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Abstract— Compressed sensing refers to the recovery of high-
dimensional but low-complexity objects from a small number of
measurements. The recovery of sparse vectors and the recovery
of low-rank matrices are the main applications of compressed
sensing theory. In vector recovery, the restricted isometry
property (RIP) and the robust null space property (RNSP)
are the two widely used sufficient conditions for achieving
compressed sensing. Until recently, RIP and RNSP were viewed
as two separate sufficient conditions. However, in a recent paper
[1], the present authors have shown that in fact the RIP implies
the RNSP, thus establishing the fact that RNSP is a weaker
sufficient condition than RIP.

In matrix recovery, there are three different sufficient con-
ditions for achieving low-rank matrix reconstruction, namely;
Rank Restricted Isometry Property (RRIP), Rank Robust Null
Space Property (RRNSP), and Robust Uniform Boundedness
Property (RUBP). In this paper, using the result of [1], it is
shown that actually both RRIP and RUBP imply the RRNSP,
so that RRNSP is the weakest sufficient condition for matrix
recovery. In contrast with the situation for vector recovery,
until now there are no deterministic methods for designing a
measurement operator for matrix recovery. The present results
open the door towards such a possibility.

I. INTRODUCTION

A. Overview

In many signal processing applications the data to be
processed can be represented as a matrix with real valued
entries. It is often natural or reasonable to assume that the
observed data is a low-rank matrix with some added noise.
In this paper, we focus on the problem of recovering an
unknown low-rank nr × nc matrix X from its noisy linear
measurement via nuclear norm minimization.

At present there are three different sufficient conditions for
matrix recovery, known as Rank Restricted Isometry Prop-
erty (RRIP), Rank Robust Null Space Property (RRNSP),
and Robust Uniform Boundedness Property (RUBP).
In this work, we study the relation between these three
properties. We show that under the appropriate conditions,
both the RRIP and RUBP imply RRNSP which establishes
the fact that RRNSP is the weakest sufficient condition for
matrix recovery. These results draw upon another paper [1]
on vector recovery by the present authors, in which it is
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shown that the Restricted Isometry Property implies the
robust null space property.

B. Problem Formulation

If X ∈ Rnr×nc , the symbols ‖X‖N , ‖X‖F and ‖X‖S
denote respectively the nuclear norm, the Frobenius norm,
and the spectral norm of X . Specifically, if σ(X) denotes
the vector of singular values of X , then ‖X‖N , ‖X‖F and
‖X‖S equal the `1-norm, the `2-norm, and the `∞ of σ(X),
respectively. Let M(k) denote the set of all matrices in
Rnr×nc of rank k or less. Define the quantities

θk(X, ‖ · ‖N ) := arg min
Z∈M(k)

‖X − Z‖N =

n1∑
i=k+1

σi,

θ̄k(X, ‖ · ‖N ) :=

k∑
i=1

σi.

Now we are in a position to define matrix recovery problem
formally. The objective of compressed sensing is to find,
if possible, an integer m (the number of measurements), a
linear “measurement” map A : Rnr×nc → Rm, and another
“decoder” map ∆ : Rm → Rnr×nc such that the following
properties hold:

1) If the measurement y equals A(X) (i.e., noiseless
measurements), and X has rank ≤ k, then

∆(y) = X, ∀X ∈M(k). (1)

This is known as exact recovery of rank k.
2) More generally, there exists a constant C such that

‖∆(y)−X‖N ≤ Cθk(X), ∀X ∈ Rnr×nc . (2)

This is known as stable recovery of rank k.
3) If the measurement y equals A(X)+η where ‖η‖2 ≤ ε

(i.e., noisy measurements with a known upper bound
on the noise), then there exist constants C,D such that

‖∆(y)−X‖N ≤ Cθk(X) +Dε, ∀X ∈ Rnr×nc . (3)

This is known as robust recovery of rank k.
Note that any linear map A : Rnr×nc → Rm is of the

form

A(X) =

 〈A1, X〉F
...

〈Am, X〉F

 , (4)
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where A1, . . . , Am ∈ Rnr×nc and 〈·, ·〉F denotes the Frobe-
nius inner product, that is,

〈A,B〉F = tr(AB>) =
∑
i,j

AijBij . (5)

Clearly robust recovery implies stable recovery, which in
turn implies exact recovery. In a way, robust rank recovery
ensures robust reconstruction against the noise and stable
reconstruction with respect to approximately low- rank ma-
trices. Therefore, one would like to have such a pair (A,∆)
that achieves robust rank recovery.

The constrained nuclear norm minimization is the widely
used decoder map in low-rank matrix reconstruction, i.e.,

X̂ = ∆N (y) := arg min
Z∈Rnr×nc

‖Z‖N s.t. ‖A(Z)−y‖2 ≤ ε. (6)

With the decoder map ∆N , the challenge is to find a
measurement map A, such that the pair (A,∆N ) achieves
robust rank recovery.

II. LITERATURE REVIEW

There are many results for the recovery of sparse vectors,
starting with the work of Candès and coworkers, and Donoho
and coworkers. Rather than give an exhaustive bibliography,
we refer the reader to the comprehensive text [2] and the
references therein. It suffices to say that the most popular
approach is `1-norm minimization, that is,

∆(y) := arg min
z

‖z‖1 s.t. ‖Az − y‖2 ≤ ε. (7)

The matrix A can be chosen to satisfy either the Restricted
Isometry Property (RIP), or the Robut Null Space Prop-
erty (RNSP). These properties are defined respectively in
[2, Definition 4.17] and [2, Chapter 6]. Until recently, the
relationship between the two properties was not very clear.
However, a recent paper by the present authors [1] shows
that in fact the RIP implies the RNSP.

In contrast with vector recovery, there are relatively few
results on matrix recovery. One of the first sufficient con-
dition for low-rank matrix is known as the RRIP, defined
next.

Definition 1: A linear map A : Rnr×nc → Rm is said to
satisfy the Rank Restricted Isometry Property (RRIP) of
rank k with constant δk, if

(1−δk)‖X‖2F ≤ ‖A(X)‖2F ≤ (1+δk)‖X‖2F , ∀X ∈M(k).
(8)

In one of the earliest results in matrix recovery in [3], it is
shown that if each measurement matrix Ai in A consists of
nrnc random samples of a normal Gaussian variable, then
such a map satisfies the RRIP of rank k for a suitably defined
constant δk, with probability close to one. In turn this result
is used to show that the decoder map ∆N in (6) achieves
robust recovery of rank k, under appropriate conditions.

The rank robust null space property is introduced as an
exercise in [2, Problem 4.2].

Definition 2: A linear map A : Rnr×nc → Rm is said to
satisfy the Rank Robust Null Space Property (RRNSP)

of rank k if there exists a constant ρ ∈ (0, 1) and another
constant τ ≥ 0 such that every matrix X ∈ Rnr×nc satisfies

k∑
i=1

σi(X) ≤ ρ
n∑

i=k+1

σi(X) + τ‖A(X)‖2, ∀X ∈ Rnr×nc .

(9)
In [2, Problem 4.2], the reader is asked to show that the
RRNSP of rank k is sufficient to ensure that the decoder
∆N in (6) achieves robust recovery of rank k.

Yet a third sufficient condition for robust recovery of rank
k is presented in [4]. The premise of [4] is that taking m
different Frobenius inner products as in (4) can be very time-
consuming. Instead it is suggested to choose matrix Ai to be
a rank one matrix of the form bc>, because, as is easily
verified, the Frobenius inner product 〈bc>, X〉F equals the
triple product b>Xc.

Definition 3: A linear measurement map A : Rnr×nc →
Rm (nr ≤ nc) is said to satisfy the Robust Uniform
Boundedness Property (RUBP) of order r ≤ nr if for all
X ∈M(r), it is true that

C1 ≤
‖A(X)‖1/m
‖X‖F

≤ C2, (10)

where C1, C2 are some positive constants.
It is shown in [4] that, if vectors bi, ci, i = 1, . . . ,m are

chosen to be random samples of a normal Gaussian, then the
resulting linear map A satisfies the RUBP.

It is further shown in [4] that under the appropriate
conditions, RUBP enables the pair (A,∆N ) to achieve robust
rank recovery.

III. OUR CONTRIBUTION

As mentioned above, until now there are three different
sets of conditions on the measurement map A, namely: RRIP,
RRNSP and RUBP. All these properties (together with the
decoder (6)) guarantee robust recovery of rank k. Now, in
the present paper, we prove that both RRIP and RUBP imply
RRNSP.

A. RRIP implies the RRNSP

In this sub-section we show that the Rank Restricted
Isometry Property (RRIP) implies the Rank Robust Null
Space Property (RRNSP). Because our proof draws upon
a similar result for vector recovery, namely that RIP implies
RNSP, we refer the reader to [1] for details. Now, to facilitate
the statement of our theorem, we introduce some notation.
Suppose t > 1. Define

v :=
√
t(t− 1)− (t− 1) ∈ (0, 0.5)

a := [v(1− v)− δ(0.5− v + v2)]1/2, (11)

b := v(1− v)
√

1 + δ, (12)

c :=
[ δv2

2(t− 1)

]1/2
. (13)

Then we have the following:
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Theorem 1: Suppose A : Rnr×nc → Rm satisfies RRIP
of rank tk with δtk <

√
(t− 1)/t for some t > 1. Define the

constants a, b, c as in (11),(12),(13). Then, A satisfies rank
robust null space property of rank k with

ρ := c/a, τ := b

√
k

a2
.

B. RUBP implies the RRNSP

In this sub-section we show that under some suitable
condition RUBP implies RRNSP. This final result establishes
the fact that RRNSP is the weakest sufficient condition. Now
we present our main result.

Theorem 2: Suppose that for some t ≥ 2, A : Rnr×nc →
Rm satisfies RUB of order tk with constants C1, C2 such
that C2/C1 <

√
t. Then A satisfies RRNSP of rank k with

ρ :=
C2/C1√

t
, τ :=

√
k/m

C1
.

IV. CONCLUSION

In this paper we have studied the problem of matrix
recovery via nuclear norm minimization. We have studied
the three currently known sufficient conditions, namely Rank
Restricted Isometry Property (RRIP), Rank Robust Null
Space Property (RRNSP), and Robust Uniform Boundedness
Property (RUBP). In this paper, it is shown that actually
both RRIP and RUBP imply the RRNSP, so that RRNSP is
the weakest sufficient condition for matrix recovery. These
results draw upon another paper on vector recovery by the
present authors [1], in which it is shown that the Restricted
Isometry Property implies the robust null space property. In
contrast with the situation for vector recovery, until now there
are no deterministic methods for designing a measurement
operator for matrix recovery. The present results open the
door towards such a possibility.
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