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Abstract—The number of processing elements (PEs) in a fixed-
sized systolic accelerator is well matched for large and compute-
bound DNNs; whereas, memory-bound DNNs suffer from PE
underutilization and fail to achieve peak performance and energy
efficiency. To mitigate this, specialized dataflow and/or micro-
architectural techniques have been proposed. However, due to
the longer development cycle and the rapid pace of evolution in
the deep learning fields, these hardware-based solutions can be
obsolete and ineffective in dealing with PE underutilization for
state-of-the-art DNNs. In this work, we address the challenge
of PE underutilization at the algorithm front and propose
data reuse aware co-optimization (DRACO). This improves the
PE utilization of memory-bound DNNs without any additional
need for dataflow/micro-architecture modifications. Furthermore,
unlike the previous co-optimization methods, DRACO not only
maximizes performance and energy efficiency but also improves
the predictive performance of DNNs. To the best of our knowl-
edge, DRACO is the first work that resolves the resource un-
derutilization challenge at the algorithm level and demonstrates
a trade-off between computational efficiency, PE utilization, and
predictive performance of DNN. Compared to the state-of-the-
art row stationary dataflow, DRACO achieves 41.8% and 42.6%
improvement in average PE utilization and inference latency
(respectively) with negligible loss in predictive performance in
MobileNetV1 on a 64 × 64 systolic array. DRACO provides
seminal insights for utilization-aware DNN design methodologies
that can fully leverage the computation power of systolic array-
based hardware accelerators.

Index Terms—Deep neural networks (DNNs), systolic array,
PE utilization, latency, energy-efficiency.

Systolic array has become mainstay in hardware-based Deep

Neural Network (DNN) accelerators deployed in both edge

devices [1] and servers used in data-centers [2], [3]. The

systolic array-based architectures enable local communication

between neighboring processing elements (PEs) which exploits

the inherent parallelism in DNN and adds one extra level

in the memory hierarchy of accelerators. This, together with

the distributed control logic in systolic architecture, offers an

efficient solution for DNN’s processing [4].

Concurrently, on the DNN algorithm side, depthwise con-

volution (DWConv) [5]–[7] has been devised to reduce the

number of computations (measured in terms of multiply-

accumulation or MAC operations) and parameters. Unlike

standard convolution (SConv), where entire channels in a

filter are convolved with all input feature maps (ifmaps) and

produce one output feature map (ofmap), DWConv allows one

Support for this work was provided by Semiconductor Research Corpora-
tion.

filter-channel to convolve with only one ifmap. Consequently,

DWConv exhibits low data reuse and parallelism, which

makes DNNs with DWConv as memory-bandwidth bound

[8]. The performance and energy efficiency of systolic array-

based DNN accelerators rely heavily on certain pre-determined

dimensions of convolution (conv) layers and/or feature maps,

which helps exploiting high parallelism in large and compute-

bound DNNs [9]. However, the reduced shape and size of conv

layers, including DWConv, in compact DNNs render most of

the PEs underutilized in a fixed-sized systolic accelerator that

are designed for large and compute-bound DNNs.

The low PE utilization in systolic array poses three-fold

challenges. First, it increases the stall cycles and hence

prediction latency, which prohibits inference in real-time.

Second, the accelerator does not attain its peak performance

and energy-efficiency. Third, the PE underutilization becomes

more significant in the larger array sizes and exacerbates the

scalability challenge. Fig. 1 shows the experimental results

(refer Section III for details on experimental setup) for layer-

wise PE utilization on a 64×64 systolic array for MobileNetV1

(MV1). Evidently, the utilization is very high for 1 × 1
pointwise conv. However, utilization of the 3 × 3 DWConv

is low in initial layers (only ≈4%) and decreases further

in deeper layers due to the reduced size of fmaps. The key
observation here is, PE utilization depends on both the number

of channels in groups and the spatial size of fmaps.
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Fig. 1: Layer-wise PE utilization in MobileNetV1

To deal with the aforementioned challenges in DWConv,

specialized micro-architecture [2], [9] and dataflow techniques

[10], [11] have been proposed. From the general perception

in the realm of co-design, a hardware-based solution yields

lower return on investment due to prolonged development

cycle and lack of flexibility, hence it is used as a last resort.

Therefore, we resolve the issue of PE underutilization at the

algorithm level and provide generic guidelines for utilization-
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aware DNN design. We seek to answer whether we can
change the architecture of DNN itself such that memory-bound
DNNs can efficiently run on the accelerators conventionally
designed for large and compute-bound DNNs without any
micro-architecture/dataflow modifications?

In this paper, we propose data reuse aware co-optimization

(DRACO) where the number of channels in the groups of

fmaps are set to optimize the PE utilization on systolic-array

based DNN accelerators. Moreover, by merely fine-tuning the

number of channels in the groups of fmaps, DRACO can

easily adapt to various sizes of systolic array. Through our

extensive experiments, we demonstrate that DRACO enables
substantial improvement in PE utilization on a wide range
of systolic array size with a minimal increase in the number
of MAC operations and parameters. We also examine the

energy-efficiency implication of DRACO. We find that due

to better data reuse in DRACO, the increase in computation

increases the access to only local memory (register file or RF)

rather than off-chip DRAM. Thus, the increase in total energy

consumption is meager. Interestingly, we observe that DRACO

not only preserves the accuracy of the baseline model, but it

can also boost the predictive performance with an appropriate

number of channels in the groups of fmaps.

DRACO is applicable to a wide range of DNNs which

employ either DWConv or group convolution with a lesser

number of channels per group of fmaps. Moreover, it can also

be used in the lighter (mobile) version of large DNNs. For

instance, in the bottleneck modules of ResNet, 3 × 3 SConv

can be replaced with 3×3 group convolution with an optimal

number of channels per group and it can be used as a mobile

version of ResNet with high PE utilization on different scales

of PEs. Our contributions are as follows.

• We implement the DRACO technique to mitigate the

low data reuse and PE underutilization in DWConv of

memory-bound DNNs.

• We perform an extensive experimentation to understand

the interplay of computational complexity and PE utiliza-

tion with (inference) latency. We reveal that increasing

PE utilization at the expense of high computational cost

negates the effect of improved utilization and results in

suboptimal inference latency.

• We demonstrate the efficacy of DRACO by performing

experiments with four different array sizes.

• We perform accuracy experiments on imagenette [12] to

show the predictive performance implication of DRACO.

I. RELATED WORK

In Eyeriss v2 [9], hierarchical mesh NoC has been proposed

to cater to the high bandwidth requirement for DNNs with low

data reuse. Simba [2] deployed Global PE, which performs

the near-memory computation for the DNN’s layer with low

data reuse. The authors in [13] developed an analytical model

to efficiently explore the design space and maximize the

resource utilization in a systolic array. Liu et al. [11] propose

flexible mappings for computation in conv layers to attain

high PE utilization. Similarly, Wu et al. [10] implement an

optimized execution order for tiled matrix multiplication to

maximize the data reuse in depthwise separable convolution.

Kung et al. [14] employ adaptive tiling to reduce the number

of tiles required for inference in sparse (unstructured) DNNs.

Unlike the aforementioned ad hoc solutions, we change the

architecture of DNN itself to achieve a significant gain in

PE utilization with a minimum increase in computations and

energy consumption. We also study the effect of the proposed

algorithmic change on the predictive performance of DNNs.

II. PROPOSED APPROACH

Notations The spatial size of filter (kernel) and fmap are

denoted as dk × dk and df × df respectively (Table I). For

simplicity, we assume the spatial size of ifmap and ofmap

are equal. n and m are the number of ifmaps and ofmaps,

respectively. The number of ifmaps, and channels in a filter;

and the number of filters, and ofmaps are equal. The number

of channels (ifmaps) in a group of filters (fmaps) is denoted as

G, and the total number of such groups in a conv layer is m
G .

The number of parameters and activations (input and output

together) are denoted as #Param and #Act, respectively. In

Table I, data reuse is estimated as arithmetic intensity of the

layer (DataReuse= #MACs
#Param + #Act ). We separately calculate

the data reuse for filter-weights as Wreu = #MACs
#Param . Also,

data reuse for input/output activations is Areu = #MACs
#Act .

A. Data Reuse Bottleneck in Depthwise Convolution

In comparison with standard convolution (SConv), DWConv

(G=1) reduces both the number of MAC operations and

parameters by a factor of n (Table I) which is significant

especially in deeper layers where n is very high. However,

the data reuse of DWConv is very low compared to SConv.

As shown in Table I, the Wreu is the same in DWConv

and SConv; whereas, Areu of the former is reduced by a

factor of n. For example, as illustrated in Fig. 2, Wreu of

3 × 3 DWConv and 1 × 1 SConv in MobileNetV1 are same;

however, Areu in the former is significantly lower than the

latter. Also, this disparity in Areu grows in deeper layers. Note

that Areu is more critical than Wreu because Wreu increases

with increasing input batch size, while Areu does not [8].

TABLE I: Data reuse comparison

Metric SConv DWConv DRACO
#MACs m× n× d2k × d2f m× d2k × d2f G× (n× d2k × d2f )

#Param m× n× d2k m× d2k G× (n× d2k)
#Act (m+ n)× d2f (m+ n)× d2f (m+ n)× d2f

DataReuse
m×n×d2k×d2f

m×n×d2
k
+(m+n)×d2

f

m×d2k×d2f
m×d2

k
+(m+n)×d2

f

m×d2k×d2f

m×d2
k
+

(m+n)
G

×d2
f

Wreu d2f d2f d2f
Areu n× (

m
m+n

)
d2k

(
m

m+n

)
d2k G× (

n
m+n

)
d2k

Dataflow techniques are selected to maximize the data reuse

of a particular data type in DNN. For example, weights

and partial sum reuse are maximized in weight stationary

and output stationary dataflow [4]. In initial layers, Wreu is

higher and decreases in the deeper layer, whereas Areu is

higher in deeper layers and decreases in layers towards input.

Consequently, none of the dataflows can be optimal for all the

layers in a DNN. In other words, due to the lower number
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Fig. 2: Weight reuse in 3×3 DWConv (conv3x3 w), and 1×1

convolution (conv1x1 w); activation reuse in 3×3 DWConv

(conv3x3 a), and 1×1 convolution (conv1x1 a)

of filter-channels (or ifmaps) in the initial layers and smaller

fmap size in deeper layers, PE underutilization happens in the

respective layers. This underutilization is further aggravated in

DWConv due to the very low Areu.

B. Data Reuse Aware Co-optimization (DRACO)

First, we employed state-of-the-art dataflow, row station-
ary [4], which is adaptable to different shapes and sizes

of filters/ifmaps, thus, enables optimal energy-efficiency and

throughput for a DNN. As illustrated in Fig. 1, the PE

utilization of 1× 1 conv with row stationary dataflow is well-

above of ≈80% and independent of the layer’s position in

DNN. However, in the case of DWConv, PE utilization is

substantially lower (≤ 4%) on large array size (64× 64) and

more importantly, it reduces in deeper layers. That is, even

with row stationary dataflow, when the number of channels in

a group is deficient, then PE utilization depends on the spatial

size of fmaps, and hence it decreases in deeper layers.

To address the shortcomings of row stationary dataflow and

to enable high PE utilization in DWConv, we propose data

reuse aware co-optimization (DRACO) where we increase

the G, which in turn increases Areu (Table I). Since PE

underutilization becomes more significant with larger array

size, by fine-tuning G, DRACO can adapt to larger array size.

Increasing G also increases the number of MAC operations,

but, increases the data reuse and decreases the bandwidth

pressure. In other words, DRACO adds more #MACs to

a bandwidth bound DNN without increasing the bandwidth

demand and substantially improves the PE utilization.

III. EXPERIMENTAL EVALUATION

In this section, we detail the experimental setup and elabo-

rate on our findings. We present the insights as key takeaway

messages, which can enable a better methodology for latency

optimization in DNNs.

A. Experimental Setup

Eyeriss simulator We take Eyeriss, a systolic array-based

inference accelerator for DNNs [1], as a baseline architecture

and modify the Eyeriss simulator [15], [16] to perform our

experiments. Table II shows the on-chip memory (global buffer

and register file) sizes for different PE array sizes. Consistent

with Chen et al. [4], the memory cost for accessing the DRAM

(off-chip), global buffer (on-chip SRAM), array (inter-PE),

and register file (local scratch-pad) are modeled as {200, 6,

2, 1}×10−12 joules, respectively. Since inference is latency-

critical, we take batch size as one for all the experiments.
TABLE II: Configuration of on-chip memories in Eyeriss

simulator for different array sizes

Memory size 16x16 32x32 64x64 128x128
GBuf (KiB) 128 256 512 1024

RF per PE (KiB) 0.5 0.5 0.5 0.5
Total RF size (KiB) 128 512 2048 8192

Baseline model and dataset DWConv (G=1) is a popular

technique to reduce the computation in both manual design

and automated design of DNNs [17]. We use MobileNetV1

[5], widely deployed on mobile platforms, as a baseline model

because all of its layers with 3×3 conv (except very first layer)

employ DWConv. In MobileNetV1, all 3× 3 conv layers are

followed by a 1 × 1 conv layer, and it bears a resemblance

to a widely deployed building block: bottleneck module [18].

Therefore, the findings obtained for MobileNetV1 also apply

to an extensive range of DNNs.

To understand the interplay of compute efficiency and PE

utilization with inference latency, we perform experiments on

MobileNetV1 with different values of width multiplier (α) and

input resolution multiplier (ρ) [5]. The physical significance

of α, ρ, and G are illustrated in Fig. 3. Changing α changes

both the number of parameters and MACs whereas ρ changes

only the number of MACs. As the number of channels in first

3× 3 DWConv layer of MobileNetV1 is 32, we perform our

experiments for G=1 to G=16 for α=0.5, G=1 to G=32 for

α=1 and G=1 to G=64 for α=2. Table III shows the number of

MACs and parameters with different values of α and ρ. Note

that to accommodate larger fmaps in the case of MobileNetV1

with ρ=2, we double the on-chip memory (GBuf and RF per

PE) capacity shown in Table II.

(a) (b) (c) (d) (e)

input 
(resolution = 1)

ifmaps ofmaps

group of ifmaps

Fig. 3: Comparison of (a) SConv with (b) MobileNetV1 (α=1,

ρ=1, G=1); and other MobileNetV1 variants with (c) {α=1,

ρ=1, G=2}, (d) {α=2, ρ=1, G=1}, and (e) {α=1, ρ=2, G=1}
We measure the predictive performance of DNNs as the

prediction accuracy on the image classification task. We train

our models from scratch (i.e. no pre-training), without any data

augmentation techniques, on Imagenette dataset [12] with in-

put crop size 224×224 for 150 epochs. Imagenette is a subset

of 10 classes from the popular benchmark dataset ImageNet.

Note that all the reported top-1 accuracy are average of three

runs to avoid the effect on noise on accuracy.
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Fig. 4: Results for MobileNetV1 (α=1, ρ=1): In top row latency; in middle row PE utilization for 3× 3 conv, 1× 1 conv, and

average utilization; and in bottom row total energy consumption in terms of ALU (alu), DRAM (dram), global buffer (g buf),

systolic array (array), and register file (rf) accesses energy with variations in G and systolic array size are shown.

TABLE III: MACs (in Millions) and param (#parameters in

Millions) variations in MobileNetV1 with different α and ρ

Metric G1 G2 G4 G8 G16 G32 G64
(a) Baseline MobileNetV1 (α=1, ρ=1)

MACs 569 586 621 690 830 1108 -
Param 4.21 4.25 4.34 4.52 4.88 5.59 -

(b) MobileNetV1 with different values of α (ρ set to 1)

α=0.5
MACs 147 156 173 208 278 - -
Param 1.82 1.83 1.85 1.9 1.99 - -

α=2
MACs 2237 2272 2341 2481 2759 3315 4428
Param 13.76 13.94 14.3 15.01 16.44 19.3 25.01

(c) MobileNetV1 with different values of ρ (α set to 1)

ρ=0.5
MACs 143 147 156 173 208 278 -
Param 4.21 4.25 4.34 4.52 4.88 5.59 -

ρ=2
MACs 2272 2341 2481 2759 3315 4428 -
Params 4.21 4.25 4.34 4.52 4.88 5.59 -

B. Results

PE utilization and latency In middle row of Fig. 4, we

show utilization for 1x1 and 3x3 convolutions separately. The

reported “average” PE utilization is arithmetic mean of that of

the all conv, FC, pooling layers in MobileNetV1. At G=1, the

PE utilization of MobileNetV1 on the smaller array is well

above 50%; however, it reduces on scaling up the array size.

For example, the average PE utilization of MobileNetV1 on

16×16 array is 61.4% while that on 128×128 array is 47.8%.

Across all the array sizes, the PE utilization for 1 × 1 conv

is well above 80%, however, it is substantially low for 3× 3
conv and further decreases with higher array size (e.g., 29% on

16×16 array, and only 2.1% on 64×64 array). Increasing the

number of channels in each group (i.e., G) of 3× 3 DWConv

improves PE utilization. The overall utilization reaches ≈80%

on 16×16 and 32×32 arrays at G=8. By contrast, on 64×64
and 128× 128 arrays, utilization reaches ≈80% at G=16.

As shown in Table III(a), increasing G increases the number

of computations and hence, the latency on 16 × 16 array

increases with higher G. However, on larger array sizes,

the latency first decreases and reaches minima and further

increases with an increase in G. On larger array sizes, PE

underutilization becomes significant, and utilization improves

with an increase in G. Hence, the latency starts decreasing

initially and reaches a minimum value; however, it further in-

creases as the number of MACs becomes significantly higher.

Clearly, at lower G, PE underutilization is significant, and

once the utilization is sufficiently high (≈80%), the latency is

driven by the computational complexity of DNN. Notice that

with the increase in array sizes, the minima in latency curve

shifts towards the right, i.e., towards higher G. This happens

because a higher number of channels is required to utilize the

higher number of PEs on a larger array. Hence, the latency is

driven by PE utilization, and better PE utilization overwhelms

the effect of the increase in computational complexity, up to

a certain value of G.

Key takeaway 1: The optimum latency is driven by both
the PE utilization as well as the computational complexity of
DNN, and the effect of PE utilization on latency depends on
PE array size in the systolic accelerator.

We plot the total energy consumption with different G
values to see the energy overhead of increasing G (bottom

row in Fig. 4). Since increasing G leads to a gradual increase

in the number of computations, there is a negligible increase

in the inference energy up to a group size of G=8. Moreover,

increasing G causes better data locality, and hence, the in-

crease in computation results only in more number of access

to RF rather than DRAM. Thus, even at a higher G, the overall

increase in energy is not substantial.

Effects of changing the number of filters We set α = 0.5

to halve the number of filters in all the layers and set α = 2 to

double the number of filters. Since changing α does not change

the number of channels per group, the PE utilization remains

the same across different values of α (middle row in Fig. 5).

For α=0.5, latency decreases sharply at initial values of G
and remains constant at higher G. However, for α=2, latency

decreases gradually and starts increasing at higher G. Since

the number of MACs in MobileNetV1 with α=0.5 is quite

577

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on November 01,2022 at 05:09:55 UTC from IEEE Xplore.  Restrictions apply. 



low (Table III(b)), the latency is driven only by PE utilization

and it remains constant at higher G. However, at higher G
with α=2, the number of MACs is very high, which results in

increased latency. For all values of G, the absolute values of

latency and energy are significantly higher at α=2 compared

to those at α=0.5. This is because the number of MACs and

parameters are much higher for α=2 (Table III(b)).

Key takeaway 2: The extent to which PE utilization affects
the latency also depends on the total number of MACs in DNN.
In a DNN with very few MACs, the latency depends only on
PE utilization.
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Fig. 5: Results for MobileNetV1 with α = 0.5 (left column),

and α = 2 (right column) on 64 × 64 PE array: In top row

latency; in middle row PE utilization; and in bottom row total

energy consumption variations with different G are shown.

Effects of changing input resolution We change ρ to 0.5

and 2 to increase and decrease (respectively) the spatial size

of the input image. Changing the input resolution changes the

spatial size of fmaps in all the layers, which, in turn, affects

the PE utilization. As shown in Fig. 6, due to the higher spatial

size of fmaps at ρ=2, PE utilization is higher than that at ρ=0.5.

With ρ=0.5, the latency decreases sharply at lower G, then

reaches the minimum value at G=8 and G=16, and then starts

increasing at higher G. However, with ρ=2, latency decreases

gradually at lower G, then reaches a minimum at G=4, and

then starts increasing sharply at higher G. In other words, with

an increasing value of ρ (from 0.5 to 2), the minima in the

latency curve shift towards left (i.e., towards lower G).

Thus, when utilization is improved by employing fmap with

larger spatial size in a DNN (ρ=2), then benefit of better

PE utilization is overshadowed by a substantial increase in

computation (Table III(c)). For instance, even when a gain

in PE utilization from G=4 to G=16 is ≈27%, the latency

is increased by ≈23%. However, with ρ=0.5, the number of

MACs is quite low, and the effect of PE utilization on latency

is noticeable. The absolute latency and energy values with ρ=2

are substantially higher than those with ρ=0.5 due to the higher

computational complexity in the former.

Key takeaway 3: Increasing PE utilization at the expense of

a substantial increase in the number of computations does not
lead to lower latency, and the effect of higher PE utilization
is dominated by the number of computations.
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Fig. 6: Results for MobileNetV1 with ρ = 0.5 (left column),

and ρ =2 (right column) on 64 × 64 PE array: In top row

latency; in middle row PE utilization; and in bottom row total

energy consumption variations with different G are shown.

C. Proposed Alternative for Latency Optimization
So far, we have seen that increasing PE utilization by

employing more number of channels in each group of a DNN

decreases the latency at the cost of a gradual increase in com-

putations. However, increasing PE utilization at the expense of

a substantial increase in computation (e.g., MobileNetV1 with

ρ=2) does not effectively reduce the latency of a DNN. Now,

we propose a better alternative for increasing PE utilization,

which also reduces the latency more effectively.
MobileNetV1 with α=0.5 and ρ=2 The PE utilization

depends on the number of channels and the spatial size of

fmaps in a group. Hence, scaling the number of filters (using

α) in the layers of a DNN changes only the computational

complexity and does not alter the PE utilization. We propose to

use α to reduce the computational complexity of MobileNetV1

with higher ρ. The appropriate value of α depends on the ad-

ditional gain in computational complexity, i.e., in a proportion

of ρ. Here, we set α=0.5 to offset the gain in computational

complexity in MobileNetV1 with ρ=2 without hampering the

PE utilization. This reduces the number of MACs by ≈4×
and the number of parameter by a factor of ≈2.5× (Table

III(c) and Table IV). The substantial reduction in both the

number of MACs and parameters leads to an improvement

in both energy efficiency and latency for all the values of G
(Table V). This improvement is higher on smaller array sizes

because the effect of computational complexity on latency is

significant when the array size is smaller. However, the effect

of PE utilization on latency is significant on a larger array.
Key takeaway 4: The computational complexity of a DNN

can be reduced without affecting the PE utilization. At constant
PE utilization, the effect of computational complexity on
latency is quite significant on smaller array sizes.
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TABLE IV: Number of MACs and parameters in Mo-

bileNetV1 with α = 0.5, and ρ = 2

Metric G1 G2 G4 G8 G16
#MACs (M) 586 621 690 830 1108
#Params (M) 1.82 1.83 1.85 1.90 1.99

TABLE V: Performance comparison of MobileNetV1 versions

{α = 1, and ρ = 2} and {α = 0.5, and ρ = 2}
Model Array

size Metric G1 G2 G4 G8 G16

MV1
α=1,
ρ=2

16x16
PE util. (%) 68 77 79 79 80
Latency (ms) 66.5 67.7 72.1 81.1 99.2
Energy (mJ) 59.7 60.1 61.0 63.7 69.3

32x32
PE util. (%) 56 65 77 82 83
Latency (ms) 18.8 17.8 18.2 20.1 24.4
Energy (mJ) 37.2 37.6 38.4 41.1 46.6

64x64
PE util. (%) 50 55 66 74 83
Latency (ms) 6.9 5.5 4.9 5.2 6.0
Energy (mJ) 30.6 31.1 31.9 34.3 39.3

128x128

PE util. (%) 46 48 54 64 77

Latency (ms) 4.0 2.5 1.7 1.5 1.6
Energy (mJ) 27.2 27.6 28.5 30.2 33.9

MV1
α=0.5,
ρ=2

16x16
PE util. (%) 68 76 79 79 80
Latency (ms) 17.8 18.3 20.5 25.1 34.1
Energy (mJ) 17.5 17.7 18.2 19.5 21.6

32x32
PE util. (%) 55 65 77 82 83
Latency (ms) 5.5 5.0 5.2 6.2 8.3
Energy (mJ) 11.9 12.1 12.5 13.9 15.9

64x64
PE util. (%) 49 54 66 73 81
Latency (ms) 2.5 1.8 1.5 1.7 2.1
Energy (mJ) 10.3 10.5 10.9 12.1 14.1

128x128

PE util. (%) 45 47 52 63 76

Latency (ms) 1.8 1.0 0.6 0.5 0.5
Energy (mJ) 9.2 9.4 9.8 10.7 12.4

D. Implication on Prediction Accuracy

We now investigate the ramification of changing G on the

predictive performance of DNN. As shown in Table VI, the

top-1 accuracy of baseline MobileNetV1 (α=1, ρ=1) increases

for lower values of G, reaches a maximum value at G=4, then

starts decreasing at higher G. The DWConv only captures the

spatial correlation, and the following 1×1 convolution captures

the channel correlation [19]. That is, employing only one

channel in a group (in DWConv) captures only one variation

of a visual concept in the ofmaps. By contrast, increasing the

number of channels in the groups of a filter captures more

variations of a single visual concept, which, in turn, boosts

the representational power of the network and improves the

accuracy [20]. Also, at lower G, each ofmap is connected

to very few ifmaps and serves as a strong regularizer, which

in turn improves the generalization in DNN. Therefore, once

the groups get a sufficient number of channels to capture the

variations of the visual concepts, the effect of regularization

becomes significant. Hence, at higher G, top-1 accuracy starts

decreasing due to weaker regularization.

TABLE VI: Top-1 accuracy (on Imagenette) for MobileNetV1

with different α and ρ

Models G1 G2 G4 G8 G16 G32
MV1 (α=1 ρ=1) 84.08 84.55 84.65 83.46 83.40 79.94
MV1 (α=1 ρ=2) 84.76 84.55 84.17 84.81 83.29 82.90

MV1 (α=0.5 ρ=2) 82.61 83.54 83.70 82.71 82.29 -

Note that for larger input size higher G is required to capture

more variations of a visual concept. Therefore, top-1 accuracy

in MobileNet-V1 with ρ=2 is maximum at G=8 (Table VI).

However, DNNs with very few parameters result in under-

fitting at G = 1, hence top-1 accuracy in MobileNet-V1

with α=0.5, and ρ=2 is lower at G=1 and starts increasing

from G=2. The difference between the top-1 accuracy of

MobileNetV1 with {α, ρ} = {0.5, 2}, and {1, 2} is minimum

at G=4. Also, the latency is minimum at same G on a 64×64
array (Table V). Hence, G=4 is a sweet spot for both optimum

latency and prediction accuracy. In summary, our proposed

alternative for latency optimization in MobileNetV1 with ρ=2

does not hamper the accuracy, provided groups in DNN have

sufficient G to capture the variations in concepts.

IV. CONCLUSION

In this paper, we presented a data reuse aware co-

optimization approach (DRACO) for improving the PE uti-

lization on systolic accelerators for memory-bound DNNs. We

explained the role of computational complexity, PE utilization,

and array size of the systolic accelerators on (inference)

latency optimization. We demonstrated that improving PE uti-

lization does not always improve the performance of a DNN;

it also depends on the computational overhead of improving

PE utilization. Our approach to improving PE utilization also

boosts the predictive performance of DNNs.
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