoder [5]. Xie et al. [6] proposed using a combination
of sparse representation and DNN with pre-trained denois-
ing auto-encoders. Lefkimmiatis ef al. [7] proposed image
denoising using CNN techniques based on non-local image
modeling. Zhang et al. [8] proposed an image denoising tech-
nique by combining discriminative learning based methods
and model-based optimization methods. In general, model-
based optimization methods are slow but accurate while dis-
criminative learning methods are fast but they are task spe-
cific. A combination of these methods has the advantages
of both. DnCNN [9] is a feed-forward neural network based
image denoising technique with residual batch normalization.
RED Net [10] is an image restoration technique using deep
fully convolutional encoder-decoder like neural network with
symmetric skip connections. Skip connections pass the in-
formation that may be lost due to the depth of the network.
Chen et al. [11] proposed a blind denoising technique using
a generative adversarial network (GAN). These deep learning
based methods have moved the state-of-the-art significantly
forward.

The proposed approach is presented next, followed by
performance evaluation, discussion, and conclusions.

ICASSP 2020

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on November 10,2022 at 10:46:01 UTC from IEEE Xplore. Restrictions apply.



2. PROPOSED APPROACH

Our proposed approach is motivated from the fact that local
and global perceptual quality of a natural image need not be
same. This can be observed in Figure 1, where a pristine im-
age is distorted with AWGN (with mean 0 and standard de-
viation o of 50) resulting in the noisy image and correspond-
ing localized distortion map generated using DistNet [2] are
shown. We perceive more noise on the face compared to the
hair. This observation is incorporated into the proposed de-
noising approach using localized distortion maps, where we
used a FCN for denoising with symmetric skip connections.
The DistNet and the proposed denoising approach using FCN
are described next.

2.1. DistNet [2]

DistNet is a distortion map generation technique which ac-
cepts as input a natural image and generates a distortion map
as the output. The network architecture of DistNet is similar
to that of SegNet [12] which has a convolutional autoencoder
like structure. It is trained using distorted images as inputs
and their corresponding SSIM maps [1] as target labels. The
distortion maps generated using DistNet have been shown to
have excellent perceptual agreement with SSIM maps. In the
interest of space, we refer the readers to DistNet [2] for archi-
tecture and implementation details. In this work, we have not
trained the DistNet further but rather have used the weights of
the DistNet network as-is.

2.2. LQAID using FCN

The network architecture of the LQAID using FCN is mo-
tivated from [10] and incorporates an extra branch for aug-
menting the main denoising branch with the distortion maps
as shown in Figure 1. The network architecture of LQAID
using FCN has two parts: an encoder and a decoder. The en-
coder has two branches; one of which accepts the noisy image
as input and the other accepts the distortion map of the noisy
image as input. Each branch has 10 convolutional layers and
the convolutional layer output of the distortion map branch
is concatenated to the convolutional layer output of the noisy
image branch. This way we augment the noisy image with the
localized quality map to achieve quality guided denoising. In
the decoder, we use another set of 10 convolutional layers
and each convolutional layer output is concatenated with the
corresponding symmetric convolutional layer output from the
encoder. In total, the proposed LQAID using a FCN has 30
convolutional and 10 concatenation layers. Each convolution
layer has 128 filters with size 3 x 3. We describe the dataset
preparation and training procedure next.

To train LQAID, we synthetically created a dataset by
taking 4797 pristine images from the Waterloo Challenge
Dataset [13] and generating their distorted versions by adding
white Gaussian noise (AWGN). We chose 4 values for the
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Fig. 1: The network architecture of proposed LQAID using
FCN: C indicates convolution layer and CC indicates con-
catenation layer. Each convolution layer has 128 filters and
the size of each filter is 3 x 3.

noise standard deviation (¢ = 10, 30, 50 and 70) that result in
4 different quality levels and a total of 19188 noisy images.
The pristine and noisy images are further divided into patches
of size 224 x 224 x 3 to match the input size requirement of
the DNNs. The distortion maps of all the noisy image patches
are generated using DistNet [2].

Let us assume that a pristine image x is corrupted with
additive noise n ~ N(0, 02) so that the noisy image can be
defined as y = x + n. The distortion map of the noisy image
is defined as d = G(y), where G(.) represents DistNet which
maps a noisy image to its corresponding localized distortion
map. The goal of this work is to learn a function F(.) that can
“best” map a noisy input image to a denoised output image.
The function F(.) accepts as input the noisy image y, the dis-
tortion map d, and is parameterized by ©. The parameters ©
have to be learnt from the training data such that the function
F(.) can “best” denoise the input image. In this work, we de-
fine “best” to be the function that minimizes the mean square
error (MSE) between the denoised image and the pristine im-
age.
Let X = {z1,22..xn}, Y = {y1,¥2,..yn} and D =
{dy,ds,...dny} be the set of corresponding pristine images,
noisy images, and localized distortion maps respectively. We
optimize the LQAID using mean square error (MSE) as the
loss function and RMSProp as the optimization algorithm.
The loss function £(©) is defined as:

| N
L(O) = N S OIF (yirdi; ©) — x| (1)
=1

The training dataset is split in the ratio 80:20 for training
and validation respectively. The network is trained over sev-
eral epochs and the early stopping criterion is employed to
avoid over-fitting. The performance of the proposed LQAID
using FCN is evaluated on two popular vision datasets:
TID2008 [14] and BSD500 [15] using qualitative and quan-
titative analyses as well as an ablation test. Performance

2718

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on November 10,2022 at 10:46:01 UTC from IEEE Xplore. Restrictions apply.



evaluation is described in Section 3.

3. PERFORMANCE EVALUATION

We demonstrate the effectiveness of the proposed approach
using qualitative and quantitative evaluation as well as abla-
tion testing.

3.1. Qualitative evaluation

Figure 2 shows the qualitative comparison of the proposed ap-
proach with a few state-of-the-art techniques using a popular
(monarch) image that is corrupted with AWGN with standard
deviation (o) set to 50 and having zero mean. We can clearly
observe that the proposed approach outperforms the state-of-
the-art methods qualitatively. Specifically, we would draw the
reader’s attention to the head and wings of the butterfly as well
as the flowers in the background (along the left image edge).
We observe that in Figure 2g, the higher texture region is de-
noised better compared to the state-of-the-art methods. We at-
tribute this improvement to the perceptual guidance provided
by the distortion maps as compared to using global cues.

We also evaluated the proposed approach by adding
signal-dependent noise. By signal-dependent noise we mean
noise strength that varies with signal strength. The high vari-
ance regions of the image are distorted with higher strength
noise while low variance regions are distortion with lower
strength noise, and vice-versa. Figure 3 shows the results of
the proposed approach on signal-dependent noise. In Figure
3a, the image is of size 224 x 224 x 3. It is divided into non-
overlapping patches of size 56 x 56 x 3 and corrupted with
AWGN noise whose o depends on the patch variance. To find
the o value for a particular patch, we normalized the patch
variances such that they sum up to one. We then chose o to be
100x normalized variance of that patch. The denoised result
of the proposed approach is shown in Figure 3b. Similarly, in
Figure 3¢ we applied higher noise to low variance patches and
the denoised image is shown in Figure 3d. It is to be noted
that the proposed approach works well even in this scenario
despite it being trained to denoise spatially uniform noise.

3.2. Quantitative Evaluation

Table 1 shows the competitiveness of the proposed approach
in quantitative terms by comparing the image quality of the
proposed method with state-of-the-art methods as measured
using the peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) index [1] over the TID2008 and BSD500
datasets. The numbers reported in the tables are average
scores over the entire dataset. We again observe that the
proposed approach outperforms the state-of-the-art meth-
ods. We would like to point to the reader that columns in
italic correspond to noise levels not used for training. The
proposed approach shows competitive performance even on

previously unseen noise strengths and thereby demonstrates
the generalization ability of our method.

3.3. Ablation Test

In this section, we demonstrate the efficacy of the distortion
map in the proposed approach by performing an ablation
test. Specifically, we train and test the proposed network
(that uses a FCN) with and without augmenting the distortion
map and report its performance quantitatively in Table 2.
We can clearly observe that the distortion map contributes to
improved performance. Through this ablation test we demon-
strate the importance and the utility of the distortion map in
providing perceptual guidance for image denoising.

4. DISCUSSION

As summarized in the previous section, Tables 1, 2 and Fig-
ures 2, 3 show the quantitative and qualitative performance
of the proposed approach respectively. From these tables and
figures it is clear that the proposed approach outperforms the
state-of-the-art methods both quantitatively and qualitatively.
Further, the generalization ability of our approach is also
demonstrated in Table 1 through the noise levels shown in
italics, and through the signal-dependent noise experiment
shown in Figure 3. We attribute the high performance of our
proposed algorithm to the ability of the distortion maps to
guide the denoising function with perceptual cues. This is
especially evident in both the high frequency and the low fre-
quency regions of the images in our qualitative examples. It is
also worth noting that our method provides these perceptual
cues in a completely blind setting where no prior information
about the pristine image or the noise is available. We believe
that this approach could be applied to other tasks such as
image restoration and image super resolution.

5. CONCLUSIONS

We presented a deep neural network based image denoising
approach called LQAID that is aided by local quality (dis-
tortion) information. We demonstrated that our denoising
approach outperforms the state-of-the-art denoising methods
both qualitatively and quantitatively on two image datasets.
Further, we showed that the proposed approach has excel-
lent generalization ability by testing it with noise levels not
used for training and with signal-dependent noise. Our work
also shows the importance of using local perceptual distor-
tion cues for denoising as opposed to using standard global
noise cues. To the best of our knowledge, this is the first
completely blind denoising approach that makes of local dis-
tortion information. As future work, we would like explore
this augmentation approach in other restoration tasks such as
image in painting, super resolution and deblurring.
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(c) Predicted

(a) Pristine Image; (e) DnCNN [9], (f) IRCNN [8], (g) LQAID using
PSNR/SSIM 18.48 dB/0.4245 DistNet map 26.56 dB/0.866 26.59 dB/0.8478 26.34 dB/0.8534 FCN, 28.21
dB/0.8923

(b) Noisy Image, (d) FFDNet [16],

Fig. 2: Qualitative evaluation of the LQAID and comparison with state-of-the-art denoising techniques: Figure (a), (b) and (c)
are the reference, noisy images and predicted distortion map of noisy image using DistNet respectively, Figure (d)-(f) are
denoised results using state-of-the-art techniques. Figure (g) is generated using proposed LQAID.

Table 1: Quantitative demonstration of the proposed LQAID on TID2008 [14] / BSD500[15] with AWGN using average PSNR
(in dB) and SSIM. The noise levels in italic were not used for training.

PSNR
o 10 20 30 40 50 60 70
BM3D [17] | 35.17/34.72 | 31.46/31.19 | 29.28/29.11 | 28.02/27.51 | 26.66/26.56 | 25.39/25.68 | 25.14/24.92
EPLL [18] 34.56/34.11 | 31.07/30.93 | 29.16/28.86 | 27.79/27.46 | 26.47/26.13 | 24.92/25.12 | 24.71/24.59
DnCNN [9] | 33.37/32.96 | 30.07/29.61 | 28.25/27.76 | 26.10/26.50 | 25.96/25.51 | 24.94/24.55 | 23.73/23.42
IRCNN [8] | 34.40/34.00 | 30.95/30.39 | 29.06/28.45 | 27.86/27.25 | 26.92/26.32 | 21.39/21.24 | 16.84/16.83
FDDNet [16] | 34.44/34.00 | 31.02/30.46 | 29.20/28.58 | 27.98/27.35 | 27.07/26.43 | 26.36/25.72 | 25.77/25.14
LQAID 35.50/35.02 | 31.65/31.22 | 30.55/29.94 | 29.12/28.58 | 28.17/27.58 | 27.30/26.74 | 26.51/25.98
SSIM
o 10 20 30 40 50 60 70
BM3D [17] | 0.968/0.961 | 0.938/0.931 | 0.912/0.907 | 0.874/0.867 | 0.856/0.848 | 0.828/0.835 | 0.816/0.806
EPLL [18] | 0.941/0.939 | 0.931/0.924 | 0.899/0.897 | 0.871/0.855 | 0.843/0.829 | 0.814/0.826 | 0.811/0.802
DnCNN [9] | 0.903/0.906 | 0.825/0.826 | 0.762/0.760 | 0.709/0.706 | 0.659/0.656 | 0.598/0.597 | 0.515/0.518
IRCNN [8] | 0.923/0.929 | 0.859/0.861 | 0.805/0.805 | 0.766/0.761 | 0.730/0.723 | 0.384/0.396 | 0.205/0.218
FDDNet [16] | 0.924/0.929 | 0.861/0.863 | 0.811/0.810 | 0.771/0.767 | 0.738/0.731 | 0.711/0.702 | 0.688/0.677
LQAID 0.972/0.974 | 0.945/0.944 | 0.929/0.926 | 0.908/0.904 | 0.887/0.882 | 0.867/0.861 | 0.847/0.840

Table 2: Performance comparison of the LQAID without and
with augmenting the distortion map on BSD200 [15] dataset.

(b) LQAID using FCN,

(a) High variance - High
noise, SSIM = 0.7170 SSIM =0.9313 PSNR in dB
o 10 30 50 70
Without | 33.65 29.03 26.87 25.41
With 3492 | 2935 | 2692 | 25.53
SSIM
o 10 30 50 70
b Without | 0.9678 | 0.9159 | 0.8618 | 0.8316
: 4 L With 0.9736 | 0.9189 | 0.8683 | 0.8321
(c) High variance - Low (d) LQAID using FCN,
noise, SSIM = 0.6531 SSIM =0.9138

Fig. 3: Performance evaluation of the LQAID on
signal-dependent noise.
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