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Abstract—Boolean Matrix Factorization (BMF) aims to find an
approximation of a given binary matrix as the Boolean product of
two low-rank binary matrices. Binary data is ubiquitous in many
fields, and representing data by binary matrices is common in
medicine, natural language processing, bioinformatics, computer
graphics, among many others. Factorizing a matrix into low-
rank matrices is used to gain more information about the data,
like discovering relationships between the features and samples,
roles and users, topics and articles, etc. In many applications, the
binary nature of the factor matrices could enormously increase
the interpretability of the data.

Unfortunately, BMF is computationally hard and heuristic
algorithms are used to compute Boolean factorizations. Very re-
cently, the theoretical breakthrough was obtained independently
by two research groups. Ban et al. (SODA 2019) and Fomin
et al. (Trans. Algorithms 2020) show that BMF admits an effi-
cient polynomial-time approximation scheme (EPTAS). However,
despite the theoretical importance, the high double-exponential
dependence of the running times from the rank makes these
algorithms unimplementable in practice. The primary research
question motivating our work is whether the theoretical advances
on BMF could lead to practical algorithms.

The main conceptional contribution of our work is the fol-
lowing. While EPTAS for BMF is a purely theoretical advance,
the general approach behind these algorithms could serve as the
basis in designing better heuristics. We also use this strategy
to develop new algorithms for related [F,-Matrix Factorization.
Here, given a matrix A over a finite field GF(p) where p is a
prime, and an integer r, our objective is to find a matrix B
over the same field with GF(p)-rank at most » minimizing some
norm of A — B. Our empirical research on synthetic and real-
world data demonstrates the advantage of the new algorithms
over previous works on BMF and IF,-Matrix Factorization.

Index Terms—Binary matrix factorization, Categorical data,
Data mining

I. INTRODUCTION

Low-rank matrix approximation (matrix factorization) is a
widely used method of compressing a matrix by reducing
its dimension. It is an essential component of various data
analysis techniques, including Principal Component Analysis
(PCA), the most popular and successful techniques used for
dimension reduction in data analysis and machine learning
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[1]-[3]. Low-rank matrix approximation is also a common tool
in factor analysis for extracting latent features from data [4].

In the low-rank matrix approximation problem, we are given
an m X n real-valued matrix A, and the objective is to
approximate A by a product of two low-rank matrices, or
factors, U -V, where U is a m x r and V is a r X n matrix,
and r < m,n. Equivalently, for an input m x n data matrix
A and r € N, we seek an m x n matrix B of rank r that
approximates B. By the Eckart-Young-Mirsky theorem, best
low-rank approximation could be found via Singular Value
Decomposition (SVD) [3], [5]. However, SVD works only
when no constraints are imposed on factor matrices U and
V, and approximation is measured by the Frobenius norm
of A — U - V. In many application with binary data when
factorization is used as a pre-processing step or dimension
reduction, it could be desirable to run subsequent methods
on binary inputs. Also in certain application domains binary
matrices are more interpretable [6]. However, the desire to
“keep the data binary” makes the problem of factorization way
more computationally challenging. Similar situation occurs
with factorizing matrices over a finite field GF(p).

The large number of applications requiring Boolean or
binary matrix factorization has given raise to many interesting
heuristic algorithms for solving these computationally hard
problems [7]-[12]. In the theory community, also several algo-
rithms for such problems were developed, including efficient
polynomial-time approximation schemes (EPTAS) [13], [14].
However, it seems that all these exciting developments in
theory and practice occur in different universes. Besides a
notable exception [15], the ideas that were useful to advance
the algorithmic theory of BMF do not find their place in
practice. This bring us to the following question, which is
the main motivation of our study.

Could the ideas behind the theoretical advances on
BMF be useful for practical algorithms?

There is no immediate answer to this question. The al-
gorithms developed in [13], [14] are rather impractical due
to tremendous exponential terms in the running times. See
also the discussion in Section 4.3 of [6]. However, as we
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demonstrate, at least of the ideas from [13], [14] could be
extremely useful and for practical algorithms too.

Boolean and TFy-Matrix Factorization: We consider two
low-rank matrix approximation problems. Our first problem
is BOOLEAN MATRIX FACTORIZATION (BMF). Let A be a
binary m x n matrix. We consider the elements of A to be
Boolean variables. The Boolean rank of A is the minimum
r such that A = UV for a Boolean m x r matrix U and
a Boolean r x n matrix V, where the product is Boolean.
That is, the logical A plays the role of multiplication and V
the role of sum. Thus the matrix product is over the Boolean
semi-ring (0,1, A, V). This can be equivalently expressed as
the normal matrix product with addition defined as 1+1 = 1.
Binary matrices equipped with such algebra are called Boolean
matrices. In BMF, the objective is

minimize ||A — B||o (1)
subject to Boolean-rank(B) < r.

Recall that || - ||o norm is the number of non-zero entries in the
matrix. In the second problem the matrices are over a finite
field GF(p), where p is a prime. The most common example
of a finite field GF(p) is the set of the integers mod p, where
p > 2 is a prime number. The matrix norm is the entry-wise
¢g-norm || - ||4. Recall that for matrix A, its ¢, matrix norm
is defined as [|A|l, = (3072, Y27, lai;|9)Y/4. In particular,
{5 matrix norm is the Frobenius norm. Then in the GF(p)-
MATRIX £,-NORM FACTORIZATION (F,,-{,-MF) problem, we
are given an m X n matrix A over GF(p) and r € N, and the
objective is to find a matrix B over GF(p) optimizing

minimize [|A — B, )
subject to GF(p)-rank(B) < r.

Here, GF(p)-rank(B) is the rank of the matrix B over field
GF(p). Thus the entries of the approximation matrix B in (2)
should be integers from {0,...,p — 1} and the arithmetic
operations defining the rank of matrix B are over integers
modulo p. The special case of (2) when p = 2 and ¢ = 1
is the Fo-MF problem. Let us remark that when the matrices
are binary, the choice of the norm || - ||o, 1, or || - ||4, for
q > 1, does not make any difference. For GF(p) with p > 2,
the choice of the norm is essential. The difference of Fo-MF
and BMF is in the definition of the rank of B. This is a
significant difference because the GF(2)-rank is computable
in polynomial time, say by the Gaussian elimination, and
computing the Boolean-rank of a matrix is already an NP-
hard problem. We design new algorithms for F,-{,-MF and
BMF and test them on synthetic and real-world data.
Related work: Both problems are well-known in Machine
Learning and Data Mining communities. Since BMF was stud-
ied in different communities, in the literature it also appears
under different names like DISCRETE BASIS PROBLEM [16]
or MINIMAL NOISE ROLE MINING PROBLEM [17]-[19].
The GF(2), and more generally, GF(p) models find appli-
cations for Independent Component Analysis in signal pro-
cessing [20]-[22], latent semantic analysis [23], or pattern

discovery for gene expression [8]. F,,-¢,-MF is an essential
tool in dimension reduction for high-dimensional data with
binary attributes [9], [10]. BMF has found applications in
data mining such as topic models, association rule mining,
and database tiling [16], [18], [24]-[27]. The recent survey
[6] provides a concise overview of the current theoretical and
practical algorithms proposed for BMF.

The constraints imposed on the properties of factorization
in (2) and (1) make the problems computationally intractable.
Gillis et al. [28] proved that F'o-MF is NP-hard already for r =
1. Since the problems over finite fields are computationally
much more challenging, it is not surprising that most of the
practical approaches for handling these problems are heuristics
[71-{11].

Another interesting trend in the study of low-rank matrix
approximation problems develops in algorithmic theory. A
number of algorithms with guaranteed performance were de-
veloped for F,-{,-MF, Fo-MF, and BMF. Lu et al. [11]
gave a formulation of BMF as an integer programming
problem with exponential number of variables and constraints.
Parameterized algorithms for Fo-MF and BMF were obtained
in [29]. A number of approximation algorithms were devel-
oped, resulting in efficient polynomial time approximation
schemes (EPTASes) obtained in [13], [14]. Parameterized and
approximation algorithms from [13], [14], [29] are mainly
of theoretical importance and are not implementable due to
tremendous running times. Bhattacharya et al. [30] extended
ideas in [13], [14] to obtain a 4-pass streaming algorithm
which computes a (1 + &)-approximate BMF. Kumar et
al. [15] designed bicriteria approximation algorithms for Fy-
MF. Except the work of Kumar et al. [15], none of the above
theoretical algorithms were implemented.

General overview of the main challenges: The starting
point of our algorithms for F,-{,-MF and BMF are the
approximation algorithms developed in [13], [14]. The general
ideas from these papers are similar, here we follow [14]. They
develop algorithms for BMF and F,-MF but generalizations
to F,-£,-MF is not difficult.

The two basic steps of the approach of [14] are the fol-
lowing. First encode the matrix factorization problem as a
clustering problem with specific constraints on the clusters’
centers. Then use sampling similar to the sampling used for
vanilla k-means of [31] for constructing a good approximation.
Implementation of each of these steps is a challenge, if
possible at all. In the first step, encoding matrix factorization
with rank r results in constrained clustering with 2" centers.
But what makes the situation even worse is the second step.
To obtain a reasonable guaranteed estimate for constrained
clustering, one has to take exponentially many samples (expo-
nential in 2" and the error parameter <), which is the bottleneck
in the algorithm’s running time.

The first idea that instead of sampling, we implement a
simple procedure similar to Lloyd’s heuristic for clustering
[32] adapted for constrained clustering. This is a simple and
easily implementable idea. However, due to the power of
encoding the matrix factorization as clustering, in many cases,
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our algorithm significantly outperforms previously known,
sometimes quite involved, heuristics. The problem is that this
strategy works only for very small values of rank r» < 5.
This is because the factorization problem is encoded as the
problem with 2"-clustering and the time required to construct
the corresponding instance of clustering is of order 22". For
larger values of » we need to develop a new algorithm that
non-trivially uses the algorithm for small rank 7.

A. Our methods

Our algorithm for small values of r, follows the steps similar
to Lloyd’s algorithm or the closely related k-means clustering
algorithm. We start from some partition of the columns of
the matrix. Then the algorithm repeatedly finds the centroid
of each set in the partition and then re-partitions the input
according to which of these centroids is closest. However,
while for k-means clustering, the centroid is selected as the
vector minimizing the sum of distances to all vectors in the
cluster, in our case, the set of centroids should also satisfy a
specific property.

More precisely, in the k-MEANS CLUSTERING problem we
are given a set of points X C R™ and £ € N, and the
objective is to find k center points cq,...,c; € R™ such that
> ey ming ||z — ¢;||3 is minimized. For a set of k centroids
ci,...,Cg, one can define k clusters Xi,..., X such that
their union is X and () for any x € X, c; is one of the closest
point to z. For a given set of clusters X1,..., X}, the best
centers ¢y, . . ., Cj, satisfying (x) can be obtained by computing
the centroid of X; for all ¢ € {1,...,k}. The k-means
algorithm starts with a random set of k clusters X7 1, ..., X1k
of X and then finds their centroids. Then using these centroids
we find k clusters X5 1,..., X5} satisfying (*). Then, again
we compute a set of centroids for X5 1,..., X5 and so on. It
is easy to verify that the “cost of a solution” in each iteration
is at least as good as the previous iteration. This algorithm
converges very fast and outputs very good solution in practice.

In order to apply ideas similar to the k-means algorithm
for IF,,-£,-MF and BMF, we use the “constrained” version of
clustering introduced by Fomin et al. [14]. A k-ary relation
R over {0,1} is a set of binary k-tuples with elements from
{0,1}. A k-tuple t = (t1,...,tx) satisfies R, if t € R.

Definition 1 (Vectors satisfying R [14]). Let R =
{R1,..., R} be a set of k-ary relations. We say that a
set C = {c1,ca,...,c,} of binary m-dimensional vectors

satisfies R, if (c1[il,...,ckli]) € R; for all i € {1,...,m}.

For example, for m =2, k =3, R = {(0,0,1),(1,0,0)},
and Ry = {(1,1,1),(1,0,1),(0,0,1)}, the set of vectors

co=(9)oe=(0) = (1)

satisfies R = {Ri, Ra} because (c1[l],cq[l],c3[1]) =
(0,0, 1) € R; and (C1[2},C2[2]7C3[2D = (1, 1, 1) € Rs.

The Hamming distance between two vectors X,y €
{0,1}™, where x = (21,...,2n)T and y = (y1,...,Ym)7,
is dy(x,y) = Y1, |#; — y;|. For a set of vectors C' and a

vector x, we define dg(x,C) = mineee di (X, c). Then, the
problem BINARY CONSTRAINED CLUSTERING is defined as
follows.
BINARY CONSTRAINED CLUSTERING (BCC)
Input: A set X C {0, 1} of n vectors, a positive integer
k, and a set of k-ary relations R = {Ry,..., Ry}
Task: Among all vector sets C = {c1,...,cx} C
{0,1}™ satisfying R, find a set C' minimizing the sum
Y oxex du(x,C).

The following proposition is from [14].

Proposition 1 ( [14]). For any instance (A,r) of Fo-£1-MF
(BMF) one can construct in time O(m+mn+2%") an instance
(X, k=2",R) of BCC with the below property, where X is
the set of column vectors of A:

e for any a-approximate solution C of (X, k, R) there is an
algorithm that in time O(rmn) returns an c-approximate
solution B of (A,r), and

e for any a-approximate solution B of (A,r), there is an

algorithm that in time O(rmn) returns an «-approximate
solution C of (X, k,R).

We remark that our algorithms and the algorithms of Fomin
et al. [14] are different. Both the algorithm uses Proposition 1
as the first step. Afterwards, Fomin et al. [14] uses sampling
methods and this step takes time double-exponential in 7. But,
we use a method similar to the Lloyd’s algorithm in the case
of small ranks. For the case of large ranks we use several
executions of Lloyd’s algorithm on top of our algorithm for
small ranks. We overview our algorithms below.

Algorithms for small rank: Because of Proposition 1, we
know that BCC is a general problem that subsumes BMF
and Fg-gl-MF. Let [ = (X,k,R = {Rl, .. .,Rm}) be an
instance of BCC and C' = {cy,...,ci} be a solution to I.
We call C' to be the set of centers. We define the cost of the
solution C of I to be cost(X,C) = > .y du(x,C). Given
set C, there is a natural way we can partition the set of vectors
X into k sets X7 W ---W X, where for each vector x in X,
the closest to x vector from C' is c¢;. That is,

k

cost(X,C) = Z Z dp(x,¢;) (3)

i=1 xeX;

We call such partition clustering of X induced by C' and refer
to sets X1,..., Xy as to clusters corresponding to C. That is,
given a solution C, we can easily find the clusters such that
the best possible set of centers for these clusters is C.

Next, we explain how we compute the best possible centers
from a given set of clusters of X. For a partition X7 - - - X},
of X, i€ [m], and (by,...,b;) € R;, define

k

) =303 [xli] ~ by )

j=1x€eX;

filbs, ...

Now, the set {cj,...,cx} be such that for any i €
{1,2,...,m}, (c1li],. .., cxli]) = argmin,c g, fi(b). One can
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easily verify that the best possible set of centers for the clusters
X1,..., Xk is {c1,...,ci}. That is, for any set of centers
{c},...,c}} satisfying R,

k
>N dulx.c))

j=1x€eX;

k
<Y dulx,c)) 5)
j=1xeX;

Our algorithm for BCC works as follows. Initially we take
a random partition Xo 1 & --- & X 5 of X. Then, using (4),
we find a solution C7 = {cy1,¢1,2,...,¢1,%}. Then, we
find clusters X, 1,..., Xy ; corresponding to C; (i.e., C; and
{X1,1,..., X1 1} satisfies (3)). This implies that

cost(X,C1) (6)

k
Z Z dH(X,CLj) =

Now, again using (4) and the partition {X71,..., X1},
we find a solution Co = {ca1,¢€2.2,...,C2}. Thus, by the
property mentioned in (5), we have that

B
B

<> > du(xery) (D)

J=1%x€X J=1x€X1,;

Since cost(X, Cs) < Zle > xex, , du(x,c2,), and equa-
tions (6) and (7), we have that cost(X, Cy) < cost(X,C}).
If cost(X,C2) < cost(X,C}), we continue the above steps
using the partition X7 ; W...¥ Xy ; and so on. Our algorithm
continues this process until the cost of the solution converges.

Our algorithm works well when r is small (i.e., our algo-
rithm on the output instances of Proposition 1). Notice that 22"
is a lower bound on the running time of the above algorithm
when we use it for Fo-£1-MF and BMF (See Proposition 1).
For example, when r = 20 the algorithm takes at least 240
steps. So for large values of r, this algorithm is slow.

Algorithms for large rank: For large r, we design new
algorithms for F,-¢,-MF and BMF which use our base
algorithm (the one explained above) for smaller values of rank.
Here, we explain an overview of our algorithm for BMF for
large r. Let us use the term LRBMF for the base algorithm
for BMF.

Consider the case when r» = 20. Let A be the input matrix
for BMF. The idea is to split the matrix A into small parts
and obtain approximate matrices of small rank (say 5 or less)
for all parts using LRBMF and merge these parts to get a
matrix of rank at most 20. Let X be the set of columns of the
input matrix A. Suppose we partition the columns of A into
four parts of almost equal size. Let X7, ..., X4 be these parts
and let A; be the matrix formed using columns of X; for all
i €{1,...,4}. Let B; be the output of LRBMF on the input
(A;,5) for all ¢ € {1,...,4}. Then, by merging By,...,By
we get a matrix of rank at most 20. But this method did not
give us good results because identical columns may be moved
to different parts in Xi,..., Xy. Thus, it is important that
we do this partition carefully. One obvious method is to use

Lloyd’s algorithm to get a partition of X into four parts. But,
unfortunately, even this method does not give us good results.
For our algorithm we use an iterative process to get a
partition of X where we use Lloyd’s algorithm in each step.
In the initial step we run Lloyd’s algorithm on (X, 20) and let
C ={ec1,...,c90} be the set of output centers. Now we do an
iterative process to partition C' with each block containing
at most 5 vectors. Towards that we run Lloyd’s algorithm
n (C,4). Let Z be the set of output clusters. If a cluster
has size at most 5, then that cluster is a block in the final
partition. If there is a cluster C’ € Z of size more than 5,
then we run Lloyd’s algorithm on (C’,[|C’|/5]) and refine
the clustering of C. That is, the new clustering is obtained by
replacing C’ with the clusters obtained in this run of Lloyd’s
algorithm. We continue this process until all the clusters have
size at most 5. Thus we obtain a partition {C1,...,C} of
C of clusters of size at most 5. Now we partition X into
X1,..., Xy as follows. For each i € {1,...,¢}, we let X,
be the set of vectors in X such that for each vector x € X,
the closest vector ¢ from C' to x is from C; (here, we break
ties arbitrarily). Let A; be the matrix whose columns are
the vectors of X;. For each i € {1,...,¢}, we run LRBMF
n (A;,|C;|); let B; be the output. Slnce ZZ 1 1G] = 20,
the rank of the matrix resulted by merging all B;s is at
most 20. The final output of our algorithm is obtained by
merging the matrices Bq,...,B,. This completes the high
level description of our algorithm for the case when r = 20.
The complete technical details of our algorithm is explained
in the next section and experimental results of our algorithms
are explained in the last section.

II. ALGORITHMS

We define a more general problem called CONSTRAINED
(p, ¢)-CLUSTERING, and prove that, in fact, F,-¢,-MF is a
particular case of CONSTRAINED (p, ¢)-CLUSTERING. Before
describing CONSTRAINED (p, ¢)-CLUSTERING, let us intro-
duce some notations. Recall that, for a number ¢ > 0, a
prime number p > 1, and two vectors x,y € {0,1,...,p —
1}™, the distance between x and y in 4, is ||x — y||; =
(X" (x[d] — yli])?)}/9. Here, for notational convenience
we use 0 = 0. The differences x[i] — y[i] of the vector
coordinates are computed modulo p. The summation Y.,
and multiplications are over the field of real numbers. For a
number ¢ > 0, a set of vectors C, and a vector x, define
dg(x,C) = mineec [|x — c|[Z. When C' = {c}, we write
dq(x, ¢) instead of d,(x,C).

A k-ary relation R over {0,...,p — 1} is a set of k-tuples
with elements from {0,...,p—1}. A k-tuple ¢ = (¢1,...,%x)
satisfies R if t is equal to one of the k-tuples from R.

Definition 2 (Vectors satisfying R). Let p > 1 be a
prime number and let R = {Ri,...,R,} be a set of
k-ary relations over {0,1,...,p — 1}. We say that a set
C = {cy,ca,...,cr} of m-dimensional vectors over GF(p)
satisfies R, if (c1[i],...,cklé]) € R; for all i € {1,...,m}.
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Next, we formally define CONSTRAINED (p,q)-
CLUSTERING, where ¢ > 0 and p > 1 is a prime, and
then prove that indeed F,-{,-MF is a special case of
CONSTRAINED (p, q)-CLUSTERING.

CONSTRAINED (p, q)-CLUSTERING
Input: A set X C {0,1,...,p — 1} of n vectors, a
positive integer k, and a set of k-ary relations R =

{Rlv R Rm}
Task: Among all vector sets C' = {c1,...,c5} C
{0,1,...,p—1}" satisfying R, find a set C' minimizing

the sum ) dy(x,C).

The proof of the following lemma is almost identical to the
proof of Proposition 1, and hence omitted here.

Lemma 1. For any instance (A,r) of F,-l,-MF one can
construct in time O(m +n+p*") an instance (X, k = p", R)
of CONSTRAINED (p,q)-CLUSTERING with the following
property:

e for any solution C of (X, k, R), there is an algorithm that
in time O(p®*"m) returns a solution B of (A, r) with the
same cost as C, and

e for any solution B of (A,r), there is an algorithm that
in time O(p*"m) returns a solution C of (X, k, R) with
the same cost as C.

Thus, to solve the low-rank matrix factorization problem
over a finite field GF(p), it is enough to design an algorithm
for CONSTRAINED (p, q)-CLUSTERING. Let I = (X, k, R =
{R1,...,R}) be an instance of CONSTRAINED (p,q)-
CLUSTERING and let C' = {cq, ..., cy} be a solution to I. We
call C to be the set of centers. Then, define the cost of the solu-
tion C' of the instance I to be cost(X,C) = >, . x dq(x,C).
Also, given the set C, there is a natural way one can partition
the set of vectors X into k parts X; & --- & X as follows.
For each vector x, let 7 be the smallest index such that c; is a
closest vector to x from C. Then, x € X;. This implies that

k
cost(X,C) = Z Z dqy(x,¢;) (8)
=1 xeX;

We call such partition clustering of X induced by C' and the
sets X1, ..., Xy as the clusters corresponding to C.

Next, we explain how we compute the best possible centers
from a given set of clusters of X. For a partition X; &- - -t X},
of X, i€ [m], and (by,...,b;) € R;, define

k) =D > [x[i] = by ©)

j€E[k] x€X;

gz‘(b17~-~

Let the set {c1,...,ci} be such that for any i € [m)],
(c1[i], ..., cx[i]) = argmin,cp gi(b). One can easily verify
that {cy,...,cx} is a best possible set of centers for the
clusters Xq,..., Xk.

Our algorithm ConClustering(p,q) for CONSTRAINED
(p, q)-CLUSTERING has the following steps.

Step 0: Set minCost := oo and k = p".
Step 1: Let X7 W---W X be a random partition of X.

Step 2: Using (9), compute a solution C' from the partition

X1 ¢ Xy
Step 3: Find clusters Y3, ..., Y} corresponding to C' (i.e., C
and {Y7,...,Y;} satisfies (8)).

Step 4: If cost(X, C) = minCost, then output C' and stop.
Otherwise, set minCost = cost(X,C), and X; = Y;
for all 4 € [k]. Then, go to Step 2.

Notice that when ¢ = 1, the maximum error can be pmn.
Thus the number of iterations in ConClustering(p, 1) is at
most pmn and each iteration takes time O(p"(m + n)).
Thus, the worst case running time of ConClustering(p, 1) is
O(p" Tt (m + n)mn).

Algorithm for F,-£,-MF: Recall that F,-¢,-MF is a spe-
cial case CONSTRAINED (p, ¢)-CLUSTERING (see Lemma 1).
For a given instance (A, r) of F,,-¢,-MF, we apply Lemma 1
and construct an instance (X,k = p", R) of CONSTRAINED
(p, ¢)-CLUSTERING. Then, we run ConClustering(p, g) on
(X,k = 2",R) 10 times and take the best output among
these 10 executions. In the next section we explain about the
experimental evaluations of the algorithm for F,-/,-MF. We
call our algorithm for F,-¢;-MF as LRMF(p).

Algorithm for BMF: We have mentioned that CON-
STRAINED (p, ¢)-CLUSTERING is general problem subsum-
ing BINARY CONSTRAINED CLUSTERING and BMF is a
special case of BINARY CONSTRAINED CLUSTERING. Next,
we explain, how to obtain an equivalent instance of CON-
STRAINED (2, 1)-CLUSTERING from a given instance (A,r)
of BMF. Towards that apply Proposition 1, and get an instance
(X,k = 2",R) of BINARY CONSTRAINED CLUSTERING
from the instance (A,r) of BMF. In fact, this instance
(X,k = 2",R) is the required instance of CONSTRAINED
(2,1)-CLUSTERING. Next, we run ConClustering(2,1) on
(X,k=2",R) 10 times and take the best output among these
10 executions. We call this algorithm as LRBMF.

Algorithms for large rank: Notice that the running time
of ConClustering(p, q) is at least p”. Thus, to get a fast
algorithm for large r» we propose the following algorithm
(call it LargeConClustering(p, ¢)). Thus the running times
of LRMF(p) and LRBMF are at least 2. For large r, instead
of running LRBMF (or LRMF(p)) we partition the columns of
the input matrix into blocks and we run LRBMF (or LRMF(p))
on each of these blocks with for rank at most r, such that the
sum of the rank parameters among the blocks is at most 7.
Then, we merge the outputs of each of these small blocks. We
call these new algorithms PLRBMF and PLRMF(p).

The input of PLRBMF is an instance of BMF and two
integers rs and d such that ry - d < r, where r is the rank
of the output matrix. Similarly, the input of PLRMF(p) is an
instance of [F,,-f;-MF and two integers ry and d such that
rs - d < 7, where r is the rank of the output matrix. That is,
here we specify rs and d as part of input and we want our
algorithms to use LRMF(p) or LRBMF with rank parameter
at most r, and finally construct an output of rank at most
rs - d. That is, given r, one should choose d to be the largest
integer such that r; - d < r, where r, is the largest rank that

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on November 07,2022 at 04:52:54 UTC from |IEEE Xplore. Restrictions apply.



Algorithm 1 PLRBMF
1: Let X be the set of columns of A

2: Cost:=0

3 d i=ry-d

4: Run Lloyd’s k-means clustering algorithm on (X, r). Let
Xi,..., Xy be the output clusters and let z;,...,zy €

R™ be the output cluster centers
5. Run Lloyd’s k-means clustering algorithm on ({z;: i €
[d']},d). Let Z be the set of output clusters
6: while there exists Z € Z such that |Z| > r, do
7: Run Lloyd’s k-means clustering algorithm on
(Z, flrﬂb Let Z’ be the set of output clusters
Z:=(Z\{zhuz
9: end while
10: For each Z € Z, let X, be the union of the clusters from
{Xi,...,Xa} such that the corresponding cluster centers
(see Line 4) belongs to Z. Notice that {Xz: Z € Z} is
a partition of X
11: For each Z, run LRBMF on ([Xz],|Z|) and let My be the
output. Here, [X z] is the matrix where the set of columns

I XZ
12: Let D be the union of the set of columns of the matrices
in{Mz : ZeZ}

13: The output matrix M is constructed as follows. For each
i € [n], the ith column of M is the vector in D which is
closest to the ith column of A.

is practically feasible for running LRMF(p) and LRBMF for
the input matrices we consider.

Here, we explain the algorithm PLRBMF. The steps of the
algorithm PLRMF(p) are identical to PLRBMF and hence
we omitted those details. The pseudocode of the algorithm
PLRBMF is given in Algorithm 1. The input for PLRBMF is
(A,r,rs,d), where rg - d < r. We would like to remark that
when d = 1, PLRBMF is same as LRBMF.

Next we analyze the running time. The algorithm PLRBMF
calls Lloyd’s k-means algorithm at most 1 4 7 times. As the
maximum error is at most mn, the total number of iterations
of Lloyd’s algorithm in all executions together is (1 + r)mn.
Moreover each iteration takes O(rmn) time. At the end we
run at most 7 iterations of LRBMF with rank being 7. Thus
the total running time is O(r?m?2n? + 2" (m + n)mn).

III. EXPERIMENTAL RESULTS

We analyze our algorithm for F,-¢;-MF (called
PLRMF(p)), and BMF (called PLRBMF) on synthetic
data and real-world data. We use the r, value to be 5 for
PLRBMF and PLRMF(2). That is, PLRBMF is same as
LRBMF and PLRMF(2) is same as LRMF(2) and when
r < 5. We run all the codes in a laptop with specification
Intel Core 15-7200U CPU, 2.50GHz x4, and 8GB RAM. We
compare our algorithms with the following algorithms.

e Asso is an algorithm for BMF by Miettinen et al. [16].

¢ One of the closely related problem is Non-negative Ma-

trix Factorization (NMF), where we are given a matrix

A € R™*™ and an integer r, and the objective is to find
two factor matrices U € R™*" and V € R"*"™ with non-
negative entries such that the squared Frobenius norm
of A — UV is minimized. We compare our algorithms
with the algorithms for NMF (denoted by NMF) designed
in [33]. We used the implementation from https://github.
com/cthurau/pymf/blob/master/pymf/nmf.py. The details
about error comparisons are different for synthetic and
real-world data and it is explained in the corresponding
subsections.

o Recall that Kumar et al. [15] considered the following
problem. Given a binary matrix A of order m xn and an
integer 7, compute two binary matrices U € {0,1}™*"
and V € {0,1}"*" such that ||[U -V — A||% is mini-
mized where - is the matrix multiplication over R. Their
algorithm is a two step process. In the first step they
run the k-Means algorithm with the input being the set
of rows of the input matrix and the number of clusters
being 2" over reals. Then each row is replaced with a
row from the same cluster which is closest to the center.
Then in the second step a factorization for the the output
matrix of step 1 (which has at most 2" distinct rows) is
obtained. For the experimental evaluation Kumar et al.
implemented the first step of the algorithm with number
of centers being r instead of 2". We call this algorithm
as BMFZ. That is, here we get a binary matrix B with
at most r distinct rows as the output. The error of our
algorithm will be compared with ||[A — B||;.

TABLE 1
COMPARISON ON SYNTHETIC DATA. THE ENTRIES IN THE TABLE ARE
AVERAGE ERROR AND STANDARD DEVIATIONS ON 10 RANDOM 50 x 100
MATRICES. HERE THE RANKS OF THE OUTPUT MATRICES ARE
{1,...,5} U{10,15,20,25,30}. STANDARD DEVIATIONS ARE
MENTIONED IN BRACKETS.

Rank 1 2 3 4 5
PLRMF(2) | 2143.6 | 1922.5 | 1772.1 | 1657.8 | 15526
(13.9) | (125 | as86) | 122 | 127

PLRBMF | 21439 | 1946.8 | 1823.1 | 1723.6 | 1646.1
(s | @82 | 139 | 145 | 9.9
BMFZ 23765 | 2204.6 | 2106.7 | 20235 | 1941.2
147 | as3)y | a9 | a3n | 4.7
NMF 24248 | 2303.1 | 2205.4 | 2114.0 | 2041.0
4 (6) (©) (11.4) 9.4)
ASSO 24815 | 24475 | 24149 | 23832 | 23523
@3.1) | @24 | @23) | 419 | 412

Rank 10 15 20 25 30

PLRMF(2) | 1374.1 | 1190.2 | 992 818.6 | 6427
(184) | (145 | 107 | (139 | (19.2)

PLRBMF | 14125 | 1221.8 | 1067 | 8982 | 7764
(162) | a3y | (202) | (149 | (36.4)

BMFZ 16472 | 1403.1 | 11845 | 972.6 | 763.6
(197 | (195 | 182 | 3.8 | 127
NMF 1780.7 | 1600.4 | 1460.7 | 1337.5 | 1214.7
(11.8) | 9.5 | 142) | 105 | 21.6)
ASSO 2201.8 | 2055.7 | 1913.1 | 17739 | 1637.7
(38) | 363) | 342 | 323) | (31.3)
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Fig. 2. Graph depicting performance of our algorithms compared with others
on the image mentioned in Table II.

A. Synthetic Data

We analyze our algorithms on binary matrices and com-
pare with NMF, BMFZ, and Asso on random matrices of
dimension 50 x 100. We run all the algorithms 10 times
and take the best results. The output of the NMF will be
two factor matrices over reals. We compare the error of our
algorithm with ||A — UV]||{, where U and V are the factors
output by NMF on the input A. The results are summarized
in Tables I. Even without rounding the factors of the output
of NMF, our algorithms perform better. We would like to
mention that NMF is designed to get factors with the objective
of minimizing ||A — UV]||%. For our problem the error is
measured in terms of ¢;-norm and so we are getting better
results than NMF. PLRMF(2) is giving > 15% improvement
over BMFZ for rank 3 to 30. We also compare PLRMF(3) and
PLRMF(5) with NMF. The performance of our algorithms are
summarized in Figure 1. PLRMF(5) percentage improvement
over NMF is monotonously increasing with respect to rank.
Our improvements are at least 3% on rank 3, 11% on rank 12,
and 26% on rank 21.

nnnnn

uuuuu

10 20 B
- BLRE(3) = N

Fig. 1. Graph on synthetic data where the entries in the table are average
error on 10 random 50 x 100 matrices.

B. Experimental Results on Real-world Data

We analyse performance of our algorithms on binary
and gray scale images. Table II shows the performance of
PLRBMF compared with NMF and BMFZ. We would like to
mention that both our algorithms PLRBMF and PLRMF(2)
work better than Asso, NMF, and BMFZ. Here, we included
results of PLRBMF, NMF, and BMFZ. For the ranks men-
tioned in the table, PLRBMF performs better than PLRMF(2)

TABLE II
PERFORMANCE OF OUR ALGORITHM PLRBMF coMPARED TO NMF AND
BMFZ. THE DIMENSION OF THE IMAGE IS 561 x 800.

\ \ NMF \ BMFZ \ PLRBMF \
AN 2
g & ; & 2
s 1 yo
- - %\W@I
S i ii
Error: 37485 Error: 35034
|”I - :T;u.‘j -
5 P %@&\\% ) '%\\\?@
~ i ES # =i £ £
E P b
Error: 37288 Error: 27180
- | Bz
& i il
Error: 35938 Error: 21115
e )
- ez | e
& 4 fi ] FF H i
Error: 34445 Error: 14974
2
§ (ﬂ%
2| . ‘ I3}
Error: 33445 Error: 8709 Error: 8529

and both these algorithms perform better than the other al-
gorithms mentioned here. For the inputs in Table 1I, NMF
and BMFZ perform better than Asso. The performance of
all the above algorithms are summarized in Figure 2. Notice
that NMF gives two no-negative real matrices U and V. We
round the values in these matrices to 0 and 1 by choosing a
best possible threshold that minimizes error in terms of /;-
norm. After rounding the values in the matrices U and V we
get two binary matrices U’ and V’. Then we multiply U’ and
V' in GF(2) to get the output matrix.

We analyze PLRMF(11) on movielens data set [34] and
compare it with NMF and the performance can be found
in Table III. The performance of PLRMF(11) against NMF,
monotonically increasing with respect to rank.

IV. CONCLUSION

In this work we designed heuristic algorithms for BMF and
F,-Matrix Factorization that are inspired by the theoretical
algorithms for the same. Even though our algorithms have
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TABLE III

COMPARISON ON MOVIE-LENS DATA WHERE THE RANKS CONSIDERED

ARE BETWEEN 1 AND 30, ON MATRIX OF DIMENSION 43 X 134.

Rank 1 2 3 6 9 12
PLRMF(11) 4981 4527 | 4273 3791 3422 | 3070
NMF 5257.8 | 5201 | 5015 | 4652.7 | 3924 | 3628
Rank 15 18 21 24 27 30
PLRMF(11) 2935 2477 2145 | 1935 | 1569 | 1129
NMF 4305.6 | 4066.4 | 3556 | 3336 | 3090 | 2982

less error compared with the benchmark algorithms we con-
sidered, the later run faster as they are truely polynomial time
algorithms. It is interesting research direction to improve the
running time of the algorithm along with obtaining less error.
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