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LIDOR: A Lightweight DoS-Resilient
Communication Protocol for Safety-Critical

IoT Systems
Milan Stute , Pranay Agarwal, Abhinav Kumar, Member, IEEE, Arash Asadi, and Matthias Hollick

Abstract—IoT devices penetrate different aspects of our life
including critical services, such as health monitoring, public
safety, and autonomous driving. Such safety-critical IoT systems
often consist of a large number of devices and need to withstand
a vast range of known Denial-of-Service (DoS) network attacks to
ensure a reliable operation while offering low-latency information
dissemination. As the first solution to jointly achieve these goals,
we propose LIDOR, a secure and lightweight multihop commu-
nication protocol designed to withstand all known variants of
packet dropping attacks. Specifically, LIDOR relies on an end-
to-end feedback mechanism to detect and react on unreliable
links and draws solely on efficient symmetric-key cryptographic
mechanisms to protect packets in transit. We show the overhead
of LIDOR analytically and provide the proof of convergence for
LIDOR which makes LIDOR resilient even to strong and hard-
to-detect wormhole-supported grayhole attacks. In addition, we
evaluate the performance via testbed experiments. The results
indicate that LIDOR improves the reliability under DoS attacks
by up to 91% and reduces network overhead by 32% compared
to a state-of-the-art benchmark scheme.

Index Terms—Ad hoc networks, communication systems, com-
munications technology, computer networks, Internet, Internet of
Things, network security, protocols, routing protocols, wireless
mesh networks.

I. INTRODUCTION

SAFETY-CRITICAL IoT systems have become an inte-
grated part of our professional and personal lives in the

areas of health monitoring, public safety, and autonomous driv-
ing. Such systems require wireless networking solutions that
are: 1) scalable; 2) robust and secure; and 3) offer low latency
(see Fig. 1). To date, these objectives have been individually
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Fig. 1. Design objectives for safety-critical IoT.

tackled, however, there is no comprehensive solution that
addresses these objectives jointly.

The key to scalability is using multihop communication
with low overhead routing strategies [1]. In fact, existing
practical solutions such as Bluetooth Mesh [2], [3] rely on
multihop communication but their scalability is limited by
a flooding-based routing approach. Robustness and security
are achieved by protection against attacks on availability, i.e.,
Denial-of-Service (DoS) attacks. Furthermore, this protection
should be provided both on the control plane and data plane.
Prior works on joint control and data plane protection [4]–[8]
do not provide a provably comprehensive solution against
all well-known variants of a blackhole and grayhole DoS
attacks. Finally, low latency is important for safety-critical
systems which require timely dissemination of information.
Low latency can only be achieved via a low overhead rout-
ing protocol design and an efficient implementation especially
when using cryptographic operations.

In this article, we propose LIDOR, a lightweight multihop
protocol that secures communication among IoT devices.
While LIDOR provides authenticated and (optionally) con-
fidential communication, more importantly, it uses an end-
to-end feedback mechanism to quickly detect and locally
repair broken paths, thus, comprehensively mitigating differ-
ent variants of DoS attacks. LIDOR’s path selection provably
converges even in the presence of hard-to-detect wormhole-
supported grayhole attacks. By leveraging symmetric-key
cryptographic primitives, we ensure the efficient operation of
LIDOR even on embedded devices [9] leading to low end-
to-end delivery delays. We validate our proposal by running
testbed experiments. Our main contributions are as follows.

1) We present LIDOR, the first multihop communication
protocol that comprehensively protects against all well-
known variants of blackhole and grayhole attacks.

2) We analytically prove that LIDOR’s communication
overhead is lower than Castor [8], which is the most
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secure multihop solution in the state of the art. Although
Castor is not the latest work on the topic, it is
the strongest work to date which provides protections
against different packet dropping attacks. Recent follow-
up works pursue solution for specific attacks only
[10], [11].

3) We provide analytical proof that LIDOR converges
even in the presence of a wormhole-supported grayhole
attack.

4) We implement a LIDOR prototype in C++ using
lightweight symmetric cryptographic primitives and
make it available as open-source software.

5) We conduct experiments in our testbed to validate our
analytical findings and show that LIDOR does not
incur additional overhead under attack and significantly
increases delivery rates under attack compared to the
Castor protocol.

The remainder of this article is structured as follows. In
Section II, we give background information on DoS attacks
and related work. In Section III, we introduce our LIDOR pro-
tocol. We provide analytical proofs for LIDOR’s overhead and
convergence in Sections IV and V, respectively. In Section VI,
we shed light on our implementation on which we base our
experimental evaluation in Section VII. We discuss our results
in Section VIII and finally conclude in Section IX.

II. BACKGROUND

In this section, we first review major DoS attacks on
multihop communication schemes and then discuss existing
secure multihop protocols that thwart (part of) the attack space.
We provide an overview of the protocols and their attack
resilience in Table I.

A. Denial-of-Service Attacks

We adopt the taxonomy of [12] for attacks on multihop com-
munication. We differentiate between attacks on the control
plane (path discovery) and attacks on the data plane (pay-
load transmission). DoS attacks on multihop schemes aim to
disrupt or completely prevent communication between two tar-
get nodes. By manipulating the path discovery mechanism, an
attacker might be able to divert traffic (spoofing or replay)
or attract traffic towards itself by exploiting performance-
based distance metrics, such as hop count or round-trip time
(rushing [13], tunneling, or wormhole1 [14]). In addition, the
attacker can operate under multiple identities to evade detec-
tion (Sybil attack [15]). On the data plane, the attacker can
decide to drop all packets (dropping), or to only drop tem-
porarily or certain types of packets (selective dropping). By
combining attacks on the control and data planes, an attacker
can create a devastating blackhole or grayhole which essen-
tially attracts and then (selectively) drops packets. Note that
consequently, there are several flavors of a blackhole and gray-
hole attacks that depend on a supporting attack on the control
plane.

1We consider rushing and tunneling to be weaker variants of the wormhole
attack, so we do not explicitly consider them in the following.

TABLE I
RESILIENCE OF HOLISTIC MULTIHOP PROTOCOLS TO DIFFERENT

VARIANTS OF (SELECTIVE) PACKET DROPPING ATTACKS. WE

DIFFERENTIATE BETWEEN RESILIENT (✓), LIMITED RESILIENT (✓*),
NOT RESILIENT (NO MARK), AND UNKNOWN (?)

Regarding attacks aiming at resource starvation, Castor [8]
is the only solution that proposes a rate-limiting mechanism
tied to the node’s reliability to thwart flooding attacks. Since
LIDOR uses a similar reliability-based distance metric, adopt-
ing Castor’s mitigation would be straightforward, but is not
discussed in this article.

B. Related Work

Initial works on routing protocols [16]–[20] only secure
the control plane of a communication protocol and, there-
fore, cannot comprehensively protect against (selective) drop-
ping attacks. Similarly, protocols only protecting the data
plane [21], [22], can only detect the packet loss but not react on
it. Therefore, the best approach against blackhole and grayhole
attacks is a holistic approach that protects both the control and
data plane. We provide a summary of such holistic approaches
in Table I. As we are interested in a comprehensive DoS
resilience, we briefly point out the drawbacks of each approach
in the following.

2ACK [4] selectively acknowledges data packets and is thus
vulnerable to all types of grayhole attacks. In addition, the
protocol is vulnerable to colluding attackers. ODSBR [5] uses
authentic end-to-end acknowledgments for data packets and
resorts to path probing to identify broken links. The latter
makes the protocol vulnerable to Sybil and wormhole attacks
where a large number of fictitious links are created and all
have to be explicitly identified. Sprout [6] uses path prob-
ing to evaluate the quality of entire paths instead of links.
Since the protocol relies on source routing, the source needs
to be able to identify all other nodes. In addition, Sprout
was shown to perform worse than Castor under the worm-
hole attack. BTFR [7] is similar to Sprout in design (source
routing and end-to-end acknowledgments). Castor [8] has
an elegant design to use end-to-end acknowledgments, and
achieves higher resilience against sophisticated attacks, such
as blackholes and wormholes by incorporating an implicit and
independent route discovery.

Although Castor is not the latest work on the topic, it is
the strongest work to date which provides protections against
different packet dropping attacks. Follow-up works pursue
solutions for specific attacks, i.e., spoofing [11], grayhole
[10], [23], or Sybil [24]. Because of its comprehensiveness, we
opted for Castor [8] as our benchmark. Compared to Castor,
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TABLE II
SYMBOLS AND NOTATIONS

we significantly reduce the protocol overhead and complete the
protection scope to grayholes supported by replay and worm-
hole attacks. Finally, we provide experimental evidence on the
practicality of our scheme.

III. LIDOR PROTOCOL

In this section, we first provide the requirements and a high-
level overview of the LIDOR protocol. Next, we describe the
protocol in detail, and, finally, highlight differences from the
benchmark protocol. We provide a complete list of symbols
and notations in Table II.

A. Requirements

Our security assumptions consist of a trust model and an
attacker model. We further require each node to perform cer-
tain basic cryptographic operations. We elaborate on them in
the following.

Trust Model: LIDOR devises an end-to-end communication
scheme. Hence, source and destination nodes need to trust each
other and be able to share a cryptographic key. LIDOR does
not enforce a specific mechanism for key establishment and
distribution similar to other works, e.g., they can be mediated

by a trusted third party that certifies public keys [5], [6], [8]
or via secure device pairing methods [25]. In the IoT sce-
nario, the device manufacturer could predeploy certified keys
such that devices from the same manufacturer could perform
key derivation without an active third party. However, we do
not assume trust relationships between source/destination and
other intermediate nodes. By not relying on a network-wide
key, LIDOR is robust to the compromise of individual nodes,
e.g., in case that certain device models expose vulnerabilities.

Adversary Model: In this article, we consider attacks on the
classic security triad confidentiality, integrity, and availability.
However, LIDOR focuses on DoS attacks. In particular, our
adversary is an entity controlling a portion of authenticated
nodes within the network. They can consequently take part in
normal network operations, but are not limited to, mounting
localized jamming, packet injection, modification, and drop-
ping attacks; specific attacks on the forwarding protocol; or
any combination thereof (see Section II for details). However,
the attacker cannot break cryptographic primitives and we
assume that there is at least one attacker-free path between
any source–destination pair that wishes to communicate.

Node Capabilities: Each LIDOR node: 1) has access to a
pseudorandom number generator rng; 2) can compute a cryp-
tographic hash function hash(·); 3) has access to a stream
cipher prf (K, n) which takes a key K and some nonce n as
inputs; and 4) can compute authentication tags tag(K, ·) based
on a shared key K. We discuss practical candidate functions
in Section VI-B.

B. LIDOR Overview

LIDOR leverages established concepts [8], [26], [27] to
provide DoS-resilient communication. At its core, LIDOR:
1) uses an acknowledgment-based feedback mechanism to rate
the reliability of neighbors and effectively detect faulty links;
2) lets intermediate nodes individually decide whether to con-
duct path exploration (broadcast) or exploitation (unicast) to
quickly react to changes in reliability; and 3) separates the
state of different flows that only source and destination nodes
can influence to prevent adversarial state pollution. With its
generic design, LIDOR is agnostic to the cause of disruptions
but will detect the existence of failures and react on them.
Thereby, LIDOR comprehensively thwarts any type of drop-
ping attack. Furthermore, LIDOR solely relies on lightweight
symmetric cryptographic primitives (e.g., hash functions) [9]
that are also feasible on less powerful nodes. In particular,
we rely on a Merkle tree-based commitment scheme, where
all packets are committed to belong to the same flow and
the destination reveals the secret only after receiving it in the
form of an acknowledgment. Since all intermediate nodes are
able to verify the secret, they can be sure that the destination
has received the packet if we receive the acknowledgment. In
the following, we describe LIDOR’s workflow in detail and
elaborate on packet format and processing.

C. LIDOR Workflow

Next, we elaborate on the protocol workflow of LIDOR.
The main processing steps are: 1) packet generation; 2) packet
verification; 3) packet forwarding; 4) packet reception; and
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(a) (b) (c)

Fig. 2. Overview of LIDOR’s protocol workflow showing which operations are made in which stage: 1) packet generation; 2) packet verification; 3) packet
forwarding; 4) packet reception; and 5) acknowledgment handling. Attacker nodes are marked in red and drop all packets in this example. (a) Source
(1) generates a packet and (3) forwards it to its most reliable neighbor. If reliability is low, it probabilistically broadcasts to all neighbors to explore new
paths. (b) Receiving nodes (2) discard duplicates and verify that the packet belongs to a certain flow. Then, they (3) make forwarding decisions the same way
the source node does. (c) Destination (4) verifies the authenticity of the packet and replies with an acknowledgment on the reverse path. All receiving nodes
(5) verify its authenticity and update the reliability rating of their respective neighbors. Neighbors which do not return an acknowledgment receive a penalty.

5) acknowledgment handling. We depict the various stages in
Fig. 2.

1) Packet Generation: LIDOR establishes flows for end-to-
end communication similar to [8]. The cryptographic material
securing each flow is drawn from a Merkle tree, an accepted
cryptographic tool for secure multihop communication [8],
[19], [26], [27]. We first introduce the packet format and then
discuss the peculiarities of Merkle tree usage and construction.

Packet Format: The LIDOR PKT in (1) contains source s
and destination d identifiers, flow identifier H which is the
root of a Merkle tree of height l, the kth PKT identifier bk,
and an authentication tag σ . A nonce n is included until the
first ACK of the flow is received. The user payload may be
encrypted using the stream cipher prf (Ksd, hash(n+ k)). σ is
computed over all fields except the flow authenticator fk and
length l′. Additional meta data (packet type, length of hash
values, and length of the entire packet) is excluded for brevity

PKT =
〈
s, d, H, bk, f l′<l

k , n,P, σ
〉
. (1)

Merkle Tree Usage: LIDOR utilizes Merkle hash trees for
packet labeling, flow authentication, and proof of packet recep-
tion. In particular, the idea is to use the input values for
the tree’s leaf nodes as packet identifiers bk and to commit
them with the root H which is used as a flow identifier. The
packet’s identifiers, in turn, are computed from a secret ak

as bk = hash(ak). Since PKTs are end-to-end authenticated,
the destination node will only reveal the preimage ak of the
packet identifier bk for authentic packets in the form of an
acknowledgment (ACK) (Section III-C4). Upon reception of
ak, intermediate nodes can deduce that the destination must
have received an authentic packet with bk.

Nonce-Seeded Merkle Tree Construction: We construct the
LIDOR Merkle tree as follows: 1) we use a unique and random
nonce n and use it together with Ksd to seed a cryptographi-
cally secure pseudorandom number generator prf (·, ·), e.g., a
stream cipher and 2) we “chop” the output of prf (Ksd, n) into
w blocks of size |hash(·)| to create all ak for k = 1, . . . , w
and construct the Merkle tree as shown in Fig. 3. Our unique
approach of seeding the Merkle tree with a nonce n enables
the source to share all secret values ak with the destination
by just communicating n. Together with the shared key Ksd,
the destination is able to repeat the Merkle tree construction
process and retrieve all ak. Without 1), the source would need
to communicate all ak individually in a confidential manner
that would waste bandwidth as done in [8].

When creating the Merkle tree from n and Ksd, we need to
assert that n is never reused for any source–destination pair,
otherwise replay attacks are possible. Reasonable candidates
for n are timestamps or randomly chosen values drawn, e.g.,
from a system provided rng function. The drawback of choos-
ing timestamps as nonces is the additional attack vector on
time synchronization services, such as NTP [28] or GPS [29].
When choosing n purely at random, n must be large enough to
avoid nonce reuse due to the well-known “birthday problem.”
We choose to implement the second option with a random
192-b nonce.

The tree size w is optimally chosen such that it is equal to
the number of packets a source node wishes to transmit for
a certain flow. If this number is known a priori, w can be
approximated and fed into LIDOR as an optimization. In all
other cases, LIDOR has to rely on a default tree size. However,
choosing the default tree size incurs a tradeoff: 1) the length
of the flow authenticator included in every packet grows log-
arithmically with the tree size, but 2) very small trees cause
frequent flow restarts, i.e., whenever all bk have been used,
a new tree must be created and the route exploration process
restarts. In Section III-C2, we propose a countermeasure for
1) in the form of an in-network compression mechanism that
can reduce the average overhead of the flow authenticator to
a constant factor (Section III-C2).

2) Packet Verification: Next, a node filters out the PKTs
that either have already been forwarded (i.e., duplicates) or
contain an invalid flow authenticator. In addition, a node
computes the minimal authenticator length for the next-hop
node.

Duplicate Detection: Duplicate detection consists of two
steps. First, a node calculates a packet digest m using a
collision-resistant hash function of the incoming PKT (exclud-
ing the variable-length field fk). This serves for identifying
unique PKT copies which might have the same packet identi-
fier bk. If the node has already seen the pair 〈m, bk〉, the PKT is
dropped. To prevent replay attacks, each node keeps per-flow
state to memorize which PKTs have already been acknowl-
edged for preventing replay attacks. A very low complexity
and space-efficient implementation of such a data structure
is a zero-initialized bit vector. Setting bit k in the bit vector
signifies that the kth PKT of a certain flow is acknowledged,
and, thus, future replays of bk can be ignored. Specifically, a
node checks whether PKT k of the indicated flow has already
been acknowledged (kth bit set), and if yes, discards it. The
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effectiveness of our replay protection mechanism is shown in
Section VII.

Flow Authentication: The Merkle tree assures that all bk can
be authenticated to a single value, that is, the root H which
serves as a flow identifier. Intermediate nodes can validate
that bk belongs to H by traversing the tree from bk to the
root H′ using intermediate tree nodes fk and checking that
H′ = H. The flow authentication procedure has been described
in [8] and assures that only PKTs belonging to the flow will
be forwarded.

3) Packet Forwarding: Here, we describe the forwarding
decision that is based on a reliability metric. We further discuss
the in-network Merkle tree compression to reduce network
overhead and explain the purpose of the PKT timer.

Reliability Metric: In contrast to the per-destination rout-
ing state used in classic MANET protocols, LIDOR keeps the
forwarding state per flow. In addition, LIDOR nodes maintain
separate per-neighbor reliability metrics for every encountered
flow. The reliability metric μH

i,j ∈ [0, 1] of a node i for its
neighbor j for the flow H is computed as a running aver-
age of the PKT delivery rate (i.e., the number of valid ACKs
returned from a neighbor). It has been shown in [8] and [30]
that this approach provides a lightweight protection against any
type of accidental and deliberate packet loss including hard-
to-detect selective packet dropping, i.e., grayhole attacks. In
Section V, we discuss the calculation of the reliability metric
in detail. We further prove that the previous approaches [8] are
not secure, i.e., they do not converge towards an attacker-free
path if attackers are present in the network. Also, we prove
that LIDOR’s approach converges.

Forwarding Decision: This decision is made probabilis-
tically based on the reliability metric. A node forwards a
PKT with probability 1− r using a broadcast transmission or
with probability r using a unicast to the most reliable neigh-
bor. Should two or more neighbors have the same reliability
metric, we use the average round-trip time to break the tie.
The intuition is that we use broadcast for route exploration
if no reliable path exists, and otherwise, unicast for route
exploitation.

In-Network Merkle Tree Compression: The size of the flow
authenticator fk has a drastic impact on the protocol overhead.
fk grows linearly with the tree height l. In previous works [8],
[19], [31], all sibling nodes in the tree from the leaf to the root
(tree nodes x1, . . . , xl in Fig. 3) are included in each packet.
For large trees, this naïve approach generates significant over-
head. For instance, a tree of height l = 8 allowing to send
28 = 256 PKTs under that flow requires the header to include
eight hash values for fk. In absolute terms, these results in
8 × 16 = 128 B/PKT when using a collision-resistant hash
function with a 16-B output.

LIDOR employs a more efficient method: LIDOR nodes
incrementally construct the Merkle tree as they receive new
bk and fk values (note that intermediate nodes cannot construct
the entire tree from n since they do not possess Ksd). Starting
from the second received PKT, l′ < l new tree nodes are
required to authenticate the flow. The idea is visualized in
Fig. 4. In a stable network, the lower bound average of l′ is
constant with (2l − 1) /2l < 1 which leads to an eightfold

Fig. 3. LIDOR Merkle tree generation. The leaf seeds ak are drawn from
a stream cipher prf (·, ·), which, in turn, is seeded by a secret key Ksd and a
public nonce n.

Fig. 4. Exemplary Merkle tree (w = 4) visualizing optimal flow authenticator
lengths l′ for different PKT identifiers bk . Bullets (•) indicate tree nodes that
have to be included in PKT k. Circles (◦) are known tree nodes sent in the
previous PKTs. Dots (·) are unknown nodes but are not required to authenticate
bk . Thick lines indicate the verification path.

overhead reduction compared to sending the full authenticator
length.

In order to devise a practical distributed algorithm to cal-
culate l′, nodes need to keep track of the current Merkle tree
state of their neighbors. LIDOR nodes do this by leveraging
the ACKs received from their neighbors: when receiving ak

from neighbor h, a node knows that h has the kth leaf of the
Merkle tree, as well as the authenticated path from this leaf
to the root. Otherwise, h would have been unable to authenti-
cate and forward the kth PKT in the first place. To determine
minimal l′, i.e., the shortest possible flow authenticator length
for which the next-hop node will still be able to authenticate
bk, we use Algorithm 1. For broadcast PKTs, we set l′ to the
maximum among all neighbors, i.e., l′ = maxh l′h with l′h being
the minimal flow authenticator length for neighbor h.

This scheme assures that: 1) a node can always authenti-
cate any PKT received from another correct node and 2) the
transmitted flow authenticator does not convey redundant
information, i.e., it is exactly as long as it needs to be for
minimal PKT overhead. Note that our scheme is agnostic to
packet loss and packet reordering.

In the rare case that a node loses state and is unable to
authenticate the flow because fk is too short, it may “bounce”
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Algorithm 1 Minimal Flow Authenticator Length
function MINAUTH(k, l, h)

l′ ← 0
while l′ < l do

kleft ← (k ⊕ (1
 l)) ∧ (−1
 l)
kright ← kleft + (1
 l)− 1
for k′ ∈ [kleft, kright

]
do

if h has acknowledged k′ then
return l′

l′ ← l′ + 1
return l

the PKT back to the sender with a unicast to request for a
retransmission with the complete fk. The receiving node then
removes the flag and returns the complete fk of length l to
the requester. This retransmission may only be done once per
neighbor and PKT to prevent DoS attacks where an attacker
would effectively circumvent the duplicate check.

Awaiting Response: When forwarding a PKT, a node starts
one timer for each new bk which expires after TACK. In addi-
tion to starting the timer, the tuple 〈m, bk, H〉 together with
the forwarding decision is added to a collection of previously
seen PKTs. This tuple serves the purpose of authenticating
ACKs (as described in Section III-C5) and it is discarded after
the PKT timer expires. If the timer expires and no ACK has
been received, the reliability metric for the next-hop node is
decreased. To avoid premature false positives (timer expires
before ACK was returned) or late true positives (lost ACK
is detected too late), we employ an adaptive TCP-inspired
timeout calculation for TACK following the same approach as
in [26].

4) Packet Reception: In addition to verification, the desti-
nation node checks the PKT’s σ . PKTs with an invalid σ are
discarded. For the first PKT of a flow, the destination locally
computes the full Merkle tree using the nonce n as described in
Section III-C1. For every PKT, the destination selects ak from
the Merkle tree and generates the appropriate ACK (2) which
consists of the packet digest m and the ACK authenticator ak.
The ACK is then returned to the sender

ACK = 〈m, ak〉. (2)

5) ACK Handling: ACKs are primarily meant as secure
proofs of delivery used to update the neighbor reliability met-
rics. Upon ACK reception, a node calculates bk = hash(ak)

and checks whether the ACK belongs to a valid PKT, i.e.,
whether any PKT with m and bk has been forwarded before.
If not, the ACK is dropped. Otherwise, and if the sending
node matches the previous forwarding decision, the reliability
metric for the sending node is increased. The ACK is then for-
warded to the neighbors from which the node received copies
of the corresponding PKT. If we receive multiple ACKs, only
the first one is forwarded. In addition, a valid ACK updates
the bit vector used for duplicate detection and neighbor Merkle
tree state as described in Section III-C2.

D. Key Differences to Benchmark

We have described our LIDOR protocol in detail. In the
following, we discuss the distinct differences to the benchmark

protocol [8]. In particular, LIDOR differs from the benchmark
in the following key points.

1) We employ an effective construction and in-network
compression of the Merkle tree. Especially with the
in-network compression, we are able to reduce the aver-
age packet overhead from a logarithmic to a constant
factor (with respect to the tree size) in a static set-
ting. We provide the proofs in the overhead analysis in
Section IV.

2) We provide proper protection against replay attacks. In
particular, we keep a list of seen PKT identifiers even
after the ACK timeout in the form of a space-efficient
bit vector as described in Section III-C2.

3) We design a reliability metric that will converge even in
the presence of a strong wormhole-supported grayhole
attack. We provide a proof for nonconvergence of the
benchmark and a proof of convergence for LIDOR in
Section V for a static network topology.

IV. OVERHEAD ANALYSIS

In this section, we present a comparative analysis between
the overhead of the benchmark and LIDOR protocol for a con-
verged scenario. For the purpose of this analysis, we consider
the number of hash values in the flow authenticator fk as the
overhead of the system. The overhead is added for each hop.
In the converged scenario, a stabilized path exists between the
source and the destination. Thus, all the nodes in the stabilized
path will unicast the packet to their most reliable neighbor.
This implies that the recipient of consecutive packets from a
node remains the same.

Let I denote the number of hops between the source and
destination nodes. Let l be the height of the Merkle Tree.
Therefore, the number of packets transmitted for a flow of the
Merkle tree is given by 2l. Let |hash(.)| denote the size of one
hash value in bytes.

A. Benchmark Protocol

In the benchmark protocol, the source transmits all the
hash values for each packet. The total number of hash values
required for authenticating the packet is same as the height
of the Merkle tree, l. Let OB

k denote the overhead for the kth
packet of the flow. Then

OB
k =

I∑
i=1

l|hash(.)| + |ek|

= I(l|hash(.)| + |ek|)
where |ek| denotes the size of the hash value of an encrypted
ACK ek in bytes as used in [8]. Let OB denote the total
overhead of the benchmark protocol. Then

OB =
2l∑

k=1

OB
k =

(
2lI
)
(l|hash(.)| + |ek|). (3)

B. LIDOR Protocol

In LIDOR, the first packet of the flow carries a nonce which
is used by the destination node to reconstruct the Merkle tree.
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The intermediary nodes require l hash values of the Merkle
tree to verify if the packet belongs to the same flow. Thus, the
overhead for the first packet, denoted by OL

1 , is given by

OL
1 = Il|hash(.)| + I|n| (4)

where, |n| is the size of nonce in bytes. The number of hash
values required for authentication may reduce if the recipient
of the current packet had previously received one or more
packets belonging to the same flow. Since the network is
converged which implies each node sends all the packets to
the same node, it can save upon the number of hash values
required for transmission as shown in Algorithm 1.

Let η denote the number of hash values required to be trans-
mitted when all the packets are sent to the same node, where
η is a nonnegative integer in the range [0, l]. Then

2l∑
k=1

η = 2l − 1. (5)

This implies that the total number of hash values to be trans-
mitted when all the packets are sent to the same node is given
by 2l − 1.

The nonce is retransmitted in future packets if tk + RTT >

tk+1, where tk is the sending time of the kth packet and
RTT denotes the round-trip time. The best case is if the
nonce is transmitted only for the first packet, whereas the
worst case is if the nonce is transmitted for each packet of
the flow. Therefore, we assume that nonce is transmitted for
2 ≤ k ≤ λn packets, where λn(≤ 2l−1). Thus, the probability
of retransmission of nonce, denoted by pn, is given by

pn = λn

2l − 1
.

Then, OL
k for 2 ≤ k ≤ 2l − 1 is given by

OL
k = I(η|hash(.)| + pn|n|). (6)

Let OL denote the overhead of the LIDOR protocol for a flow.
Then, from (4)–(6), we have

OL =
⎡
⎣

2l∑
i=1

η

⎤
⎦I|hash(.)| +

(
1+ (2l − 1)pn

)
I|n|

= I
((

2l − 1
)
|hash(.)| +

(
1+

(
2l − 1

)
pn

)
|n|
)
. (7)

Let �O denote the difference of the benchmark and LIDOR
protocol. From (3) and (7), �O is given by

�O = I|hash(.)|
(

2l(l− 1)+ 1
)

+
(

2l(|ek|)−
(

1+
(

2l − 1
)

pn

)
|n|
)
.

V. CONVERGENCE ANALYSIS

In this section, we present the lower and upper bounds on
the number of packets required to achieve convergence in the
benchmark and LIDOR protocol under a grayhole attack.2 We

2Note that the LIDOR and benchmark are resilient to blackhole attacks.
An attacker that drops all packets would effectively remove itself from the
network.

assume reliable wireless transmissions, i.e., there is no loss on
the channel. The network consists of the attacker and nonat-
tacker nodes. Unlike a nonattacker node, the attacker node
drops the packet if the packet has been unicast to it. However,
both the nonattacker and attacker node forward the packet and
provide ACK in case of the broadcast.

Let s and d be the source and destination nodes, respec-
tively. Let μH

s denote the maximum reliability value among
all the one-hop neighbors of s for the flow H. We say that
the network has achieved convergence when: 1) the reliability
of a nonattacker node is maximum, i.e., μH

s corresponds to a
nonattacker node; 2) μH

s does not decrease; and 3) μH
s ≥ 1−ε,

where ε(≈ 0) is a suitable threshold on the reliability of the
network. Let BM

x denote the successive broadcast of M packets
by the node x and BM denotes the successive broadcast of M
packets by all the nodes. Let Uy

x denote the unicast of a packet
from the node x to the node y in the system.

A. Nonconvergence of the Benchmark Protocol

In this section, we present the convergence analysis for the
benchmark protocol. In the benchmark protocol, each node
computes a reliability metric for a flow H for the jth neighbor.
Let μH

x,j denote the reliability metric computed by the node x
for its jth neighbor for the flow H. Then

μH
x = max

j
μH

x,j

whereas μH
x,j is given by

μH
x,j =

μ
all,H
x,j + μ

first,H
x,j

2
(8)

where μ
all,H
x,j and μ

first,H
x,j denote the reliability of “all ACK”

and “first ACK,” respectively, for the jth neighbor of the node
x and flow H. Then, μ

all,H
x,j is computed as

μ
all,H
x,j =

α
all,H
x,j

α
all,H
x,j + β

all,H
x,j

(9)

where α
all,H
x,j and β

all,H
x,j are the proportion of the packets deliv-

ered successfully and unsuccessfully, respectively, for the jth
neighbor of the node x and flow H. α

all,H
x,j and β

all,H
x,j update

for each unsuccessful transmission as

α
all,H
x,j ← δα

all,H
x,j

β
all,H
x,j ← δβ

all,H
x,j + 1 (10)

whereas α
all,H
x,j and β

all,H
x,j update for each successful

delivery as

α
all,H
x,j ← δα

all,H
x,j + 1

β
all,H
x,j ← δβ

all,H
x,j . (11)

The parameter δ controls the adaptability of the network and
0 < δ < 1. Similarly, μ

first,H
x,j can be computed as

μ
first,H
x,j = α

first,H
x,j

α
first,H
x,j + β

first,H
x,j

. (12)
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α
first,H
x,j and β

first,H
x,j update in the same manner as α

all,H
x,j and

β
all,H
x,j for both successful and unsuccessful transmissions.

Initially, α
all,H
x,j = α

first,H
x,j = 0 ∀x, j and β

all,H
x,j = β

all,H
x,j =

1 ∀x, j. Let M denote the number of packets broadcast by the
source node. If we assume that all the packets are received
successfully, the reliability of the neighbors of the source
increases for all the packets. Let �M denote the reliability
of the neighbors after the transmission of M packets. Then,
using (9) and (11), �M is given by

�M =
(∑M−1

i=0 δi

∑M
i=0 δi

)
. (13)

Let us consider that the nodes x1 and x2 connect s and
d via two hops. Let x1 be a nonattacker node and x2 be an
attacker node. Consider B1 and Ux2

s , B1 as a packet transmis-
sion scenario. We assume that x2 provides first ACK for both
broadcast. Then, using (8)–(13), we have

μH
s,x1
= 1

2
�2

μH
s,x2
= δ2 + 1

δ3 + δ2 + δ + 1
= 1

1+ δ
.

Clearly, μH
s,x1

< μH
s,x2

. Therefore, if s selects to unicast, it will
unicast only to x2. Consider the case when s broadcast after
N−1 successive B1, Uy

s transmissions and x2 always provide
the first ACK. Then, μH

s,x1
and μH

s,x2
after the Nth broadcast

μH
s,x1
= 1

2
�N

μH
s,x2
=
∑N−1

i=0 δ2i

∑2N−1
i=0 δi

= 1

1+ δ
. (14)

Let Z denote the difference of μH
s,x1

and μH
s,x2

. Using (14), we
have

Z = 1

2
�N − 1

1+ δ

= 1− δN

2
(
1− δN+1

) − 1

1+ δ

= (δ − 1)
(
1+ δN

)

2(1+ δ)
(
1− δN+1

) . (15)

Since δ < 1, Z < 0 for any N, which implies μH
s,x1

< μH
s,x2

.
Thus, there is a possibility that the network gets stuck in the
loop of B1, Ux2

s when x2 only provides the first ACK. This
implies that there exists a possibility that s never converges
to the nonattacker neighbor, i.e., x1. Next, we describe the
convergence in the LIDOR protocol wherein each node will
converge to a nonattacker neighbor.

B. Convergence of the LIDOR Protocol

LIDOR does not differentiate between μ
all,H
x,j and μ

first,H
x,j ,

i.e., μH
x,j = μ

all,H
x,j = μ

first,H
x,j and updates μH

x,j for all received

ACKs. However, the procedure of updating μ
all,H
x,j and the pro-

cedure of selecting whether to broadcast or unicast a packet
are same as in the benchmark. In case that two or more neigh-
bors have same reliability value, a round-trip time estimation

from past transmissions similar to TCP is used to break the tie.
Next, we present the convergence analysis with and without
attackers.

No Attackers: In this scenario, we assume that all nodes are
nonattacker. Initially, s broadcast the packet to all its neigh-
bors. Since, there is no loss, the reliability will increase for
all the neighbors of s. After the broadcast of a few packets,
s will perform unicast to the node with the least round-trip
time. Let x be the neighbor of s which has least round-trip
time. Thus, once s performs unicast to x, the reliability of x
becomes more than the reliability of any other neighbor of s.
Since the reliability of x can only increase, s will perform uni-
cast to x with high probability and hence converge to x. This
implies the node which connects s and d in the least number
of hops and has the lowest round-trip time will be chosen as
a unicast forwarder.

Considering BM−1
s and Ux

s , we have μH
s = �M . Then, from

the definition of convergence, we have

μH
s = �M ≥ 1− ε. (16)

Substituting (13) into (16), we have
(∑M−1

i=0 δi

∑M
i=0 δi

)
≥ 1− ε

δM ≤ ε
1− δM+1

1− δ

M ≥ 1

ln(δ)
ln

(
ε

εδ + 1− δ

)
.

Let Mmin denote the minimum number of packets to attain
convergence for the source node in the absence of attackers.
Then

Mmin = 1

ln(δ)

[
ln

(
ε

εδ + 1− δ

)]
. (17)

Attackers With 1 Hop: In this scenario, we consider that s
and d have one layer of relay nodes between them, i.e., s and
d are connected in two hops via relay nodes. The layer of
relay nodes consists of N nonattacker and A attacker nodes.
Let xi denote the ith nonattacker node for i ∈ {1, 2, . . . , N}.
Similarly, let xi denote the ith attacker node for i ∈ {N+1, N+
2, . . . , N+A}. The reliability increases on the unicast for each
xi for i ∈ {1, 2, . . . , N}, whereas the reliability decreases on
the unicast for each xi for i ∈ {N + 1, N + 2, . . . , N + A}.
Therefore, once xi for i ∈ {N + 1, N + 2, . . . , N + A} receives
a unicast, its reliability decreases and hence it will not receive
any unicast in future.

We consider that s has transmitted M(> A) packets.
Considering all possible combinations of broadcast and uni-
cast, the reliability of the most reliable nonattacker node lies
between [�M−A,�M]. The reliability of �M corresponds to
the best case path wherein the most reliable node has received
the first unicast. It also corresponds to the sequence of M
broadcasts, which is less probable. The reliability of �M−A

corresponds to the worst case path wherein there had been
a unicast to each of the A attacker nodes. Then, the upper
bound on the number of packets required for convergence
is computed by considering the worst case reliability of the
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nonattacker node, i.e., �M−A. Therefore, from the definition
of convergence, we have

�M−A ≥ 1− ε. (18)

From (13), we have

�M−A =
(∑M−A−1

i=0 δi

∑M−A
i=0 δi

)
. (19)

Let Mmax denote the number of packets required for con-
vergence in the worst case. Substituting (19) into (18), we
have

∑M−A−1
i=0 δi

∑M−A
i=0 δi

≥ 1− ε

δM ≤ εδA

εδ + (1− δ)

Mmax = 1

ln(δ)

[
ln

(
εδA

εδ + (1− δ)

)]
. (20)

The lower bound on the number of packets required for con-
vergence is obtained by considering the best case reliability,
i.e., �M . Therefore, the lower bound on the number of pack-
ets required for convergence, denoted by Mmin, is as given
by (17). From (17) and (20), we have

Mmax −Mmin = 1

ln(δ)

(
ln(εδA)− ln(ε))

)

= 1

ln(δ)
ln
(
δA
)
= A.

Thus, Mmax = Mmin + A. Since there are A attacker nodes
to which unicast can happen only once, the convergence gets
delayed by A packets if s happens to choose the worst case
path, i.e., s performs unicast to each attacker node.

Attackers With I hops: In this section, we present the anal-
ysis for the network containing N nonattacker and A attacker
nodes for I − 1 layers of relay nodes between s and d. Let
us consider the network with I = 3. Let xi and yi, where
i ∈ {1, . . . , N}, denote the ith nonattacker node in the first
and second layer of relay nodes, respectively. Let xi and yi ,
where i ∈ {N + 1, . . . , N + A}, denote the ith attacker node
in the first and second layer of relay nodes, respectively. μH

s,xi
for any nonattacker node (i.e., i ∈ {1, . . . , N}) decreases if xi

unicast to any attacker node yj where j ∈ {N + 1, . . . , N +A}.
Therefore, each nonattacker node can have A unsuccessful uni-
cast attempts. Therefore, the worst case path for the network
with I = 3 consists of A iterative cycles of successive broad-
cast followed by a unicast to each attacker node by the source
node and an unsuccessful attempt of each nonattacker node
being unicast by the source node. A unicast to each attacker
node and a series of successive follow the end of the iterative
cycle. Let us consider N = 2 and A = 3. The worst case path
for this network is BMmin , Ux3

s , Ux4
s , Ux5

s , Ux1
s Uy3

x1 , Ux2
s Uy3

x2 ,
BG1 , Ux3

s , Ux4
s , Ux5

s , Ux1
s Uy4

x1 , Ux2
s Uy4

x2 , BG2 , Ux3
s , Ux4

s , Ux5
s ,

Ux1
s Uy5

x1 , Ux2
s Uy5

x2 , BG3 , Ux3
s , Ux4

s , and Ux5
s .

μH
s,xi
∀i decreases and becomes equal before BGν

s , where
ν = {1, 2, 3}. Gν represents the minimum number of broadcast

to be performed by all the nodes such that μH
s,xi
≥ 1 − ε ∀i.

Then, G1 is given by

G1 = 1

ln(δ)
ln

⎛
⎝

ε
1−δ

δMmin+1
(

1+ εδ
1−δ

)
+ 1

⎞
⎠ (21)

whereas Gν for any ν > 1 is given by

�ν =
ν−1∑
m=1

(
δ

(∑ν−1
l=ν−m Gl

)
+m
)

ϒν = δ
Mmin+ν+

(∑ν−1
l=1 Gl

)(
1+ εδ

1− δ

)
+ 1+ �ν

Gν = 1

ln(δ)
ln

( ε
1−δ

ϒν

)
. (22)

Then, using (21) and (22), the upper bound on the number of
packets required for convergence for a network with I = 3
hops is given by

Mmax = Mmin + (A+ 1)(A)+ NA+
(

A∑
ν=1

Gν

)
.

In general, for a network with I hops: 1) the number of
unsuccessful unicast attempts for each nonattacker nodes is
given by the number of unicast packets for the network with
I− 1 hops; 2) the number of unicast performed by the source
node to each attacker node is one additional the number of
unicast performed in the network with I − 1 hops; and 3) the
number of successive broadcasts is given by the number of
unicast for the network with I − 1 hops.

Let ξI denote the number of unicast packets in the network
with I hops. Then, ξ2 = A, ξ3 = A(A + 1) + NA, and ξI =
(N + A)ξI−1 + A.

On solving furthermore, we obtain

ξI = (N + A)I−1ξ2 +
(

I−2∑
i=0

(N + A)

)
A

= (N + A)I−1A+
(

I−2∑
i=0

(N + A)

)
A

=
(

I−1∑
i=0

(N + A)i

)
A

=
(

(N + A)I − 1

N + A− 1

)
A. (23)

Then, using (21)–(23), the upper bound on the number of
packets required for network with I hops is given by

Mmax = Mmin + ξI +
⎛
⎝

ξI−1∑
ν=1

Gν

⎞
⎠. (24)

VI. IMPLEMENTATION

We choose the click modular router [32] for the LIDOR
implementation to allow for a realistic evaluation on both real
hardware and simulation. In this section, we discuss suitable
candidate functions for LIDOR’s crypto primitives and devise
a practical link-local broadcast authentication scheme based
on the symmetric cryptography.
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TABLE III
COMPUTATION TIME IN μs OF SEVERAL CRYPTOGRAPHIC ALGORITHMS

ON VARIOUS PLATFORMS FOR 1024-B STRINGS AVERAGED OVER 10 000
RUNS. ED25519 IS A STATE-OF-THE-ART ELLIPTIC-CURVE SIGNATURE

SCHEME AND INCLUDED AS A REFERENCE

A. Reference Platforms

We evaluate LIDOR on heterogeneous platforms with differ-
ent CPU architectures, processing capabilities, memory con-
figurations (256 MB to 16-GB RAM), and operating systems
(Debian Linux, Android 6, and macOS 10.11). In particular,
these are: ALIX [33], APU [34], LG Nexus 5, and MacBook
Pro (early 2015).

B. Cryptographic Primitives

The choice of efficient cryptographic primitives is imper-
ative for any practical communication protocol. In LIDOR,
cryptographic operations consume the longest processing time
during packet forwarding and constitute the major portion
of the communication overhead. Our implementation relies
on primitives provided by the lightweight, cross-platform lib-
sodium (v1.0.11) [35]. A performance comparison between
different candidate algorithms on our reference platforms is
shown in Table III. The table also gives an intuition on why
public-key crypto is unsuitable to be used on a per-PKT basis:
the cumulated forwarding delay would be unacceptably large.
We select LIDOR’s cryptographic primitives as follows.

1) hash(·) is implemented as Blake2b with an output size of
16 B. Note that the hash function used to construct the
Merkle tree does not need to be collision resistant but
only preimage and second-preimage resistant.3 Hence, a
128-b security margin is sufficiently large.

2) prf (Ksd, n) is implemented as XSalsa20/20, a stream
cipher using 256-b keys and 192-b nonces.

3) tag(Ksd, ·) is implemented as SipHash-2-4 [36], which
generates small 8-B authentication tags for short-input
(order of kilobytes) packets using a shared secret Ksd.

C. Practical One-Hop Broadcast Authentication

LIDOR requires neighbor-to-neighbor communication to
be authenticated to prevent blackmailing and Sybil attacks.
Cryptographic methods to authenticate broadcast commu-
nication are either based on digital signatures or on
TESLA [37], which is based on symmetric-key cryptogra-
phy and delayed key disclosure to achieve asymmetry. We
deem both approaches impractical since digital signatures are

3Collision Resistance: Given hash(·), it is hard to find x and x′ such that
hash(x) = hash

(
x′
)
. Preimage Resistance: Given y, it is hard to find x such

that hash(x) = y. Second-Preimage Resistance: Given x, it is hard to find
x′ �= x such that hash(x) = hash

(
x′
)
.

computationally expensive; and TESLA requires time syn-
chronization between all nodes, and introduces authentication
delay which would impede LIDOR’s reactiveness to path
changes. The small output size of SipHash enables us to imple-
ment a one-hop broadcast authentication scheme based on the
symmetric-key cryptography without TESLA’s deficiencies: a
forwarding node computes authentication tags for each neigh-
bor h ∈ F (excluding the sender) and appends all of them to
the PKT. A receiving node then tries to authenticate every tag.
If any of them succeeds, the PKT is processed, and otherwise
discarded. The expected number of SipHash calculations at a
receiving node is |F|/2, and the communication overhead is
|F| × |tag(·, ·)|. We argue that this scheme is practical since:
1) the number of neighbors is typically low compared to the
total number of nodes in the network (which is what TESLA
was designed for), so the communication and computational
overhead for transmitting and verifying all tags remain low
on average and 2) broadcasts are used for route exploration
which rarely occurs in established communication flows.

VII. EXPERIMENTS

Previous works [8], [27] have already shown that LIDOR’s
approach successfully thwarts several blackhole and grayhole
attack variants. Therefore, we focus on two specific variants
that have not been addressed so far. In this section, we first
describe our experiment and testbed setup, and then evaluate
the impact of a replay supported and a wormhole-supported
grayhole attack. Finally, we include simulation-based experi-
ments to demonstrate the scalability of LIDOR in a larger node
setup and with a variable number of attackers in the network.

A. Testbed and Setup

Our testbed consists of ten APU-based nodes [34] which
are distributed in an office environment. Fig. 11 shows the
layout. For each of the following experiments, we use Wi-Fi
channel 14 to minimize interference with production networks.
Before each experiment, we synchronize all nodes to a local
NTP server via the nodes’ Ethernet interfaces and bound the
synchronization error to 0.1 ms resulting in a maximum error
in the end-to-end delay measurements of 0.2 ms. In addition,
each node filters its neighbors by RSSI with a threshold of
−70 to avoid spurious links. We select source and destina-
tion nodes to be at a maximum distance such that they are
connected via at a path of five hops. In all experiments, the
source injects 128-B packets at a rate of 10 packets/s for an
entire flow of 256 packets. We repeat each experiment 100
times. For the wormhole scenario, the attacker nodes use their
wired Ethernet interface as a direct connection to tunnel traf-
fic between the nodes. We use the TPy framework [38] to
orchestrate our experiments.

B. Summary

We present a summary of our experiment results compar-
ing the performance of LIDOR to the benchmark in three
scenarios: 1) without attackers present; 2) with two attack-
ers mounting a replay-supported grayhole attack; and 3) with
two attackers mounting a wormhole-supported grayhole attack
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Fig. 5. Packet delivery rate.

Fig. 6. End-to-end delay.

where the wormhole endpoints are direct neighbors to the
source and destination, respectively. We show the packet deliv-
ery rate in Fig. 5, the end-to-end delay in Fig. 6, and the
overhead in Fig. 7. The figures show the mean and standard
deviation over the different runs.

In short, we see that the LIDOR and benchmark both
achieve perfect delivery rates in the benign case (Fig. 5). When
under attack, LIDOR’s reliability reduces only by 3.5% for
both attacks, while the benchmark breaks down to 5.2% and
64.1%, respectively. Thereby, LIDOR achieves improvements
over the benchmark of 91% and 32%, respectively. In Fig. 6,
we see that the end-to-end delay is similar for the benchmark
(1.3 ms) and LIDOR (1.2 ms) under no attack which is to be
expected since they are both based on the same implementa-
tion. Under attack, the end-to-end delay increases. The reason
is that the attacker nodes are placed in a favorable position and
would allow faster delivery if they would be used as a next
hop. Furthermore, Fig. 7 shows the network-wide overhead
of a single packet. We see that LIDOR reduces this network
overhead by 35% compared to the benchmark which is in
line with our overhead analysis in Section IV. In addition,
LIDOR’s median overhead does not increase under attack. For
the benchmark, the median overhead decreases under attack as
the packets are dropped early and do not traverse the entire
path from source to destination. In the following sections,
we investigate the results for the attack scenarios in more
detail.

C. Replay-Supported Grayhole Attack

In this section, we expose nodes to grayhole attackers that
concurrently replay expired PKTs and ACKs to reinforce their
appearance as reliable forwarders. We first sketch the attacker’s
behavior which tries to disrupt communication between s

Fig. 7. Per-packet overhead.

Fig. 8. Packet delivery rate under the replay-supported grayhole attack.

Fig. 9. Packet delivery rate under the wormhole-supported grayhole attack.

and d. First, the attacker overhears and records any valid
PKT–ACK pair of some flow H between s and d. Then, the
attacker replays (i.e., broadcasts) PKT and ACK shortly after
one another at an interval of Trep (after an initial delay of
Trep). The attacker chooses Trep such that it is larger than the
ACK timeout, i.e., Trep > TACK. To ensure this, the attacker
conservatively sets Trep to 200 ms for each pair. We limit
the rate of replayed pairs to 10 per second to avoid DoS by
flooding.

Fig. 5 shows the severe impact of lacking replay protec-
tion: the benchmark’s reliability drops to about 5.2% which
renders the protocol unusable (which is also reflected in the
lower overhead of Castor in Fig. 7 as packets are dropped
early on the path). On the other hand, LIDOR performs
extremely well. There is a small drop in the median relia-
bility which is due to LIDOR having to route around the
grayhole attackers. Once the protocol has found a reliable
path, it keeps using it. This can be seen in Fig. 8, where
only the first few packets of each flow are less likely to be
delivered.

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on November 10,2022 at 06:06:07 UTC from IEEE Xplore.  Restrictions apply. 



STUTE et al.: LIDOR: LIGHTWEIGHT DoS-RESILIENT COMMUNICATION PROTOCOL FOR SAFETY-CRITICAL IoT SYSTEMS 6813

Fig. 10. Attacker selection under the wormhole-supported grayhole attack.

(b)

(a)

Fig. 11. Path convergence without attack. See Fig. 12 for description.
(a) Benchmark, k ∈ [0; 256]. (b) LIDOR, k ∈ [0; 256].

D. Wormhole-Supported Grayhole Attack

We investigate the impact of a wormhole-supported gray-
hole attack on both protocols. In Fig. 5, we have already seen
that the PDR of LIDOR slightly drops. In fact, only the first
packets of each flow are dropped as LIDOR first needs to find
a valid path, i.e., it needs to converge. The delivery rate per
packet ID is shown in Fig. 9 where we see that after about
100 packets, the loss rate becomes zero. To verify that this
is, in fact, due to the attackers being selected, we depict the
relative frequency that an attacker was selected as the sole
forwarder (unicast) for a given packet ID in Fig. 10. The fig-
ure confirms that attackers are no longer selected as forwarders
after about 100 packets. The benchmark protocol does not per-
form as well. We see that while attacker selection decreases
and, thus, PDR increases within a flow (Figs. 9 and 10), the
benchmark does not completely reject the wormhole attacker
as a viable forwarder. For an even more detailed analysis, we
show the network graph including forwarding decisions and
the resulting path selection for different portions of a flow in
Fig. 12. The figure shows the average overall 100 experiment
runs. For comparison, Fig. 11 shows the path selection with-
out an attack. Fig. 12(a) and (d) shows that both protocols are
“fooled” by the fast link that the wormhole offers for the first

packets, i.e., a path including the wormhole has the lowest
round-trip time. While the benchmark prefers a nonadversar-
ial path, it still uses the wormhole in a significant number of
cases [Fig. 12(c)]. In contrast, LIDOR completely avoids the
attackers for packets in the second half of the flow [Fig. 12(f)].

E. Scalability

In the following, we demonstrate the scalability of LIDOR
and show the impact of a variable number of attackers on both
protocols. We chose a simulator for this purpose to: 1) increase
the number of nodes; 2) control hop length via the topol-
ogy; and 3) vary the number of attackers. The simulations
are performed in ns-3.25 which allows us to integrate our
Click integration of the protocols in the simulator environment
(Section VI). We use a setup with 102 nodes consisting of a
single source–destination pair that is connected via a 10-hop
corridor [39], where each hop “layer” consists of ten nodes.
In all experiments, the source injects 128-B packets at a rate
of 2 packets/s for an entire flow of 1024 packets. We repeat
each experiment ten times. We provide results when 0, 10, 20,
30, 40, or 50 of the nodes act as replay attackers. We exclude
the results for the benchmark with more than 20 attackers due
to its poor performance.

Figs. 13–15 show the resulting packet delivery rate, delay,
and per-packet overhead. We make several observations. First,
we see that the benchmark is unable to provide a reliable ser-
vice even in the presence of a small number of replay attackers.
Second, LIDOR is able to maintain a reliable service even
when half of the intermediate nodes (50) act as attackers (see
Fig. 13). Third, we observe that the attackers have only a minor
effect on the end-to-end delay and overhead of the protocol
(see Figs. 14 and 15).

VIII. DISCUSSION

In this section, we elaborate on our analytical and exper-
imental results; draw a conjecture for the applicability in
large-scale IoT deployments; discuss the possibility for 100%
reliable communication; and highlight possible other applica-
tion domains.

A. Convergence: Analysis Versus Experiments

Our analysis in this article shows that LIDOR converges
under attack while the benchmark does not. Our experiments
confirm that LIDOR converges. However, they do not nec-
essarily show that the benchmark does not converge either.
In fact, the benchmark seems to be able to slowly approach
a converged state (see Fig. 9). Note that the nonconvergent
cases for benchmark are statistically rare which explains its
overall good performance. However rare, these occurrences
can comprise the security of the network.

B. Energy Consumption

Energy consumption is a key for the practical deployment
of LIDOR in the IoT context. To quantify LIDOR’s security
overhead, we analyze the number of cryptographic operations
(hashing and tagging) involved in transferring an entire flow
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(a) (b) (c)

(d) (e) (f)

Fig. 12. Path convergence under the wormhole-supported grayhole attack. Showing unicast transmissions. Flow from bottom right to top left. Red nodes
are attackers. Edge thickness indicates link usage frequency. (a) Benchmark, k ∈ [0; 32]. (b) Benchmark, k ∈ [32; 128]. (c) Benchmark, k ∈ [128; 256].
(d) LIDOR, k ∈ [0; 32]. (e) LIDOR, k ∈ [32; 128]. (f) LIDOR, k ∈ [128; 256].

Fig. 13. Packet delivery rate with different numbers of attackers (simulation
with 102 nodes).

Fig. 14. End-to-end delay with different numbers of attackers (simulation
with 102 nodes).

of size w (tree with N = 2l − 1 nodes) over a converged
I-hop path. In particular, we identify the costs for tree gen-
eration EH = (N + w)Ehash, flow verification Ef = NEhash,
packet digest calculation Em = wEhash, ACK verification EA =
wEhash, and packet tagging or tag verification Et = wEtag.
The composite cost N is the sum of the cost for the source
Es = EH + Em + EA + 2Et, destination Ed = EH + 2Et, and
all intermediate nodes Ei = Ef + Em + EA + 2Et on the path.

Fig. 15. Per-packet overhead with different numbers of attackers (simulation
with 102 nodes).

In particular

E = Es + (I − 1)Ei + Ed

= ((I + 1)N + (2I + 2)w)Ehash + (2I + 2)wEtag. (25)

If the platform- and primitive-dependent values for Ehash and
Etag are known or can be approximated from the required
CPU cycles (e.g., [40]), (25) allows us to calculate LIDOR’s
security-related energy overhead.

C. Feasibility for Large-Scale IoT Deployments

While LIDOR is not able to exceed the theoretic limits of
scalability in wireless multihop networks [41], we attempt our
best to keep network overhead as low as possible. In particu-
lar, we show that LIDOR’s overhead is generally lower than
the benchmark which is due to our in-network Merkle tree
compression mechanism. In addition, its overhead does not
increase under attack which means that attacks (Section II)
do not impede scalability. In addition, we show the feasibility
of a comprehensively DoS-resilient communication protocol
in the IoT context by implementing LIDOR in a computa-
tionally efficient manner: in spite of per-packet cryptographic
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operations, we achieve end-to-end delays in the order of 1 ms
in our 5-hop testbed which confirms that the computational
overhead is negligible.

D. Toward 100% Reliability

While LIDOR already performs exceptionally under attack,
we are aware that we still encounter a certain amount of packet
loss. By design, LIDOR tries to be resilient to all causes of
packet loss but does not employ measures to compensate for
loss once it occurred. We are aware that some applications
might require a 100% reliable transport. We could increase the
reliability of a communication by introducing redundancy in
the form of packet transmissions reactively. Thanks to the end-
to-end feedback, the source knows if the destination received
a certain packet and could issue a retransmission (using a new
packet ID) to the destination. Such a mechanism could be
implemented as a LIDOR-aware transport overlay that receives
feedback from the network layer and takes care of end-to-end
retransmissions.

E. Further Application Domains

While we focus on IoT in this article, LIDOR’s adaptiv-
ity to any kind of packet dropping allows for applications in
more dynamic scenarios, including public safety [27] or highly
dynamic UAV-based networks [42]. However, an experimental
evaluation for these types of networks is still missing.

IX. CONCLUSION

The provisioning of robust and secure communication is
crucial for safety-critical IoT applications. In this article,
we proposed LIDOR, which is a multihop communication
protocol with an efficient end-to-end acknowledgment-based
feedback mechanism tailored to IoT devices. To the best
of our knowledge, LIDOR is the first algorithm of its kind
with proven convergence in the presence of DoS attacks.
Convergence is in fact important since “nonconvergent” prop-
erty of a scheme can itself be used to create DoS. We have
performed extensive experiments in our premises. These exper-
iments have confirmed the resilience of LIDOR against replay
and wormhole attacks. Specifically, LIDOR outperforms the
benchmark scheme by 91% under the replay attack and 32%
under the wormhole attack in terms of packet delivery ratio
and reduces overhead by 35% in the benign scenario and does
not increase significantly under attack. The current proof of
convergence is valid for known packet dropping attack vari-
ants, i.e., the attacker always drops unicast packets to cause
maximum harm. Our experiments indicated that LIDOR con-
verges even in a wormhole-supported grayhole attack. We
intend to generalize the current proof to arbitrary packet drop-
ping strategies, which would mean that LIDOR converges
to any future and still unknown dropping attacks. Finally,
for better reproducibility, we make the source code of our
implementation publicly available [43].
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