
32

Covering Small Independent Sets and Separators with

Applications to Parameterized Algorithms

DANIEL LOKSHTANOV, University of California, USA

FAHAD PANOLAN, Department of Computer Science and Engineering, IIT Hyderabad, India

SAKET SAURABH, Institute of Mathematical Sciences, HBNI, India, University of Bergen, Norway

ROOHANI SHARMA, Institute of Mathematical Sciences, HBNI, India

MEIRAV ZEHAVI, Ben-Gurion University, Israel

We present two new combinatorial tools for the design of parameterized algorithms. The first is a simple

linear time randomized algorithm that given as input a d-degenerate graph G and an integer k , outputs an
independent set Y , such that for every independent set X in G of size at most k , the probability that X is

a subset of Y is at least (((d+1)k
k

) · k (d + 1))−1. The second is a new (deterministic) polynomial time graph

sparsification procedure that given a graph G, a set T = {{s1, t1}, {s2, t2}, . . . , {s� , t� }} of terminal pairs, and
an integer k , returns an induced subgraph G� of G that maintains all the inclusion minimal multicuts of

G of size at most k and does not contain any (k + 2)-vertex connected set of size 2O (k) . In particular, G�

excludes a clique of size 2O (k) as a topological minor. Put together, our new tools yield new randomized fixed

parameter tractable (FPT) algorithms for Stable s-t Separator, StableOddCycle Transversal, and Stable
Multicut on general graphs, and for Stable Directed Feedback Vertex Set on d-degenerate graphs,
resolving two problems left open byMarx et al. [ACM Transactions on Algorithms, 2013]. All of our algorithms

can be derandomized at the cost of a small overhead in the running time.

CCS Concepts: • Theory of computation → Fixed parameter tractability;

Additional Key Words and Phrases: Independece covering family, stable multicut, stable s-t separator, stable

OCT, parameterized algorithms

A preliminary version of this article has appeared in the proceedings of SODA 2018. This project has

received funding from the European Research Council (ERC) under the European Union’s Horizon

2020 research and innovation programme (grant agreement no. 819416), Pareto-Optimal Parameter-

ized Algorithms (ERC Starting Grant 715744), Parameterized Approximation (ERC Starting Grant

306992), and Rigorous Theory of Preprocessing (ERC Advanced Investigator Grant 267959), and from

the Norwegian Research Council via grant MULTIVAL. Saket Saurabh also acknowledges the support

of Swarnajayanti Fellowship grant DST/SJF/MSA-01/2017-18.

Authors’ addresses: D. Lokshtanov, University of California, Santa Barbara, USA; email: daniello@ucsb.edu; F. Panolan,

Department of Computer Science and Engineering, IIT Hyderabad, Sangareddy, India; email: fahad@iith.ac.in; S.

Saurabh, Institute of Mathematical Sciences, HBNI, Chennai, Tamil Nadu, India, University of Bergen, Bergen, Nor-

way; email: saket@imsc.res.in; R. Sharma, Institute of Mathematical Sciences, HBNI, Chennai, Tamil Nadu, India; email:

roohani@imsc.res.in; M. Zehavi, Ben-Gurion University, Beersheva, Israel; email: meiravze@bgu.ac.il.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1549-6325/2020/05-ART32 $15.00

https://doi.org/10.1145/3379698

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

mailto:permissions@acm.org
https://doi.org/10.1145/3379698

32:2 D. Lokshtanov et al.

ACM Reference format:

Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Roohani Sharma, andMeirav Zehavi. 2020. Covering Small

Independent Sets and Separators with Applications to Parameterized Algorithms. ACM Trans. Algorithms 16,

3, Article 32 (May 2020), 31 pages.

https://doi.org/10.1145/3379698

1 INTRODUCTION

We present two new combinatorial tools for designing parameterized algorithms. The first is a
simple linear time randomized algorithm that given as input ad-degenerate graphG and an integer
k , outputs an independent set Y , such that for every independent set X in G of size at most k , the

probability that X is a subset of Y is at least ((k (d+1)
k

) · k (d + 1))−1. Here, an independent set in
a graph G is a vertex set X such that no two vertices in X are connected by an edge, and the
degeneracy of an n-vertex graph G is the minimum integer d such that there exists an ordering
σ : V (G) → {1, . . . ,n} such that every vertex v has at most d neighbors u with σ (u) > σ (v). Such
an ordering σ is called a d-degeneracy sequence of G. We say that a graph is d-degenerate ifG has
a d-degeneracy sequence. More concretely, we prove the following result:

Lemma 1.1. There exists a linear1 time randomized algorithm that given as input a d-degenerate

graph G and an integer k , outputs an independent set Y , such that for every independent set X in G

of size at most k the probability that X is a subset of Y is at least ((k (d+1)
k

) · k (d + 1))−1.

Proof. GivenG, k, and a d-degeneracy sequence σ ofG, the algorithm sets p = 1
d+1 and colors

the vertices ofG black or white independently with the following probability: A vertex gets colored
black with probability p and white with probability 1 − p. The algorithm then constructs the set Y
that contains every vertex v , such that v is colored black and all the neighbors u of v with σ (u) >
σ (v) are colored white. We first show that Y is an independent set. Suppose not. Let u,v ∈ Y , such
that σ (u) < σ (v) and uv ∈ E (G). Since u ∈ Y , by the construction of Y , v has to be colored white.
This contradicts that v ∈ Y , because every vertex in Y is colored black.
We now give a lower bound on the probability with which a given independent set X of size

at most k is contained in Y . Define Z to be the set of vertices u such that u has a neighbor x ∈ X
with σ (x) < σ (u). Since every x ∈ X has at most d neighbors u with σ (x) < σ (u), it follows that
|Z | ≤ kd . Observe that X ⊆ Y precisely when all the vertices in X are colored black and all the
vertices in Z are colored white. This happens with probability

p |X | (1 − p) |Z | ≥
(

k

k (d + 1)

)k

·
(

kd

k (d + 1)

)kd

≥
[(

(d + 1)k

k

)
· k (d + 1)

]−1
.

Here, the last inequality follows from the fact that binomial distributions are centered around their
expectation. This concludes the proof. �

Lemma 1.1 allows us to reduce many problems with an independence constraint to the same
problemwithout the independence requirement. For an example, consider the following four well-
studied problems:

• Minimum s-t Separator: Here, the input is a graph G, an integer k, and two vertices s
and t , and the task is to find a set S of at most k vertices such that s and t are in distinct
connected components ofG − S . This is a classic problem solvable in polynomial time [Ford
and Fulkerson 1956; Stoer and Wagner 1997].

1The time is purely linear in terms of k and d, too.

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

https://doi.org/10.1145/3379698

Covering Small Independent Sets and Separators 32:3

• Odd Cycle Transversal: Here, the input is a graph G and an integer k , and the task
is to find a set S of at most k vertices such that G − S is bipartite. This problem is NP-
complete [Choi et al. 1989] and has numerous fixed-parameter tractable (FPT) algorithms

[Lokshtanov et al. 2014; Reed et al. 2004]. For all our purposes, the O (4k · kO (1) · (n +m))
time algorithms of Iwata et al. [2014] and Ramanujan and Saurabh [2014] are the most rel-
evant.

• Multicut: Here, the input is a graph G, a set T = {{s1, t1}, {s2, t2}, . . . , {s�, t� }} of terminal
pairs, and an integer k , and the task is to find a set S on at most k vertices such that for
every i ≤ �, si and ti are in distinct connected components ofG − S . Such a set S is called a
multicut ofT inG. This problem is NP-complete even for three terminal pairs; that is, when
l = 3 [Dahlhaus et al. 1994], but it is FPT [Bousquet et al. 2011; Marx and Razgon 2014]
parameterized by k , admitting an algorithm [Lokshtanov et al. 2016a] with running time

2O (k3) ·mn logn.
• Directed Feedback Vertex Set: Here, the input is a directed graph D and an integer k ,
and the task is to find a set S on at most k vertices such that D − S is acyclic. This problem
is also NP-complete [Karp 1972] and FPT [Chen et al. 2008] parameterized by k , admitting
an algorithm [Lokshtanov et al. 2016a] with running time O (k! · 4k · k5 · (n +m)).

In the “stable” versions of all of the above-mentioned problems, the solution set S is required
to be an independent set.2 Fernau [Demaine et al. 2007] posed as an open problem whether Sta-
ble Odd Cycle Transversal is FPT. This problem was resolved by Marx et al. [2013], who gave

FPT algorithms for Stable s-t Separator running in time 22
kO (1)

· (n +m) and Stable Odd Cy-

cle Transversal running in time 22
kO (1)

· (n +m) + O (3k · nm). Here, the O (3k · nm) term in the
running time comes from a direct invocation of the algorithm of Reed et al. [2004] for Odd Cy-
cle Transversal. Furthermore, Marx et al. [2013] gave an algorithm for Stable Multicut with
running time f (k, |T |) (n +m) for some function f . They posed as open problems the problem
of determining whether there exists an FPT algorithm for Stable Multicut parameterized by k
only, and the problem of determiningwhether there exists an FPT algorithm for Stable Odd Cycle

Transversal with running time 2kO (1) · (n +m). The problem of determining whether there exists
an FPT algorithm for Stable Multicut parameterized by k was restated by Michał Pilipczuk at
the update meeting on graph separation problems in 2013 [Cygan et al. 2013a].

Subsequently, algorithms for Odd Cycle Transversal with running time 4kkO (1) · (n +m)
were found independently by Iwata et al. [2014] and Ramanujan and Saurabh [2014]. Replacing
the call to the algorithm of Reed et al. [2004] in the algorithm of Marx et al. [2013] for Stable

Odd Cycle Transversal by either of the two 4k · kO (1) · (n +m) time algorithms for Odd Cy-

cle Transversal yields a 22
kO (1)

· (n +m) time algorithm for Stable Odd Cycle Transversal.

However, obtaining a 2kO (1)
(n +m) time algorithm still remained an open problem.

Using Lemma 1.1, we directly obtain randomized FPT algorithms for Stable s-t Separator, Sta-
ble Odd Cycle Transversal, StableMulticut, and Stable Directed Feedback Vertex Set on
d-degenerate graphs. It is sufficient to apply Lemma 1.1 to obtain an independent set Y containing
the solution S and then run the algorithms for the non-stable version of the problem where all
vertices in V (G) \ Y are not allowed to go into the solution. For all of the above-mentioned prob-
lems, the existing algorithms can easily be made to work even in the setting where some vertices
are not allowed to go into the solution.

2Independent sets are sometimes called stable sets in the literature. In this article, we stick to independent sets, except for

problem names, which are inherited from Marx et al. [2013].

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

32:4 D. Lokshtanov et al.

Lemma 1.1 only applies to graphs of bounded degeneracy. Even though the class of graphs
of bounded degeneracy is quite rich (it includes planar graphs, and more generally all graphs
excluding a topological minor), it is natural to ask whether Lemma 1.1 could be generalized to
work for all graphs. However, if G consists of k disjoint cliques of size n/k each, the best success
probability one can hope for is (k/n)k , which is too low to be useful for FPT algorithms.
At a glance, the applicability of Lemma 1.1 seems to be limited to problems on graphs of bounded

degeneracy. However, there already exist powerful tools in the literature to reduce certain prob-
lems on general input graphs to special classes. For us, the treewidth reduction of Marx et al.
[2013] is particularly relevant, since a direct application of their main theorem reduces Stable
s-t Separator and Stable Odd Cycle Transversal to the same problems on graphs of bounded
treewidth. Since graphs of bounded treewidth have bounded degeneracy, we may now apply our
algorithms for bounded degeneracy graphs, obtaining new FPT algorithms for Stable s-t Separa-
tor and Stable Odd Cycle Transversal on general graphs. Our algorithms have running time

2kO (1) · (n +m), thus resolving, in the affirmative, one of the open problems of Marx et al. [2013].
One of the reasons that the parameterized complexity of StableMulticut parameterized by the

solution size was left open by Marx et al. [2013] was that their treewidth reduction does not apply
to multi-terminal cut problems when the number of terminals is unbounded. Our second main
contribution is a graph sparsification procedure that works for such multi-terminal cut problems.
Given a graphG and a setT of terminal pairs, a multicut S ofT inG is called a minimal multicut of
T inG if no proper subset of S is a multicut ofT inG. A vertex set X inG is vertex-k-connected (or
just k-connected) if, for every pair u, v of vertices in X , there are k internally vertex disjoint paths
from u to v in G.

Theorem 1. There exists a polynomial time algorithm that given a graph G, a set T =
{{s1, t1}, {s2, t2}, . . . , {s�, t� }} of terminal pairs and an integer k , returns an induced subgraph G� of

G and a subset T� of T that have the following properties:

• every minimal multicut of T in G of size at most k is a minimal multicut of T� in G�,

• every minimal multicut of T� in G� of size at most k is a minimal multicut of T in G, and

• G� does not contain a (k + 2)-connected set of size O (64k · k2).

We remark that excluding a (k + 2)-connected set of size O (64k · k2) implies thatG� excludes a
clique of size O (64k · k2) as a topological minor. In fact, the property of excluding a large (k + 2)-
connected set puts considerable extra restrictions on the graph, on top of being topological minor
free, as there exist planar graphs that contain arbitrarily large (k + 2)-connected sets. The proof of
Theorem 1 uses the irrelevant vertex technique of Robertson and Seymour [1995]; however, instead
of topological arguments for finding an irrelevant vertex, we rely on a careful case distinction based
on cut-flow duality together with counting arguments based on important separators.
Theorem 1 reduces the Stable Multicut problem on general graphs to graphs excluding a

clique of size 2O (k) as a topological minor. Since such graphs have bounded degeneracy [Bollobás
and Thomason 1998; Komlós and Szemerédi 1996], our algorithm for Stable Multicut on graphs
of bounded degeneracy yields an FPT algorithm for the problem on general graphs, resolving the
second open problem posed by Marx et al. [2013].
We remark that a sparsification for directed graphs similar to Theorem 1 powerful enough to

handle Directed Feedback Vertex Set is unlikely, since Stable Directed Feedback Vertex
Set on general graphs is known to be W[1]-hard [Misra et al. 2012], while our algorithm works
on digraphs where the underlying undirected graph has bounded degeneracy.
The algorithms based on Lemma 1.1 are randomized; however, they can be derandomized us-

ing a new combinatorial object that we call k-independence covering families, which may be of

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

Covering Small Independent Sets and Separators 32:5

independent interest. We call an independent set of size at most k a k-independent set, and we
call a family of independent sets an independent family. An independent family F covers all k-
independent sets ofG, if for every k-independent set X inG there exists an independent set Y ∈ F
such that X ⊆ Y . In this case, we call F a k-independence covering family. An algorithm based on
Lemma 1.1 can be made deterministic by first constructing a k-independence covering family F

and then looping over all sets Y ∈ F instead of repeatedly drawing Y at random using Lemma 1.1.

Since a graphG contains at most nk independent sets of size at most k , drawing O ((k (d+1)
k

) · kd ·
logn) sets using Lemma 1.1 and inserting them into F will result in a k-independence covering
family with probability at least 1/2. Hence, for every d and k , every graphG on n vertices of degen-

eracy at most d has a k-independence covering family of size at most O ((k (d+1)
k

) · kd · logn). By
direct applications of existing pseudo-random constructions (of (n, (r , s))-cover free families), we
show that given a graphG of degeneracy d and integer k one can construct a k-independence cov-

ering family of size not larger than O ((k (d+1)
k

) · kd · logn) in time roughly proportionate to its size.
Additionally, we also show that for any nowhere dense graph class [Nešetřil and Ossana de

Mendez 2008, 2011], there exists a function f such that given an n-vertex graph from this graph
class, any real ϵ and any positive integer k , one can construct a k-independence covering fam-
ily for this graph of size f (k, ϵ) · nϵ . This construction immediately yields FPT algorithms for the
considered problems on nowhere dense classes of graphs.

1.1 Proof Sketch for Theorem 1

Towards the proof of Theorem 1, we describe an algorithm that givenG, the setT of terminal pairs,
an integer k, and a (k + 2)-connected setW of size at least 64k+2 · (k + 2)2, computes a vertex v
that does not appear in any minimal multicut of size at most k + 1. One can show that such a
vertex v is irrelevant in the sense that G, T has exactly the same family of minimal multicuts of
size at most k as the graphG −v with the terminal setT ′ = {{si , ti } ∈ T : v � {si , ti }}. The proof of
Theorem 1 then follows by repeatedly removing irrelevant vertices until |W | ≤ 64k+2 · (k + 2)2.

Degree 1 Terminals Assumption. To identify an irrelevant vertex, it is helpful to assume that
every terminal si or ti has degree 1 inG and that no vertex inG appears in more than one terminal
pair. To justify this assumption, one can, for every pair {si , ti } ∈ T , add k + 2 new degree 1 vertices
s1i , s

2
i , . . . , s

k+2
i and make them adjacent to si , and k + 2 new degree 1 vertices t1i , t

2
i , . . . , t

k+2
i and

make them adjacent to ti . Call the resulting graph G
′, and make a terminal pair set T ′ from T by

inserting for every pair {si , ti } ∈ T the set {{s j
i , t

j
i } : 1 ≤ j ≤ k + 2} intoT ′. It is clear that the set of

(minimal) multicuts of T ′ in G ′ of size at most k + 1 is the same as the set of (minimal) multicuts
of T in G of size at most k + 1.

Detecting Irrelevant Vertices. To identify an irrelevant vertex, we investigate the properties of
all vertices v ∈W for which there exists a minimal multicut of size at most k + 1 containing v .
We will call such vertices relevant. Let v ∈W be a relevant vertex and let S be a minimal multicut
of size at most k + 1 containing v , sinceW is a (k + 2)-connected set and |S | ≤ k + 1,W \ S is
contained in some connected component C of G − S . Since S is a multicut, we also have that S is
a pair cut for T with respect toW in the following sense: For each terminal pair {si , ti } at most
one of si and ti can reachW \ S inG − S . This is true, because all vertices ofW \ S lie in the same
connected component of G − S . Furthermore, S \ {v} can not be a pair cut for T with respect to
W , because if it happened to be a pair cut, then we can show that S \ {v} would also have been a
multicut, contradicting the minimality of S . We say thatv ∈W is essential if there exists some pair
cut S for T with respect toW such that |S | ≤ k + 1, v ∈ S, and S \ {v} is not a pair cut for T with
respect toW . The above argument shows that every relevant vertex is essential, and it remains to
find a vertex v ∈W that is provably not essential.

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

32:6 D. Lokshtanov et al.

The algorithm that searches for a non-essential vertex v crucially exploits important separators,
defined by Marx [2006]. Given a graphG and two vertex setsA and B, anA-B-separator is a vertex
set S ⊆ V (G) such that there is no path from A \ S to B \ S in G − S . An A-B-separator S is called
a minimal A-B-separator if no proper subset of S is also an A-B-separator. Given a vertex set S ,
we define the reach of A in G − S as the set RG (A, S) of vertices reachable from A by a path in
G − S . We can now define a partial order on the set of minimal A-B separators as follows: Given
two minimal A-B separators S1 and S2, we say that S1 is “at least as good as” S2 if |S1 | ≤ |S2 | and
RG (A, S2) � RG (A, S1). In plain words, S1 “costs less” than S2 in terms of the number of vertices
deleted and S1 “is pushed further towards B” than S2 is. A minimalA-B-separator S is an important

A-B-separator if nominimalA-B-separator other than S is at least as good as S . A key insight behind
many parameterized algorithms [Chen et al. 2008; Chitnis et al. 2015, 2013; Cygan et al. 2013b;
Kratsch et al. 2015; Lokshtanov andMarx 2013; Lokshtanov and Ramanujan 2012; Lokshtanov et al.
2015, 2016b; Marx and Razgon 2014] is that for every k , the number of importantA-B-separators of
size at most k is at most 4k [Chen et al. 2009]. We refer the reader to Marx [2006] and the textbook
by Cygan et al. [2015] for a more thorough exposition of important separators.
The algorithm that searches for a non-essential vertex v makes the following case distinction:

Either there exists a small T -W -separator Z , or there are many vertex disjoint paths fromT toW .
Here, we have abused notation by treatingT as a set of vertices in the terminal pairs rather than a
set of terminal pairs. As pointed out by an anonymous reviewer, in both the cases, the essence of
the arguments is to set up the stage for the application of the anti-isolation lemma of Marx [2011],
which appeared in Pilipczuk andWahlström [2018], tomark relevant vertices and relevant terminal
pairs, respectively. In the first case, when there exists aT -W -separatorZ of size at most ζ = 16k+1 ·
64(k + 2), we show that every relevant vertexv ∈W is contained in some important z-W -separator
of size at most k + 1, for some z ∈ Z . Since there are at most 4k+1 such important separators and
we can enumerate them efficiently [Chen et al. 2009], the algorithm simply marks all the vertices
inW appearing in such an important separator and outputs one vertex that is not marked.

Many Disjoint Paths. If there are at least 16k+1 · 64(k + 2) vertex disjoint paths fromT toW , then
we identify a terminal pair {si , ti } such that, for every minimal multicut S of size at most k + 1 for
the instance G with terminal set T \ {{si , ti }}, S is also a minimal multicut for G with terminal set
T . Such a terminal pair is irrelevant in the sense that removing {si , ti } fromT does not change the
family of minimal multicuts of size at most k + 1. Thus, if we later identify a vertex v ∈W that
is irrelevant with the reduced terminal set, then v is also irrelevant with respect to the original
terminal set. We will say that a terminal pair that is not irrelevant is relevant.
To identify an irrelevant terminal pair, we proceed as follows: Without loss of generality, there

are ζ /2 vertex disjoint paths from A = {s1, s2, . . . sζ /2} toW . Thus, for any set S of at most k + 2
vertices, all ofA except for at most k + 2 vertices can reachW \ S inG − S . Let B = {t1, t2, . . . tζ /2}.
We have that for every pair cut S for T with respect to W , at most k + 2 vertices of B \ S are
reachable fromW in G − S .
Consider a pair {si , ti } with si ∈ A and ti ∈ B. If {si , ti } is relevant, then there must exist a set S

of size at most k + 1 that is a minimal pair cut for G with terminals T \ {{si , ti }} with respect to
W , but is not a pair cut with terminal pair setT . We have that ti is reachable fromW \ S inG − S ,
and that S ∪ {ti } is a pair cut for T . Let B̂ ⊆ B be the set of vertices in B that are reachable from

W in G − (S ∪ {ti }). From the discussion in the previous paragraph, it follows that |B̂ | ≤ k + 2.
Thus, S ∪ {ti } ∪ B̂ is aW -B separator of size at most 2(k + 2). Pick any minimalW -B separator

Ŝ ⊆ S ∪ {ti } ∪ B̂.
We argue that ti ∈ Ŝ . To that end, we show that there exists a path P fromW to ti inG − (S ∪ B̂).

Thus, if ti � Ŝ, then Ŝ would be a subset of S ∪ B̂ and P would be a path fromW to B in G − Ŝ ,

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

Covering Small Independent Sets and Separators 32:7

contradicting that Ŝ is aW -B-separator. We know that there exists a path P fromW to ti inG − S
and that P does not visit any vertex in B̂ on the way to ti , because all vertices in B̂ have degree 1.

Hence, P is disjoint from Ŝ , yielding the desired contradiction. We conclude that ti ∈ Ŝ .
With all of this hard work, we have—under the assumption that {si , ti } is a relevant pair with

ti ∈ B—exhibited a minimalW -B-separator Ŝ that contains ti . There must exist some importantW -

B-separator S� that is at least as good as Ŝ . Since all the vertices of P (except ti) are reachable from
W inG − Ŝ , it follows that ti ∈ S�. We have now shown that if {si , ti } is a relevant pair with ti ∈ B,
then there exists aW -B important separator of size at most 2(k + 2) that contains ti . The algorithm
goes over allW -B important separators of size at most 2(k + 2) and marks all vertices appearing
in such important separators. Since ζ /2 > 42(k+2) · 2(k + 2), it follows that some vertex ti in B is
left unmarked. The pair (si , ti) is then an irrelevant pair. This concludes the proof sketch that
there exists a polynomial time algorithm that givenG,T , k, andW finds an irrelevant vertex inW ,
provided thatW is large enough. We would like to remark here (as pointed out by an anonymous
reviewer) that this process is similar in principle to the anti-isolation lemma of Marx [2011] (which
also appeared in Pilipczuk and Wahlström [2018]).

Finding a Large (k + 2)-Connected Set. We have shown how to identify an irrelevant vertex
given a (k + 2)-connected setW of large size. But how to find such a setW , if it exists? GivenG, we
can in polynomial time build an auxiliary graphG� that has the same vertex set asG. Two vertices
in G� are adjacent if there are at least k + 2 internally vertex disjoint paths between them in G.
Clearly, (k + 2)-connected sets in G are cliques in G� and vice versa. However, finding cliques in
general graphs isW [1]-hard and is believed to not have an approximation even in FPT time. To
get around this obstacle, we exploit the special structure ofG�.
A (k + 2)-connected setW inG of size at least 64k+2 · 4(k + 2)2 induces a subgraph ofG� where

every vertex has degree at least (k + 2). Thus, the degeneracy of G� is at least 64k+2 · 4(k + 2)2.
A modification of a classic result of Mader [1972] (see also Diestel [2000] and lecture notes of
Sudakov [2016]) shows that every graph of degeneracy at least 4d contains a (d + 1)-connected
set of size at least d + 2, and that such a set can be computed in polynomial time. We apply this
result with d = 64k+2 · (k + 2)2 − 1 to obtain a (64k+2 · (k + 2)2)-connected set inW � inG� of size
at least 64k+2 · (k + 2)2. A simple argument shows thatW � is also a (k + 2)-connected set in G.
We may now apply the algorithm to detect irrelevant vertices usingW �. This concludes the proof
sketch of Theorem 1.

Guide to the article. In Section 2, we introduce basic notations and some well-known results
needed for our work. In Section 3, we define independence covering families and give construc-
tions of such families. This allows to derandomize algorithms based on Lemma 1.1. We then con-
struct independence covering families for nowhere dense classes of graphs and show some barriers
to further generalizations of our results. A reader content with randomized FPT algorithms may
skip this section altogether. In Section 4, we show the applicability of Lemma 1.1 (or independence
covering families) by designing FPT algorithms for Stable s-t Separator, Stable Odd Cycle
Transversal, Stable Multicut, and Stable Directed Feedback Vertex Set on d-degenerate
graphs. In Section 5, we explain how the algorithms from Section 4 combined with the treewidth
reduction procedure of Marx et al. [2013] lead to FPT algorithms for some of the considered prob-
lems on general graphs. In Section 6, we prove Theorem 1. This is the most technically challenging
part of the article and may be read independently of the other sections.

2 PRELIMINARIES

We use N to denote the set of natural numbers starting from 0. For t ∈ N , [t] is a shorthand

for {1, . . . ,n}. For a set U and t ∈ N , we use 2U and (U
t

) to denote the power set of U and the

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

32:8 D. Lokshtanov et al.

set of subsets of U of size t , respectively. For a function f : D → R, X ⊆ D and Y ⊆ R, we de-
note f (X) = { f (x) : x ∈ X } and f −1 (Y) = {d : f (d) ∈ Y }. The following fact follows from Stirling’s
approximation:

Fact 2.1 ([Cormen et al. 2009]). For all positive integers n,k , k ≤ n,

1

n

⎡⎢⎢⎢⎢⎣
(
k

n

)−k (
n − k
n

)−(n−k)⎤⎥⎥⎥⎥⎦ ≤
(
n

k

)
≤

⎡⎢⎢⎢⎢⎣
(
k

n

)−k (
n − k
n

)−(n−k)⎤⎥⎥⎥⎥⎦ .
Graphs. Throughout our presentation, given a (di)graph G, n denotes the number of vertices in

G andm denotes the number of (arcs) edges inG. We use the term graphs to represent undirected
graphs. For a (di)graphG,V (G) denotes its vertex set, A(G) denotes its arc set in case of digraphs,
and E (G) denotes its edge set in case of graphs. For any positive integers a,b, we denote by Ka,b

the complete bipartite graph with a vertices in one part and b vertices in the other part. LetG be a
(di)graph. For any X ⊆ V (G), G[X] denotes the induced graph on the vertex set X . By G − X , we
denote the (di)graph G[V (G) \ X]. When X = {v}, we use G −v to denote the graph G − {v}. For
a set Y ⊆ E (G), G − Y denotes the (di)graph obtained from G by deleting the edges in Y . For any
u,v ∈ V (G), dG (u,v) denotes the number of (arcs) edges on the shortest path from u tov inG. For
a graph G, for any u,v ∈ V (G), uv denotes the edge with endpoints u and v . For any v ∈ V (G),
NG (v) denotes the neighbors of v inG; that is, NG (v) = {u : uv ∈ E (G)}. The degree of a vertex v
inG, denoted by deдG (v), is equal to the number of neighbors ofv inG; that is, deдG (v) = |NG (v) |.
The minimum degree of G is the minimum over the degrees of all its vertices. If D is a digraph,

then for any u,v ∈ V (D), uv denotes the arc from u to v . By
←−
D , we denote the digraph obtained

from D by reversing each of its arcs. For anyv ∈ V (D), N +D (v) denotes the out-neighbors ofv in D
and N −D (v) denotes the in-neighbors of v in D; that is, N +D (v) = {u : vu ∈ A(D)} and N −D (v) = {u :
uv ∈ A(D)}. For any X ⊆ V (D), N +D (X) = {u : u ∈ V (D) \ X and there exists v ∈ X such that vu ∈
A(D)} andN −D (X) = {u : u ∈ V (D) \ X and there exists v ∈ X such that uv ∈ A(D)}. For a graphG,
tw(G) denotes the treewidth of G.
For a non-negative integer d , a graph G is called a d-degenerate graph if for every subgraph

H of G there exists v ∈ V (H) such that deдH (v) ≤ d . The degeneracy of a graph G, denoted by
degeneracy(G), is the least integer d , for which G is d-degenerate. If there exists a subgraph H
of G such that the minimum degree of H is at least d , then we say that the degeneracy of G is at
least d . For a d-degenerate graph G, a d-degeneracy sequence of G is an ordering of the vertices of
G, say σ : V (G) → [|V (G) |], such that σ is a bijection and, for any v ∈ V (G), |NG (v) ∩ {u : σ (u) >
σ (v)}| ≤ d . For a given degeneracy sequence σ and a vertexv ∈ V (G), the vertices in NG (v) ∩ {u :
σ (u) > σ (v)} are called the forward neighbors ofv inσ , and this set of forward neighbors is denoted

byN
f

G,σ (v). The following proposition says we can findd-degeneracy sequence of a graph in linear
time:

Proposition 2.1 ([Matula and Beck 1983]). IfG is a d-degenerate graph for some non-negative

integer d , then a d-degeneracy sequence of G exists and can be found in time O (n +m).

Graph Separators. For a (di)graph G, X ,Y ⊆ V (G), an X -Y -separator in G is a subset C ⊆ V (G),
such that there is no path from a vertex in X \C to a vertex in Y \C in G −C . For s, t ∈ V (G) an
s-t-separator in G is a subset C ⊆ V (G) \ {s, t } such that there is no path from s to t in G −C . The
size of a separator is equal to the cardinality of the separator. A minimum s-t-separator inG is the
one with the minimum number of vertices. A set Y ⊆ V (G) is a mincut ofG if Y is the smallest set
of vertices such that G − Y has at least two components.

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

Covering Small Independent Sets and Separators 32:9

Since checking whether there is an s-t-separator of weight at most k (here, a non-negative
integer weight function onV (G) is given) can be done by running at most k rounds of the classical
Ford-Fullkerson algorithm, Proposition 2.2 follows:

Proposition 2.2. Given a (di)graph G, s, t ∈ V (G), an integer k and w : V (G) → N , an s-t-
separator of weight at most k , if it exists, can be found in time O (k · (n +m)). Also, a minimum

s-t-separator can be found in time O (mn).

The following proposition follows directly from the standard reduction that reduces finding
minimum vertex separators to finding minimum edge cuts in directed graphs and the result about
the later in Hao and Orlin [1992].

Proposition 2.3 ([Hao and Orlin 1992]). A mincut of a (di)graph G can be found in time

O (mn logn).

3 TOOL I: INDEPENDENCE COVERING LEMMA

In this section, we give constructions of k-independence covering families, which are useful in
derandomizing algorithms based on Lemma 1.1. Towards this, we first formally define the notion
of k-independence covering family—a family of independent sets of a graph G, which covers all
independent sets in G of size at most k .

Definition 3.1 (k-Independence Covering Family) For a graph G and k ∈ N , a family of indepen-

dent sets of G is called an independence covering family for (G,k), denoted by F(G,k), if for any

independent set X in G of size at most k , there exists Y ∈ F(G,k) such that X ⊆ Y .

Observe that for any pair (G,k), there exists an independence covering family of size at most
(n

k
) containing all independent sets of size at most k . We show that, ifG has bounded degeneracy,

then k-independence covering family of “small” size exists. In fact, we give both randomized and
deterministic algorithms to construct such a family of “small” size for graphs of bounded degen-
eracy. In particular, we prove that if G is d-degenerate, then one can construct an independent
set covering family for (G,k) of size f (k,d) · logn, where f is a function depending only on k
and d . We first give the randomized algorithm for constructing k-independence covering family.
Towards this, we use the algorithm described in Lemma 1.1. For an ease of reference, we present
the algorithm given in Lemma 1.1 here.

ALGORITHM 1: Input is (G,k), where G is a d-degenerate graph and k ∈ N
1 Construct a d-degeneracy sequence σ of G, using Proposition 2.1.

2 Set p = 1
d+1

. Independently color each vertex v ∈ V (G) black with probability p andwhite with
probability (1 − p).

3 Let B andW be the set of vertices colored black and white, respectively.

4 Z := {v ∈ B | N f
G,σ

(v) ∩ B = ∅}.
5 return Z

Lemma 3.1 (Randomized Independence Covering Lemma). There is an algorithm that given a

d-degenerate graph G and k ∈ N , outputs a family F(G,k) such that (a)F(G,k) is an independence

covering family for (G,k) with probability at least 1 − 1
n

, (b) |F(G,k) | ≤ (k (d+1)
k

) · 2k2 (d + 1) · lnn,

and (c) the running time of the algorithm is O (|F(G,k) | · (n +m)).

Proof. Let t = (k (d+1)
k

) · k (d + 1). We now explain the algorithm to construct the familyF(G,k)
mentioned in the lemma. We run Algorithm 1 (Lemma 1.1) γ = t · 2klnn times. Let Z1, . . . ,Zγ be

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

32:10 D. Lokshtanov et al.

the sets that are output at the end of each iteration of Algorithm 1. Let F(G,k) be the collection

of distinct Zi
′s. Clearly, |F(G,k) | ≤ t · 2k lnn = (k (d+1)

k
) · 2k2 (d + 1) · lnn. Thus, condition (b) is

proved. The running time of the algorithm (condition (c)) follows from Lemma 1.1.
Now, we prove condition (a) of the lemma. Fix an independent set X inG of cardinality at most

k . By Lemma 1.1, we know that for any Z ∈ F(G,k), Pr[X ⊆ Z] ≥ 1
t
. Thus, the probability that

there does not exist a set Z ∈ F(G,k) such that X ⊆ Z is at most (1 − 1
t
) |F(G,k) | ≤ e−2k lnn = n−2k .

The last inequality follows from a well-known fact that (1 − a) ≤ e−a for any a ≥ 0. Since the total
number of independent sets of size at most k inG is upper bounded by nk , by the union bound, the
probability that there exists an independent set of size at most k that is not a subset of any set in
F(G,k) is upper bounded by n−2k · nk = n−k ≤ 1/n. This implies that F(G,k) is an independence
covering family for (G,k) with probability at least 1 − 1

n
. �

Remark 3.1. From Fact 2.1 and the fact that the number of edges in an n-vertex d-degenerate
graph is at most dn, the algorithm of Lemma 3.1 runs in time 2O (k logd) · n logn and outputs a

k-independence covering family of size 2O (k logd) · logn.
Deterministic Construction. The deterministic algorithm that we give is obtained from the ran-

domized algorithm presented in Lemma 3.1 by using the (n, (r , s))-cover free family [Bshouty and
Gabizon 2017]. The deterministic construction basically replaces the random coloring of the ver-
tices in Line 2 of Algorithm 1 by a coloring defined by a bit string in the (n, (r , s))-cover free
family. In the following, we first define the (n, (r , s))-cover free family and state Proposition 3.1
(an algorithm to construct an (n, (r , s))-cover free family of “small” size), which is followed by our
deterministic algorithm (Lemma 3.2).

Definition 3.2 ((n, (r , s))-cover free family [Bshouty and Gabizon 2017]). Fix positive integers
r , s,n with r , s ≤ n and let p := r + s . An (n, (r , s))-cover free family is a set F ⊆ {0, 1}n such that
for every 1 ≤ i1 < i2 < · · · < ip ≤ n and every J ⊂ [p] of size r , there exists a ∈ F such that ai j

= 1
for all j ∈ J and aik

= 0 for all k � J . Here, ai j
denotes the i j th bit of the bit vector a.

In the following, for any positive integers r , s, and p = r + s , the function N (r , s) is defined as

N (r , s) =
p (p

r)

log(p
r)
.

Proposition 3.1 (Theorem 1, [Bshouty and Gabizon 2017]). Fix any integers r < s < p with

p = r + s . There is an (n, (r , s))-cover free family of size N (r , s)1+o (1) · logn that can be constructed

in time N (r , s)1+o (1) · n logn.

Lemma 3.2 (Deterministic Independence Covering Lemma). There is an algorithm that given

a d-degenerate graph G and k ∈ N , runs in time N (k,kd)1+o (1) (n +m) logn and outputs a k-

independence covering family for (G,k) of size at most N (k,kd)1+o (1) · logn.

Proof. Let n = |V (G) |. Without loss of generality, let n ≥ k (d + 1), as otherwise the lemma
follows trivially. Let us rename the vertex set of the graph to take indices from [n], where n =
|V (G) |. Let F be the (n, (r , s))-cover free family constructed using Proposition 3.1 for r = k and
s = kd . For each a ∈ F , we run Algorithm 1, where Line 2 is replaced as follows: We color the
vertex i black if ai = 1, and white otherwise. More precisely, we run Algorithm 1 for each a ∈ F ,
replacing Line 2 by the procedure just defined, and output the collection F(G,k) of sets returned at
the end of each iteration. The size bound on |F(G,k) | follows from Proposition 3.1 and the running
time of the algorithm follows from the fact that each run of Algorithm 1 takes O (n +m) time.
We now show that F(G,k) is, indeed, an independent set covering family for (G,k). Let X be

an independent set of cardinality at most k in G. Let σ be the d-degenerate sequence constructed

in Line 1 of Algorithm 1. Let Y = ∪v ∈XN
f

G,σ (v). Since X is independent, X ∩ Y = ∅. Furthermore,

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

Covering Small Independent Sets and Separators 32:11

since σ is a d-degeneracy sequence and |X | ≤ k , we have that |Y | ≤ kd . If |X | < k (or |Y | < kd),
then let X ′ (respectively, Y ′) be a some superset of X (respectively, Y) such that X ′ ∩ Y ′ = ∅ and
|X ′ | = k , |Y ′ | = kd . Since n ≥ k (d + 1) such sets X ′,Y ′ exist. Let X ′ ∪ Y ′ = {i1, i2, . . . , ip }, where
p = k (d + 1) and let J ⊂ [p] be such that J = {j : i j ∈ X ′, j ∈ [p]}. By the definition of (n, (k,kd))-
cover free family, there is a bit vector a ∈ F such that ai j

= 1 when i j ∈ X ′ and ai j
= 0 when

i j ∈ Y ′. Consider the run of Algorithm 1 for the bit vector a. In this run, we have that X ⊆ B and
Y ⊆W . From the definition of X ,Y , and Z (set constructed in Line 4), we have that X ⊆ Z . This
implies that F(G,k) is an independence covering family of (G,k). This completes the proof. �

Remark 3.2. From Fact 2.1 and the fact that the number of edges in an n-vertex d-degenerate
graph is at most dn, the algorithm of Lemma 3.2 runs in time 2O (k logd) · n logn and outputs a

k-independence covering family for (G,k) of size 2O (k logd) · logn.

3.1 Extensions

For some graphs, whose degeneracy is not bounded, it may still be possible to find a “small” sized
independence covering family. This is captured by Corollary 3.1.

Corollary 3.1. Let d,k ∈ N, andG be a graph. Let S ⊆ V (G) be such thatG − S is d-degenerate.

There is an algorithm that given d,k ∈ N , G, and S , run in time 2 |S | · 2O (k logd) · (n +m) logn and

outputs an independence covering family for (G,k) of size at most 2 |S | · 2O (k logd) · logn.

Proof. Let G ′ = G − S . By the property of S , we know that G ′ is d-degenerate. We first apply
Lemma 3.2 and get a k-independent set covering family F ′ for (G ′,k). Then, we output the family

F(G,k) = {(A ∪ B) \ NG (B) | A ∈ F ′,B ⊆ S is an independent set in G}.
We claim that F(G,k) is a k-independence covering family for (G,k). Towards that, first we prove
that all sets in F(G,k) are independent sets in G. Let Y ∈ F . We know that Y = (A ∪ B) \ NG (B),
for someA ∈ F ′ and B ⊆ S , which is an independent set inG. By the definition of F ′,A is an inde-
pendent set inG. Since A and B are independent sets inG, Y = (A ∪ B) \ NG (B) is an independent
set inG. Now, we show that for any independent set X inG of cardinality at most k , there is an in-
dependent set containingX inF(G,k). LetX = X ′
 X ′′, whereX ′ = X \ S andX ′′ = X ∩ S . By the
definition of F ′, there is a setZ ∈ F ′ such thatX ′ ⊆ Z . Then the set (Z ∪ X ′′) \ NG (X ′′) ∈ F(G,k)
is the required independent set containing X . Observe that |F(G,k) | ≤ |F ′| · 2 |S | . Also, the run-
ning time of this algorithm is equal to the time taken to compute F ′ plus |F(G,k) | · (n +m). Thus,
the running time and the bound on the cardinality of F(G,k) as claimed in the lemma follows from
Lemma 3.2 and Remark 3.2. �

Remark 3.3(3). An alternate independence covering family for the situation in Corollary 3.1
can be obtained directly from Lemma 3.2 by observing that the input graph has degeneracy at
most d + |S |. This procedure gives an independence covering family whose size (in terms of the
dependence on |S |) has a factor of |S |O (k) in contrast to 2 |S | in Corollary 3.1. Thus, the result of
Corollary 3.1 is relevant only when d � |S | � k .

3.2 Nowhere Dense Graphs

In this section, we show that for any nowhere dense graph class [Nešetřil and Ossana de Mendez
2008, 2011], there exists a function f such that given an n-vertex graph from this graph class, any
real ϵ, and any positive integer k , one can construct a k-independence covering family for this
graph of size f (k, ϵ) · nϵ . The class of graphs that is nowhere dense is a common generalization of

3Pointed out to us by an anonymous reviewer.

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

32:12 D. Lokshtanov et al.

proper minor closed classes, classes of graphs with bounded degree, graph class locally excluding
a fixed graph H as minor, and classes of bounded expansion (see Nešetřil and Ossona de Mendez
[2011], Figure 3). Also, they are incomparable to the class of bounded degeneracy graphs [Brand-
stadt et al. 1999; Nešetril and Ossona de Mendez 2009]. To define nowhere denseness, we need
several new definitions.

Definition 3.3 (Shallow minor). A graph M is an r -shallow minor of G, where r is an integer, if
there exists a set of disjoint subsets V1, . . . ,V|M | of V (G) such that

(1) each graph G[Vi] is connected and has radius at most r , and
(2) there is a bijection ψ : V (M) → {V1, . . . ,V|M | } such that for every edge uv ∈ E (M) there

is an edge in G with one endpoint inψ (u) and second inψ (v).

The set of all r -shallow minors of a graphG is denoted byG � r . Similarly, the set of all r -shallow
minors of all the members of a graph class G is denoted by G� r = ∪G ∈G (G � r).

We first introduce the definition of a graph class that is nowhere dense; let ω (G) denote the size
of the largest clique in G and ω (G) = supG ∈G ω (G).

Definition 3.4 (Nowhere dense). A graph class G is nowhere dense if there exists a function fω :
N → N such that for all r we have that ω (G� r) ≤ fω (r).

We refer the readers to the book by Nešetřil and Ossona de Mendez [2012] for a detailed expo-
sition of nowhere dense classes of graphs, their alternate characterizations, and several properties
of them. See also Grohe et al. [2013]. We rely on the following result that bounds the degeneracy of
any class of graphs that is nowhere dense to give a construction for independence covering family
for such graph classes.

Proposition 3.2 (Corollary 2.6, [Grohe et al. 2013]). LetG be a class of graphs that is nowhere

dense. There exists a function f such that for every real ϵ > 0 and every G ∈ G, the degeneracy of G
is f (ϵ) · nϵ .

We now give the construction of independence covering family for the class of graphs that are
nowhere dense.

Lemma 3.3. Let G be a class of graphs that is nowhere dense. Then there exists a function д and a

deterministic algorithm that given any k ∈ N , δ ∈ R andG ∈ G, computes in timeд(δ ,k) · n1+δ logn
a k-independence covering family for (G,k) of size at most д(δ ,k) · nδ logn.

Proof. From Remark 3.2, an independence covering family for G of size at most 2ck logd logn
can be computed in time 2ck logdn logn, where d is the degeneracy of G and c is an absolute con-
stant. Set ϵ = δ

ck
. Since G ∈ G and G is a class of graphs that is nowhere dense, from Proposi-

tion 3.2, d = f (ϵ) · nϵ for some function f . Thus, we obtain an independence covering family for
G of size (f (δ

ck
))ck · nδ logn in time (f (δ

ck
))ck , ·n1+δ logn. Setting д(δ ,k) = (f (δ

ck
))ck , we prove

the lemma. �

3.3 Barriers

In this subsection, we show that we can not get small independence covering families on general
graphs. We also show that we can not get small covering families when we generalize the notion
of “independent set” to something similar even on graphs of bounded degeneracy.

Independence covering family for general graphs. Let k be a positive integer. Consider the graphG
on n vertices, where n is divisible by k , which is a disjoint collection of k cliques on n

k
vertices each.

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

Covering Small Independent Sets and Separators 32:13

Let C1, . . . ,Ck be the disjoint cliques that compose G. Let F(G,k) be a k-independence covering

family for (G,k). Then, we claim that |F(G,k) | ≥ (n
k

)k . Consider the family I of independent sets
of G of size at most k defined as I = {{v1, . . . ,vk } : ∀i ∈ [k],vi ∈ Ci }. Note that |I | = (n

k
)k . We

now prove that it is not the case that there existsY ∈ F(G,k) such that for two distinct setsX1,X2 ∈
I,X1,X2 ⊆ Y . This would imply that |F(G,k) | ≥ (n

k
)k . Suppose, for the sake of contradiction, that

there existsY ∈ F(G,k) andX1,X2 ∈ I such thatX1 � X2,X1 ⊆ Y andX2 ⊆ Y . SinceX1 � X2, there
exist u ∈ X1 and v ∈ X2 such that u,v ∈ Ci for some i ∈ [k]. Since X1 ⊆ Y and X2 ⊆ Y , u,v ∈ Y ,
which contradicts the fact that Y is an independent set in G (because uv ∈ E (G)).

Induced matching covering family for disjoint union of stars. We show that if we generalize in-
dependent set to induced matching, then we can not hope for small covering families even on the
disjoint union of star graphs, which are graphs of degeneracy one.

Definition 3.5 (Induced Matching Covering Family). For a graph G and a positive integer k , a
familyM ⊆ 2V (G) is called an induced matching covering family for (G,k) if for all Y ∈ M,G[Y] is
a matching; that is, each vertex of Y has degree exactly one inG[Y], and for any induced matching
M in G on at most k vertices, there exists Y ∈ M such that V (M) ⊆ Y .

Let k be a positive integer. Consider the graphG on n vertices, where 2n is divisible by k , which
is a disjoint collection of k

2 stars on
2n
k
vertices (K1, 2n

k
−1); that is, each connected component of

G is isomorphic to K1, 2n
k
−1. Let R be the set of all maximal matchings in G. Each matching in R

consists of k
2 edges, one from each connected component. Observe that all these matchings are

induced matchings in G. Union of any two distinct matchings in R will have a P3. This implies

that the cardinality of any induced matching covering family for (G,k) is at least |R | = (2n
k
− 1)

k
2 .

r -independent covering family for disjoint union of stars. Let G be a graph. For any r ∈ N , X ⊆
V (G) is called an r -independent set inG if for any u,v ∈ V (G), dG (u,v) > r . An independent set in
G is a 1-independent set inG.

Definition 3.6 (r -independent Covering Family). For any r ∈ N , for a graphG and a positive inte-

ger k , a family S ⊆ 2V (G) is called an r -independent covering family for (G,k) if for all Y ∈ S, Y is
an r -independent set inG and for any X ⊆ V (G) of size at most k such that X is an r -independent
set in G, there exists Y ∈ S such that X ⊆ Y .

Let k be a positive integer. Consider the graphG on n vertices, where n is divisible by k , which
is a disjoint collection of k stars on n

k
vertices (K1, n

k
−1); that is, each connected component ofG is

isomorphic to K1, n
k
−1. Notice thatG is a 1-degenerate graph. Let C1, . . . ,Ck be the components of

G. DefineI = {{v1, . . . ,vk } : ∀i ∈ [k],vi ∈ Ci }. Clearly, each set inI is a r -independent set for any
r ∈ N . Moreover, the union of any two distinct sets in I is not a 2-independent set. This implies
that the cardinality of any r -independent covering family for (G,k) is at least |I | = (n

k
)k for any

r ≥ 2.
Acyclic covering family for 2-degenerate graphs. We show that covering families for induced

acyclic subgraphs on 2-degenerate graphs will have large cardinality.

Definition 3.7 (Acyclic Set Covering Family). For a graph G and a positive integer k , a family
A ⊆ 2V (G) is called an acyclic set covering family for (G,k) if for all Y ∈ M, G[Y] is a forest and
for any X ⊆ V (G) of size at most k such thatG[X] is a forest, there exists Y ∈ A such that X ⊆ Y .

Let k be a positive integer. Consider the graphG on n vertices, where 3n is divisible by k , which
is a disjoint union of k

3 complete bipartite graphs K2, 3n
k
−2. The degeneracy of G is 2. Without loss

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

32:14 D. Lokshtanov et al.

of generality, assume that 3n
k
is strictly more than 2. Let H1, . . . ,H k

3
be the connected components

of G. Let Hi = (Li
 Ri ,Ei), where |Li | = 2. Now consider the family of sets I = {L1 ∪ · · · ∪ L k
3
∪

{v1, . . . ,v k
3
} | vi ∈ Ri }. Each set in I induces a collection of induced paths on three vertices (P3).

Also, the union of any two sets in I contains a cycle on four vertices and, hence, not acyclic. This
implies that the cardinality of any acyclic set covering family for (G,k) is at least |I | = (3n

k
− 2)

k
3 .

4 APPLICATIONS I: DEGENERATE GRAPHS

In this section, we give FPT algorithms for Stable s-t Separator, Stable Odd Cycle Transver-
sal, Stable Multicut, and for Stable Directed Feedback Vertex Set on d-degenerate graphs
by applying Lemmas 1.1 and 3.2. All these algorithms, except the one for Stable Directed Feed-
back Vertex Set, are later used as a subroutine to design FPT algorithms on general graphs.
We begin by defining a general algorithmic framework that will be applicable to each of the

algorithms in this section. To this end, we define Π-Vertex Deletion, Annotated Π-Vertex
Deletion, and Stable Π-Vertex Deletion problems, for any graph class Π.

Using our constructions of the independence covering families, the following lemma describes
a procedure to design FPT algorithms for Stable Π-Vertex Deletion problems using FPT algo-
rithms for Annotated Π-Vertex Deletion, for graphs of bounded degeneracy. In the following,

for any positive integers r , s, and p = r + s , N (r , s) =
p (p

r)

log(p
r)
.

Lemma 4.1. If there is an algorithm that solves Annotated Π-Vertex Deletion on a d-

degenerate graph on n vertices in time T (d,n), then Stable Π-Vertex Deletion on d-degenerate

graphs can be solved by

(1) a randomized algorithm with worst case running time (T (d,n) + (n +m)) · (k (d+1)
k

) · k2 (1 +
d) that always outputs correctly if the instance is a No instance and makes an error with

probability at most 1 − 1/e if it is Yes instance; and

(2) a deterministic algorithm that runs in time (T (d,n) + (n +m)) · N (k,kd)1+o (1) logn.

Proof. We first begin by describing our randomized algorithm.4 Let (I,k) be an instance of
Stable Π-Vertex Deletion and let G be the graph of the instance I. Our algorithm runs the

following two step procedure (k (1+d)
k

) · k (1 + d) many times:

4To shave off the log factor in the randomized algorithm that we would get if we construct an independent set covering

family using the algorithm of Lemma 3.1, we use Algorithm 1 in our algorithm instead of constructing the whole F(G, k)
beforehand using multiple rounds of Algorithm 1.

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

Covering Small Independent Sets and Separators 32:15

(1) Run Algorithm 1 on (G,k) and let Z be its output.
(2) Run the algorithm of Annotated Π-Vertex Deletion on the instance (I,k,Z).

Our algorithm will output Yes, if Step 2 returns Yes at least once. Otherwise, our algorithm will
output No. We now prove the correctness of our algorithm. Since in Step 1 the output set Z is
always an independent set of G, if the algorithm returns Yes, the input instance is a Yes instance.
For the other direction, suppose the input instance is a Yes instance. LetX be a solution to it. Since
X is an independent set, from Lemma 1.1,X ⊆ Z with probability at least p = 1

(k (d+1)
k

) ·(k (d+1))
. Thus,

the probability that in all the executions of Step 1, X � Z is at most (1 − p)1/p ≤ 1/e . Therefore,
the probability that in at least one execution of Step 1, X ⊆ Z is at least 1 − 1/e . Now, consider the
iteration of the algorithm whenX ⊆ Z . For this iteration, (I,k,Z) is a Yes instance of Annotated
Π-Vertex Deletion, and thus, our algorithm will output Yes in this iteration. Therefore, if the
input instance is a Yes instance, our algorithm will output Yes with probability at least 1 − 1/e .
The running time of our algorithm follows from Lemma 1.1 and the running time for Annotated
Π-Vertex Deletion.
For our deterministic algorithm, the algorithm first computes a k-independence covering fam-

ily for (G,k), F(G,k) using the algorithm of Lemma 3.2. For each Z ∈ F(G,k), it then solves the
instance (I,k,Z) of Annotated Π-Vertex Deletion. If the algorithm of Annotated Π-Vertex
Deletion returns Yes on either of the instances, then our algorithm reports Yes, otherwise it re-
portsNo. The correctness of the algorithm follows from the definition of independent set covering
family and discussion done in the above paragraph. The running time of the algorithm follows from
Lemma 3.2 and the running time to solve Annotated Π-Vertex Deletion. �

The rest of the section focuses of four Π-Vertex Deletion problems viz. s-t-Separator, Odd
Cycle Transversal (OCT), Directed Feedback Vertex Set (DFVS), and Multicut. In s-t-
Separator, the instance I contains a graph G and s, t ∈ V (G), and Π is the class of graphs that
contain the vertices s, t and, s and t belong to different connected components. In OCT, the in-
stance I contains a graph G, and Π is the collection of all bipartite graphs. In DFVS, the instance
I contains a directed graph5 D, and Π is the collection of all acyclic directed graphs. In Multicut,
the instance I contains a graph G and a set T = {(si , ti) : i ∈ [p]} of terminal pairs, and Π is the
collection of graphs where there is no path from si to ti for each i ∈ [p].
Using the framework of Lemma 4.1 and by designing simple algorithms for the Annotated Π-

Vertex Deletion problems corresponding to the above-mentioned problems from the algorithms
of the corresponding Π-Vertex Deletion problems, we get the following theorem:

Theorem 2. There is a randomized algorithm with one-sided error probability 1/e and a determin-

istic algorithm for

(1) Stable s-t Separator (SSTS) and Stable Odd Cycle Transversal (SOCT) on d-degenerate

graphs that run in time 2O (k logd) · n and 2O (k logd) · n logn, respectively,

(2) Stable Directed Feedback Vertex Set (SDFVS) on d-degenerate graphs that run in time

(k + 1)! · 2O (k logd) · n and (k + 1)! · 2O (k logd) · n logn, respectively, and

(3) Stable Multicut on d-degenerate graphs that run in time 2O (k3+k logd) ·mn log2 n.6

5In this article, we abuse the notation a little and whenever we refer to the degeneracy of a directed graph, we mean the

degeneracy of its underlying undirected graph.
6The randomized algorithm for Stable Multicut does not give any better running time than the deterministic one, so

for the sake of soundness of the sentence, we may assume that the randomized algorithm is the same as the deterministic

algorithm.

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

32:16 D. Lokshtanov et al.

To prove Theorem 2, it is enough to design appropriate algorithms for the annotated versions of
these problems, which we do below. Henceforth, an instance of Annotated s-t-Separator, An-
notated OCT (AOCT), Annotated DFVS (ADFVS), and Annotated Multicut is (G, s, t ,Y ,k),
(G,Y ,k), (D,Y ,k), and (G,T ,Y ,k), respectively.

Lemma 4.2. ASTS can be solved in time O (k · (n +m)).

Proof Sketch. To prove the lemma, we apply Proposition 2.2 on (G, s, t ,w,k), where w is de-
fined as follows:w (v) = 1 if v ∈ Y and k + 1 otherwise. �

We will need the following result about OCT:

Proposition 4.1 ([Ramanujan and Saurabh 2014]). OCT can be solved in time O (4k · k4 · (n +
m)).

Using Proposition 4.1, we can get the following result about AOCT:

Lemma 4.3. AOCT can be solved in time O (4k · k6 · (n +m)).

Proof sketch. We give a polynomial time reduction from AOCT to OCT as follows: We re-
place each v ∈ V (G) \ Y , with k + 1 vertices v1, . . .vk+1 with same neighborhood as v ; that is, the
neighborhood of v1, . . .vk+1 are same in the resulting graph (see Figure 3 for an illustration). Let
G ′ be the resulting graph. Then any minimal odd cycle transversal that contains a vertex from
{v1, . . . ,vk+1} will also contain all the vertices in {v1, . . . ,vk+1}. Thus, to find a k sized solution for
AOCT, it is enough to find an odd cycle transversal of size k in G ′. The total number of vertices
in G ′ is at most k |V (G) | and the total number of edges in G ′ is at most (k + 1)2 |E (G) |. Thus, the
running time of the algorithm follows from Proposition 4.1. �

We need to use the following known algorithm for DFVS:

Lemma 4.4 ([Lokshtanov et al. 2016a]). DFVS can be solved in time O ((k + 1)! · 4k · k5 · (n +
m)).

Lemma 4.5. ADFVS can be solved in O ((k + 1)! · 4k · k7 · (n +m)) time.

Proof Sketch. ConstructG ′ as in Lemma 4.3; that is, add k + 1 copies for each vertex inV (G) \
Z to the graph G such that all of them have the same neighborhood in the resulting graph. Then
apply Lemma 4.4 on (G ′,k). The proof of correctness of this algorithm is similar in arguments to
the proof of Lemma 4.3. �

Next, we state an algorithmic result for Multicut that is used by our algorithm.

Lemma 4.6 ([Lokshtanov et al. 2016a; Marx 2006]). Multicut can be solved in 2O (k3) ·
mn logn time.

Lemma 4.7. Annotated Multicut can be solved in time 2O (k3) ·mn logn.

Proof sketch. We first give a polynomial time reduction from Annotated Multicut to Mul-
ticut, which is described below.
Let (G,T ,Y ,k) be an instance of Annotated Multicut. Construct a graph G ′ from G by re-

placing each v ∈ V (G) \ Y with k + 1 vertices v1, . . .vk+1 with same neighborhood as v . That is,
the neighborhood ofv1, . . .vk+1 are same in the resulting graphG

′. We call the set of vertices that
is added forv inG ′ as the block forv . We now construct the set of terminal pairsT ′ from the set of
terminals T as follows: If {s, t } ∈ T and {s, t } ⊆ Y , then we add {s, t } to T ′. Suppose {s, t } ∈ T and
{s, t } ∩ Y = {t }. Let s1, . . . , sk+1 be the block for s in G ′. We add {s1, t }, . . . {sk+1, t } to T ′. Suppose

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

Covering Small Independent Sets and Separators 32:17

{s, t } ∈ T and {s, t } ⊆ V (G) \ Y . Let s1, . . . , sk+1 and t1, . . . , tk+1 be the blocks for s and t , respec-
tively. We add {{si , tj } | i, j ∈ [k + 1]} to T ′.
We will now show that (G,T ,Y ,k) is a Yes instance of Annotated Multicut if and only if

(G ′,T ′,k) is a Yes instance of Multicut. For the forward direction, let C be a multicut of size
at most k in G such that C ⊆ Y . We claim that C is a multicut of T ′ in G ′. Suppose not. Then,
there is a path from s ′ to t ′ in G ′ −C , where {s ′, t ′} ∈ T ′. Let s and t be the vertices in V (G) such
that s ′ and t ′ are the vertices corresponding to them, respectively; that is, if s ′ ∈ Y , then s = s ′,
otherwise let s be the vertex such that s ′ is in the block of vertices constructed for the replacement
of s in G ′. By replacing each vertex in the s ′ − t ′ path in G ′ by the corresponding vertex in G, we
get a walk from s to t in G −C , which contradicts the fact that C is a multicut of T in G. For the
backward direction, suppose C ′ is a minimal multicut of T ′ in G ′ of size at most k . Since for any
v ∈ V (G) \ Y , the neighborhood of v1, . . .vk+1 in G ′ is the same as that of v in G and |C ′ | ≤ k ,
C ′ ∩ {v1, . . . ,vk+1} = ∅. Thus, C ′ ⊆ Y . Since G ′ is a supergraph of G and T ⊆ T ′, C ′ is a multicut
of T in G.
Thus, to find a k sized multicut of T in G that is fully contained in Y , it is enough to find a

multicut of T ′ in G ′. The total number of vertices in G ′ is at most k |V (G) | and the total number
of edges in G ′ is at most (k + 1)2 |E (G) |. Thus, the running time of the algorithm follows from
Lemma 4.6. This completes the proof sketch of the lemma. �

The proof of Theorem 2 follows from Lemmas 4.1, 4.2, 4.3, 4.5, and 4.7 and the fact that the
number of edges in an n-vertex d-degenerate graph is at most dn.

5 APPLICATIONS II: GENERAL GRAPHS

In this section, we solve Stable s-t Separator and Stable Odd Cycle Transversal on general
graphs. The core of our algorithms is the Treewidth Reduction Theorem of Marx et al. [2013] and
our algorithms for SSTS and SOCT on bounded degeneracy graphs from Theorem 2. We begin by
stating the Treewidth Reduction Theorem.

Theorem 3 (Treewidth Reduction Theorem, Theorem 2.15 [Marx et al. 2013]). Let G be

a graph, T ⊆ V (G) and k ∈ N . Let C be the set of all vertices of G participating in a minimal s-t-
separator of cardinality at most k for some s, t ∈ T . For every k and |T |, there is an algorithm that

computes a graph G� having the following properties, in time 2(k+ |T |)O (1) · (n +m):

(1) C ∪T ⊆ V (G�),
(2) for every s, t ∈ T , a set K ⊆ V (G�) with |K | ≤ k is a minimal s-t-separator ofG� if and only

if K ⊆ C ∪T and K is a minimal s-t-separator of G,

(3) the treewidth of G� is at most 2(k+ |T |)O (1)
, and

(4) G�[C ∪T] is isomorphic to G[C ∪T].

We remark here that Theorem 2.15 in Marx et al. [2013] does not state the explicit dependence
on k and |T | in the running time of the algorithm and the treewidth of G�.

Stable s − t Separator. Let (G,k) be an instance of SSTS. To solve SSTS on general graphs, we
first apply the Treewidth Reduction Theorem (Theorem 3) onG,T = {s, t } and k to obtain a graph
G� with treewidth upper bounded by 2kO (1)

. We then show that for SSTS, it is enough to work with
this new graph G�. By conditions 2 and 4, to find a minimal independent s-t-separator separator
inG, it is enough to find a minimal independent s-t-separator inG�. Since degeneracy of a graph

is at most its treewidth, we know that the degeneracy ofG� is at most 2kO (1)
and, hence, we apply

Theorem 2 to get a solution of SSTS on (G,k). That is, we get the following theorem:

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

32:18 D. Lokshtanov et al.

Theorem 4. There is a randomized algorithm that solves SSTS in time 2kO (1)
(n +m) with suc-

cess probability at least 1 − 1
e

. There is a deterministic algorithm that solves SSTS in time 2kO (1)
(n +

m) logn.

Stable Odd Cycle Transversal. By using Theorem 4 and Proposition 4.1, we get a 2kO (1)
(n +m)

time (FPT linear time) algorithm for SOCT. Towards that, in Theorem 4.2 of Marx et al. [2013], we
replace the algorithm of Kawarabayashi and Reed [2010] with Proposition 4.1 and the algorithm
for SSTS with Theorem 4. For completeness, we include the proof here.

Proposition 5.1 (Lemma 4.1, [Marx et al. 2013]). Let G be a bipartite graph and let (B′,W ′)
be a proper 2-coloring of the vertices. Let B andW be two subsets of V (G). Then, for any S ⊆ V (G),
the graph G − S has a 2-coloring where B \ S is black and W \ S is white if and only if S separates

X := (B ∩ B′) ∪ (W ∩W ′) and Y := (B ∩W ′) ∪ (W ∩ B′).

Theorem 5. There is a randomized algorithm that solves SOCT in time 2kO (1)
(n +m) with suc-

cess probability at least 1 − 1
e

. There is a deterministic algorithm that solves OCT in time 2kO (1)
(n +

m) logn.

Proof. Using the algorithm of Proposition 4.1, find a set S0 ⊆ V (G) of size at most k such that
G \ S0 is a bipartite graph. Observe that if such a set does not exist, then (G,k) is a No instance of
SOCT. Henceforth, we can assume that such a set S0 exists. Next, we branch into 3

|S0 | cases, where
each branch has the following interpretation: If we fix a hypothetical solution S and a proper 2-
coloring ofG − S , then each vertex of S0 is either removed (that is, belongs to S), colored with the
first color—say, black—or colored with the second color—say, white. For a particular branch, let
R be the vertices of S0 to be removed (to get the hypothetical solution S) and let B0 (respectively,
W0) be the vertices of S0 getting color black (respectively, white) in a proper 2-coloring of G − S .
A set S is said to be compatible with the partition (R,B0,W0) if S ∩ S0 = R and G \ S has a proper
2-coloring, with colors black and white, where the vertices in B0 are colored black and the vertices
inW0 are colored white. Observe that (G,k) is a Yes instance of SOCT if and only if for at least one
branch corresponding to a partition (R,B0,W0) of S0, there is a set S compatible with (R,B0,W0)
of size at most k and S is an independent set. Note that we need to check only those branches
corresponding to the partition (R,B0,W0) where G[B0] and G[W0] are edgeless graphs.
The next step is to transform the problem of finding a set compatible with (R,B0,W0) into a

separation problem. Let (B′,W ′) be a 2-coloring ofG − S0. Let B = N (W0) \ S0 andW = N (B0) \ S0.
Let X and Y be the sets as defined in Proposition 5.1; that is, X = (B ∩ B′) ∪ (W ∩W ′) and Y =
(B ∩W ′) ∪ (W ∩ B′). Construct a graph G ′ that is obtained from G by deleting the set B0 ∪W0,
adding a new vertex s adjacent with X ∪ R and adding a new vertex t adjacent with Y ∪ R. Notice
that every s-t-separator inG ′ contains R. By Proposition 5.1, a set S is compatible with (R,B0,W0)
if and only if S is an s − t separator inG. Thus, we need to decide whether there is an s-t-separator
S of size at most k such that G ′[S] = G[S] is an edgeless graph, and this step can be done by
Theorem 4.
Towards the run time analysis, we run the algorithm of Proposition 4.1 once, which takes time

2O (k) (m + n). Then, we apply Theorem 4 at most 3k times. Thus, we get the required running
time. �

6 TOOL II: MULTICUT COVERING GRAPH SPARSIFICATION

This section starts by showing how to efficiently find some vertices that are irrelevant to “small”
digraph pair cuts (defined in Section 6.1), assuming that the input graph has a sufficiently large
number of vertices that are in-neighbors of the root. Afterwards, having a method to identify such

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

Covering Small Independent Sets and Separators 32:19

irrelevant vertices at hand, we develop (in Section 6.2) an efficient algorithm that given a graph
G, a set of terminal pairs T , and a positive integer k , outputs an induced subgraph G� of G and a
subset T� ⊆ T such that the following conditions are satisfied: First, any set S ⊆ V (G) of size at
most k is a minimal multicut ofT inG if and only if S ⊆ V (G�) and it is a minimal multicut ofT�

in G�. Second, G� does not contain any “large” (k + 2)-connected set. Using this algorithm, we
later give an FPT algorithm for Stable Multicut on general graphs.

6.1 Vertices Irrelevant to Digraph Pair Cuts

The notion of a digraph pair cut was defined by Kratsch and Wahlström [2012]. This notion was
used to derive randomized polynomial kernels for many problems, including Almost 2-SAT and
Multiway Cut with Deletable Terminals. Towards defining which vertices are irrelevant to
“small” digraph pair cuts, we first formally define what is a digraph pair cut.

Definition 6.1. Let D be a digraph, T be a set of pairs of vertices (called terminal pairs), and
r ∈ V (D). We say that S ⊆ V (D) \ {r } is a T -r -digraph pair cut if for every terminal pair {s, t } ∈ T ,
S is an s-r -separator or a t-r -separator.7

The problem Digraph Pair Cut takes as input a digraph D, a set of terminal pairsT , r ∈ V (D),
and k ∈ N , and the task is to output Yes if and only if there is a T -r -digraph pair cut in G of size
at most k . We say that a vertex v ∈ V (D) is irrelevant to the instance (D,T , r ,k) if there is no
minimal T -r -digraph pair cut of size at most k in D that contains v . If a vertex is not irrelevant
to (D,T , r ,k), then we say that it is relevant to (D,T , r ,k). In the following lemma, which is the
main result of this subsection, we show that for an instance (D,T , r ,k) of Digraph Pair Cut, the
number of in-neighbors of r that belong to at least one minimal T -r -digraph pair cut of size at
most k is upper bounded by 64k+1 (k + 1)2. In other words, we bound the number of in-neighbors
of r that are relevant.

Lemma 6.1. Let (D,T , r ,k) be an instance of Digraph Pair Cut. The number of vertices in N −D (r)

that are relevant to (D,T , r ,k) is at most 64k+1 (k + 1)2. Moreover, there is a deterministic algorithm

that given (D,T , r ,k), runs in time O (|T | · n(n
2
3 +m)), and outputs a set R ⊆ N −D (r) of size at most

64k+1 (k + 1)2 that contains all relevant vertices to (D,T , r ,k) in N −D (r).8

Towards the proof of Lemma 6.1, we first define which terminal pairs are irrelevant.

Definition 6.2. Let (D,T , r ,k) be an instance of Digraph Pair Cut. A terminal pair {s, t } ∈ T is
irrelevant to (D,T , r ,k) if any minimal (T \ {{s, t }})-r -digraph pair cut in D of size at most k is also
a minimal T -r -digraph pair cut in D.

The following observation directly follows from the definition of irrelevant terminal pairs:

Observation 6.1. Let D be a digraph,T be a set of terminal pairs, r ∈ V (D), and k ∈ N . If {s, t } ∈
T is a terminal pair irrelevant to (D,T , r ,k), then any vertex relevant to (D,T , r ,k) is also a vertex

relevant to (D,T \ {{s, t }}, r ,k).

We now define important separators, which have played an important role in the context of
existing literature concerning cut-related problems.

Definition 6.3 (Important Separators, [Marx 2006]). Let D be a digraph. For subsets X ,Y , S ⊆
V (D), the set of vertices reachable from X \ S in D − S is denoted by RD (X , S). An X -Y -separator

7The definition of digraph pair cut used here is same as that of Kratsch and Wahlström [2012], where we reverse the

directions of the arcs of the graph.
8In other words, the vertices in N −

D
(r) \ R are irrelevant to (D, T , r, k).

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

32:20 D. Lokshtanov et al.

Fig. 1. The graphs G,D, and D ′ are displayed in left-to-right order, T = {{s, t }, {s, t ′′}, {s ′, t ′}} and T ′ =
{{s1, t1}, {s2, t ′′1 }, {s

′
1, t
′
1}}.

S dominates an X -Y -separator S ′ if |S | ≤ |S ′ | and RD (X , S ′) � RD (X , S). A subset S is an important

X -Y -separator if it is minimal and there is no X -Y -separator S ′ that dominates S . For two ver-
tices s, t ∈ V (D), the term important s-t-separator refers to an important N +D (s)-N −D (t)-separator
in D − {s, t }. For r ∈ V (D) and Y ⊆ V (D), the term important Y -r -separator refers to an important
Y -N +D (r)-separator in D − r .

Lemma 6.2 ([Chen et al. 2009; Marx 2006]). Let D be a digraph, X ,Y ⊆ V (D), and k ∈ N . The

number of important X -Y -separators of size at most k is upper bounded by 4k , and these separators

can be enumerated in time O (4k · k · (n +m)).

The rest of this subsection is dedicated to the proof of Lemma 6.1. That is, we design an al-
gorithm, called A, that finds a set R with the properties specified by Lemma 6.1. If |N −D (r) | ≤
64k+1 (k + 1)2, then N −D (r) is the required set R. Thus, from now on, we assume that |N −D (r) | >
64k+1 (k + 1)2. Algorithm A is an iterative algorithm. In each iteration, A either terminates by
outputting the required set R or finds an irrelevant terminal pair for the input instance, removes
it from the set of terminal pairs, and then repeats the process.
As a preprocessing step preceding the first call to A, we modify the graph D and the set of

terminal pairsT as described below. The new graph D ′ and set of terminal pairsT ′ would allow us
to accomplish our task while simplifying some arguments in the proof. We setD ′ to be the digraph
obtained from D by adding two new vertices, s ′ and t ′, and two new edges, s ′s and t ′t , for each
terminal pair {s, t } ∈ T . The modification is such that if a vertex u ∈ V (D) belonged to � terminal
pairs inT , then D ′ would have � distinct vertices corresponding to u. Now, the new set of terminal
pairs is defined asT ′ = {{s ′, t ′} | {s, t } ∈ T }. It is easy to see that any minimalT -r -digraph pair cut
in D is also a minimal T ′-r -digraph pair cut in D ′. Thus, to find a superset of relevant vertices
for (D,T , r ,k) in the set N −D (r), it is enough to find a superset of relevant vertices for (D ′,T ′, r ,k)
in the set N −D′ (r). Therefore, from now on, we can assume that our input instance is (D ′,T ′, r ,k),
where the pairs in the set T ′ are pairwise disjoint (see Figures 1(b) and 1(c) for an illustration).
Henceforth, whenever we say that a vertex is relevant (or irrelevant), we mean that it is relevant
(or irrelevant) for the instance (D ′,T ′, r ,k). The description of A is given in Algorithm 2.

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

Covering Small Independent Sets and Separators 32:21

ALGORITHM 2: Input is (G ′,T ′, r ,k), where T ′ is pairwise disjoint

1 if |T ′| = 0 then

2 return ∅

3 T̂ := {s ′, t ′ | {s ′, t ′} ∈ T ′}.
4 Compute a minimum T̂ -r -separator Z .

5 if |Z | ≤ 16k · 64(k + 1) then

6 For each z ∈ Z , compute all important z-r -separators of size at most k .
7 Mark all the vertices in N−

D′ (r) that are either part of the computed important separatorsor part of
Z .

8 return the set of marked vertices (call it R)

9 else

10 Compute a maximum set P of vertex disjoint paths from T̂ to r (any pair of paths intersects only at
r).

11 Let X = V (P) ∩ T̂ . Let A be a maximum sized subset of X such that forany {s ′, t ′} ∈ T ′,
|A ∩ {s ′, t ′}| ≤ 1.

12 Let B = {w | there existsw ′ ∈ A such that {w,w ′} ∈ T ′}. That is, B is the set of vertices that is
paired with vertices of A in the set of pairs T ′.

13 Compute all important r -B-separators of size at most 2k + 2 in
←−
D ′.

14 Mark all vertices from B that are part of the computed important separators.

15 Let q ∈ B be an unmarked vertex and let {q,q′} ∈ T ′.
16 T ′ := T ′ \ {{q,q′}} and repeat from Step 2.

The correctness of Algorithm 2 as exhibited in Lemma 6.3 is essentially based on creating a
setup that allows the applicability of the anti-isolation lemma of Marx [2011], which appeared
at Pilipczuk and Wahlström [2018], to find and mark relevant vertices and relevant terminal pairs.

Lemma 6.3. Algorithm 2 outputs a set R of size at most 64k+1 (k + 1)2, which contains all relevant

vertices in N −D (r).

Proof. Notice that Algorithm 2 returns a set R either in Line 2 or in Line 8; thus, by Lemma 6.2,
the size of the returned set is at most |Z | · 4kk + |Z | ≤ 64k+1 (k + 1)2. We now prove the correctness
of the algorithm using induction on |T ′ |. When |T ′ | = 0, then no vertex in N −D (r) is relevant, and
the algorithm returns the correct output. Now consider the induction step where |T ′ | > 0. We have
two cases based on the size of the separator Z computed in Line 4.

Case 1: |Z | ≤ 16k · 64(k + 1). In this case, Lines 6–8 will be executed and Algorithm 2 will output
a set R. We prove that R contains all relevant vertices in N −D′ (r). Towards this, we show that if S
is a minimal T ′-r -digraph pair cut of size at most k and v ∈ N −D′ (r) ∩ S , then v belongs to R. Let
S ′ = S \ {v}. Since S is a minimal T ′-r -digraph pair cut, S ′ is not a T ′-r -digraph pair cut. Since S
is a T ′-r -digraph pair cut and S ′ is not a T ′-r -digraph pair cut, there is a vertex t ∈ T̂ such that
(i) v is reachable from t in D ′ − S ′, and (ii) r is not reachable from t in D ′ − S . If v ∈ Z , then v is
marked and belongs to R. Therefore, if v ∈ Z , then we are done. Thus, from now on, assume that
v � Z . �

Claim 6.1. There is a vertex z ∈ Z that belongs to RD′ (t , S).

Proof. From (i), we have that v ∈ RD′ (t , S
′). Since Z is a minimum T̂ -r -separator, t ∈ T̂ , and

v ∈ RD′ (t , S
′), we have that all paths from t to v pass through some vertex in Z . Also, since v ∈

N −D′ (r) and v ∈ RD′ (t , S
′) and v � Z , there is a vertex z ∈ Z that belongs to RD′ (t , S). �

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

32:22 D. Lokshtanov et al.

Fig. 2. Here, the ellipse contains the set of vertices reachable from t in D ′ − S , denoted by Rt . The rectangle

colored grey represents N+ (Rt), which includes v .

Fig. 3. The graph at the right-hand side is obtained by the reduction on the graph at the left-hand side,

where k = 3 and Y is the set of black-colored vertices. Thick lines represent all possible edges between two

sets of vertices.

Let Rt = RD′ (t , S) and C = N +D′ (Rt). Observe that C ⊆ S , v ∈ C and v is reachable from z in
D ′ − (C \ {v}). We claim that C is a z-r -separator. If C is not a z-r -separator, then there is a path
from z to r in D ′ − S . Also, since z ∈ RD′ (t , S), there is a path from t to z in D ′ − S . This implies
that there is a path from t to r in D ′ − S , which is a contradiction to the statement (ii). Since v
is reachable from z in D ′ − (C \ {v}), there is a minimal z-r -separator that contains v and is fully
contained in C . Let C ′ ⊆ C be a minimal z-r -separator that contains v . Since v ∈ N −D′ (r) and C ′

is a minimal z-r -separator, either C ′ is an important z-r -separator or there is an important z-r -
separator of size at most k containing v , which dominatesC ′. In either case, v is marked in Line 8
and, hence, it will be in the set R (see Figure 2 for an illustration).

Case 2: |Z | > 16k · 64(k + 1). In this case, we prove that there, indeed, exists an unmarked vertex
q ∈ B and the pair {q,q′} is an irrelevant terminal pair. Notice that in Line 13, we have computed
all important r -B-separators of size at most 2k + 2 for some B. By Lemma 6.2, the total number
of vertices in all these separators together is at most 16k · 32(k + 1). So, we should have marked
at most 16k · 32(k + 1) vertices in B. We first claim that |B | > 16k · 32(k + 1), which ensures the
existence of an unmarked vertex in B. By the definition of A, the size of A is at least |Z |/2 >
16k · 32(k + 1), because there are |Z | vertex disjoint paths from T̂ to r , only intersecting at r . By
the definition of B, |B | = |A| > 16k · 32(k + 1). Since we proved that we have only marked at most

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

Covering Small Independent Sets and Separators 32:23

16k · 32(k + 1) vertices in B, this implies that there is an unmarked vertex q in B. Let q′ be the
unique vertex such that {q,q′} ∈ T ′ (such a unique vertex exists because T ′ is pairwise disjoint).
Now, we show that {q,q′} is an irrelevant terminal pair. Let S be a minimal (T ′ \ {{q,q′}})-r -

digraph pair cut of size at most k . We need to show that S is also aT ′-r -digraph pair cut. We know

that there are |Z | vertex disjoint paths P from T̂ to r , where the paths intersect only at r . Since

Z is a minimum T̂ -r -separator, |T̂ | ≥ |Z |. Recall the definition of A and B from the description of
the algorithm. Let Ar be the set of vertices in A \ {q′} such that r is reachable from each vertex in
Ar in D ′ − S ; that is, Ar = {u ∈ A \ {q′} | r ∈ RD′ (u, S)}. Let Br be the set of vertices in B such that
r is reachable from each vertex in Br in the graph D ′ − S ; that is, Br = {u ′ ∈ B | r ∈ RD′ (u

′, S)}.
Since there are |A| vertex disjoint paths from A to r (which intersect only at r) and |S | ≤ k , we
have |Ar | ≥ |A| − (k + 1). Since S is a (T ′ \ {{q,q′}})-r -digraph pair cut, the vertices in B that are

paired with a vertex in Ar are not reachable from r in
←−
D ′ − S . This implies that |Br | ≤ k + 1. Let

Q = S ∪ Br ∪ {q}. Notice that q ∈ Q andQ is a r -B-separator in
←−
D ′ of size at most 2k + 2. If q is not

reachable from r in
←−
D ′ − S , then S is, indeed, aT ′-r -digraph pair cut, because S is a (T ′ \ {{q,q′}})-

r -digraph pair cut. In what follows, we show that it is always the case; that is, q is not reachable

from r in
←−
D ′ − S . Suppose not. Sinceq is reachable from r in

←−
D ′ − S and all the vertices inQ \ S have

no out-neighbors in
←−
D ′ (by construction of D ′), any path from r to q in

←−
D ′ − S will not contain any

vertex fromQ \ {q}. This implies that there is a minimal r -B-separatorQ ′ ⊆ Q containingq. Hence,
either Q ′ is an important r -B-separator of size at most 2k + 2 or all the important r -B-separators
that dominate Q ′ will contain q. This implies that q is marked, which is a contradiction.
Thus, we have shown that in this case there is an irrelevant terminal pair {q,q′} ∈ T ′, and by

Observation 6.1 and induction hypothesis, Algorithm 2 will output the required set.

Lemma 6.4. Algorithm 2 runs in time O (|T ′ | · n(n
2
3 +m)).

Proof. The number of times each step of the algorithm will get executed is at most |T ′ |. By
Proposition 2.2, Line 4 takes time O (mn). By Lemma 6.2, the time required to enumerate important
separators in Lines 6 and 13 is bounded by O (42k · k · (n +m)). The time required to compute P
in Line 13 is O (mn) by Proposition 2.2. Thus, the total running time of Algorithm 2 is O (|T ′ |(mn +
42k · k · (n +m))). Recall that we could safely assume that |V (D ′) | = n > 64k+1 (k + 1)2, since n >

64k+1 (k + 1)2, 42k · k < n
2
3 . Hence, the claimed running time of the algorithm follows. �

6.2 Covering Small Multicuts in a Subgraph without Highly Connected Set

In this section, we prove that given a graph G, a set of terminal pairs T = {{s1, t1}, . . . , {s�, t� }},
and an integer k , there is a polynomial time algorithm that finds a pair (G�,T�), where G� is an

induced subgraph of G such that it has no (k + 2)-connected sets of size 2O (k) and T� ⊆ T such
that for any S ⊆ V (G) of size at most k , S is a minimal multicut ofT inG if and only S is a subset of
V (G�) and S is a minimal multicut ofT� inG�. This statement is formalized in Lemma 6.5. Before
stating Lemma 6.5, we give definitions of a k-connected set in a graphG and a k-connected graph.

Definition 6.4 (k-connected set and graphs). For any k ∈ N and a graph G, a subset Y of the
vertices ofG is called a k-connected set inG if for any u,v ∈ Y there are at least k internally vertex
disjoint paths from u to v inG. The graphG is called a k-connected graph ifV (G) is a k-connected
set in G. Equivalently, the graph G is k-connected if the size of a mincut in G is at least k .

Lemma 6.5 (Degeneracy Reduction Lemma). LetG be a graph,T be a set of terminal pairs, and

k ∈ N . Let C be the set of all minimal multicuts of T of size at most k in G. There is a deterministic

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

32:24 D. Lokshtanov et al.

algorithm that runs in time O (|T | · n2 (n
2
3 +m) + n5 logn) and outputs an induced subgraphG� ofG

and a subset T� ⊆ T such that

(1) for any S ⊆ V (G) with |S | ≤ k , S is a minimal multicut of T in G if and only if S ⊆ V (G�)
and S is a minimal multicut of T� in G�, and

(2) there is no (k + 2)-connected set of size at least 64k+2 · 4(k + 2)2 in G�.

The proof of Lemma 6.5 requires some auxiliary lemmas that we discuss below. Recall the defi-
nition of the problem Multicut from Section 4. Let (G,T ,k) be an instance of Multicut. We say
that a vertex v ∈ V (G) is irrelevant to (G,T ,k) if no minimal multicut of G of size at most k in
G contains v . Lemma 6.6 states that if a graph has a sufficiently large (k + 2)-connected set, then
many of its vertices are irrelevant to the given Multicut instance. Such a statement is deduced
by establishing a relation between the multicuts of the given instance and the digraph pair cuts of
practically the same instance. This relationship then relates the irrelevant vertices to the instance
of Multicut with the irrelevant vertices to the instance for Digraph Pair Cut.

Lemma 6.6. Let G be a graph,T be a set of terminal pairs, k ∈ N and Y be a (k + 1)-connected set

in G. Let D be a digraph obtained by adding a new vertex r , whose in-neighbors are the vertices of Y ,

and replacing each edge of G by two arcs with the same endpoints and opposite orientations. Then,

any irrelevant vertex of Y to the instance (D,T , r ,k) of Digraph Pair Cut is also an irrelevant vertex

to the instance (G,T ,k) of Multicut.

Proof. The construction of D from G is illustrated in Figures 1(a) and (b). Suppose there ex-
ists v ∈ Y , which is relevant to the instance (G,T ,k) of Multicut. Then, there exists a minimal
multicut—say,C—ofT inG of size at most k such thatv ∈ C . We first claim thatC is aT -r -digraph
pair cut in D. Suppose not. Then, there is a pair {s, t } ∈ T such that there is a path from s to r
and t to r in D −C . Since the in-neighbors of r are the vertices of Y , there exist u1,u2 ∈ Y , u1 may
be equal to u2, such that there are two paths, one from s to u1 and other from t to u2, in G −C .
If u1 = u2, then s and t are in the same connected component of G −C , which is a contradiction.
Otherwise, since Y is a (k + 1)-connected set inG and u1,u2 ∈ Y , there are k + 1 internally vertex
disjoint paths from u1 to u2. Since |C | ≤ k , there exists a path between u1 and u2 in G −C , and
hence, a path between s and t in G −C , which is a contradiction.
We next show that there existsC ′ ⊆ C such thatv ∈ C ′ andC ′ is a minimalT -r -digraph pair cut

in D. This will prove that v is relevant to the instance (D,T , r ,k) of Digraph Pair Cut thereby
proving the claim. Since C is a T -r -digraph pair cut in D, there exists C ′ ⊆ C such that C ′ is a
minimal T -r -digraph pair cut in D. Suppose v � C ′. Since C is a minimal multicut of T in G, there
exists a terminal pair (s, t) ∈ T such that there is a path from s to t in G − (C \ {v}). In particular,
there is a path from s to v and t to v in G − (C \ {v}). Since v ∈ Y , by the construction of D, v is
an in-neighbor of r . Hence, there is a path from s to r and t to r in D − (C \ {v}). Thus, if v � C ′,
then C ′ is not a T -r -digraph pair cut in D, which is a contradiction. �

Using Lemmas 6.1 and 6.6, one can find irrelevant vertices to the given instance of Multicutif
the graph in the instance has a (k + 1)-connected set Y of size strictly more than 64k+1 (k + 1)2

and the set Y is explicitly given as input. So the next task is to design an algorithm that finds a
(k + 1)-connected set in a graph of a given size, if it exists. This algorithm comes from Lemma 6.7.

Lemma 6.7. There is an algorithm that given a graph G and k,d ∈ N , k ≤ d , runs in time

O (n4 logn) and either concludes that there is no k-connected set of size at least 4d in G or outputs a

k-connected set in G of size at least d + 1.

The proof of Lemma 6.7 requires an auxiliary lemma (Lemma 6.9), which we prove next.
Lemma 6.9 is an algorithmic version of the following famous result of Mader [1972], which says

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

Covering Small Independent Sets and Separators 32:25

that if a graph has large average degree (or degeneracy), then it contains a (d + 1)-connected sub-
graph.

Lemma 6.8 ([Mader 1972]). Let d ∈ N \ {0}. Every graphG with average degree at least 4d has a

(d + 1)-connected subgraph.

The proof of Lemma 6.8 given in Diestel [2000] and Sudakov [2016] can be modified to get a
polynomial time algorithm. The following lemma, an algorithmic version of Lemma 6.8, is written
in terms of the degeneracy of the graph.

Lemma 6.9. There is an algorithm that, for any d ∈ N \ {0}, given a graph G with degeneracy at

least 4d , runs in time O (n2m logn) and outputs a (d + 1)-connected subgraph of G.

Proof. The algorithm first constructs a subgraph H ofG that has minimum degree at least 4d .
To do so, first set H := G. If the minimum degree of H is at least 4d , then we are done. Otherwise,
let v be a vertex of H of degree at most 4d − 1. Set H := H −v and repeat this process. Since the
degeneracy of G is at least 4d , the procedure will end up in a subgraph of G that has minimum
degree at least 4d . The naive implementation of the above procedure takes time O (mn). �

Claim 6.2. For any d ∈ N − {0}, if the minimum degree of a graph H is at least 4d , then |V (H) | ≥
2d + 1 and |E (H) | ≥ 2d (|V (H) | − d − 1

2).

Proof. Since minimum degree of H is at least 4d , clearly |V (H) | ≥ 4d + 1 ≥ 2d + 1. Also, since∑
v ∈V (H) deдG (v) = 2|E (H) | and for allv ∈ V (H) deдG (v) ≥ 4d , |E (H) | ≥ 2d |V (H) | ≥ 2d (|V (H) | −

d − 1
2). �

From Claim 6.2, we conclude that |V (H) | ≥ 2d + 1 and |E (H) | ≥ 2d (|V (H) | − d − 1
2). Thus, from

the following claim (Claim 6.3), one can infer that H has a (d + 1)-connected subgraph. Using this
claim, we will later give an algorithm that actually computes a (d + 1)-connected subgraph of H ,
whose correctness will follow from the proof of Claim 6.3.

Claim 6.3. Let H be any graph and d ∈ N \ {0} such that |V (H) | ≥ 2d + 1 and |E (H) | ≥
2d (|V (H) | − d − 1

2). Then H has a (d + 1)-connected subgraph.

Proof. We prove the claim using induction on |V (H) |. The base case of the induction is when
|V (H) | = 2d + 1. From the premises of the claim, if |V (H) | = 2d + 1, |E (H) | ≥ 2d (2d + 1 − d − 1

2) =

2d (d + 1
2) = (2d+12). Since a graph on 2d + 1 vertices can have at most (2d+12) edges, H is a clique

on 2d + 1 vertices, which is a (d + 1)-connected graph. Now consider the induction step where
|V (H) | > 2d + 1. Suppose there is a vertex v ∈ V (H) such that deдH (v) ≤ 2d . Then |V (H −v) | ≥
2d + 1 and |E (H −v) | ≥ |E (H) | − 2d ≥ 2d (|V (H −v) | − d − 1

2). Thus, from the induction hypoth-
esis, there is a (d + 1)-connected subgraph in H −v . From now on, we can assume that the degree
of each vertex in H is at least 2d + 1. Suppose H itself is a (d + 1)-connected graph, then we are
done. If not, then there exists a mincut—say, Z—ofH , of size at most d . LetU1
U2 be a partition of
V (G) \ Z such that there is no edge between a vertex in U1 and a vertex in U2, and U1,U2 � ∅. Let
A = Z ∪U1 and B = Z ∪U2. We claim that either H [A] or H [B] satisfy the premises of the claim.
Notice that all the neighbors of any vertex s ∈ U1 are inA and all the neighbors of any vertex t ∈ U2
are in B. Also, since deдH (s),deдH (t) ≥ 2d + 1, we have that |A| ≥ 2d + 1 and |B | ≥ 2d + 1. Thus,
the vertex set cardinality constraint stated in the premise of the claim is met for both H [A] and
H [B]. Suppose that the edge set cardinality constraint stated in the premise of the claim is not met

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

32:26 D. Lokshtanov et al.

for both H [A] and H [B]. Then, we have the following:

|E (H) | ≤ |E (H [A]) | + |E (H [B]) |

< 2d
(
|A| − d − 1

2

)
+ 2d

(
|B | − d − 1

2

)
= 2d (|A| + |B | − 2d − 1)

≤ 2d (|V (H) | + d − 2d − 1)

< 2d
(
|V (H) | − d − 1

2

)
.

This is a contradiction to the fact that |E (H) | ≥ 2d (|V (H) | − d − 1
2). Therefore, eitherH [A] orH [B]

satisfies the premises of the claim. Moreover, notice that |A| < |V (H) | and |B | < |V (H) |, because
U1,U2 � ∅. Thus, by the induction hypothesis the claim follows. �

The above proof can easily be turned into an algorithm. This is explained below. Our algorithm
for finding a (d + 1)-connected subgraph of H works as follows: It first tests whether H itself is
a (d + 1)-connected graph—this can be done by computing a mincut of H (using the algorithm
of Proposition 2.3) and then testing whether the size of a mincut of H is at least d + 1. If H is
a (d + 1)-connected graph, then our algorithm outputs V (H). Otherwise, if there is a vertex of
degree at most 2d in H , then it recursively finds a (d + 1)-connected subgraph in H −v . If all the
vertices in H have degree at least 2d + 1, then it finds a mincut Z in H (using the algorithm of
Proposition 2.3). It then constructs vertex setsA and B as mentioned in the proof of Claim 6.3. It is
proved in Claim 6.3 that either H [A] or H [B] satisfy the premises of Claim 6.3, and it can be tested
in linear time whether a graph satisfies the premises of Claim 6.3. If H [A] satisfies the premises of
Claim 6.3, then our algorithm recursively finds a (d + 1)-connected subgraph in H [A]. Otherwise,
our algorithm recursively finds a (d + 1)-connected subgraph in H [B].
Note that this algorithm makes at most n recursive calls and in each recursive call it runs the

algorithm of Proposition 2.3 and does some linear time testing. Thus, given a graph H of mini-
mum degree at least 2d , this algorithm runs in time O (mn2 logn) and outputs a (d + 1)-connected
subgraph of H . The algorithm claimed in the lemma first constructs a subgraph H of G of min-
imum degree at least 2d , as described earlier, in time O (mn) and takes additional O (n2m logn)
time to output a (d + 1)-connected subgraph of H . Thus, the total running time of this algorithm
is O (n2m logn).
We are now ready to give the proof of Lemma 6.7.

Proof of Lemma 6.7. The algorithm first constructs an auxiliary graphG� as follows: The ver-
tex set of G� is V (G) and for any u,v ∈ V (G�),uv ∈ E (G�) if and only if the size of a minimum
u-v-separator in G is at least k (that is, there are at least k internally vertex disjoint paths from u
to v inG). It then checks whether the degeneracy ofG� is at least 4d − 1 or not. If the degeneracy
ofG� is strictly smaller than 4d − 1, then the algorithm outputs that there is no k-connected set in
G of size at least 4d . Otherwise, the degeneracy ofG� is at least 4d − 1 ≥ 4(d − 1). In this case, the
algorithm applies the algorithm of Lemma 6.9 for (G�,d − 1), which outputs a d-connected sub-
graph H ofG�. Since H is a d-connected subgraph, |V (H) | ≥ d + 1. Since, k ≤ d , H is k-connected
in G�. The algorithm outputs V (H) as the k-connected set in G.
To prove the correctness of the algorithm, we need to prove the following two statements:

(1) When our algorithm reports that there is no k-connected set in G of size at least 4d , that
is, when degeneracy of G� is at most 4d − 2, then the graph G has no k-connected set of
size at least 4d .

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

Covering Small Independent Sets and Separators 32:27

(2) When our algorithm outputs a set—that is, when degeneracy of G� is at least 4d − 1—
then the set outputted is a k-connected set in G of size at least d + 1. In other words, if
degeneracy of G� is at least 4d − 1, then the set V (H) is k-connected in G and has size at
least d + 1.

For the proof of the first statement, observe that whenG has a k-connected set—say, Y—of size
at least 4d , then G�[Y] is a clique. Hence, the degeneracy of G� is at least 4d − 1. For the proof
of the second, we have already argued that the size of V (H) is at least d + 1 and that V (H) is a
k-connected set in G�. We will now prove V (H) is a k-connected set in G. �

Claim 6.4. V (H) is a k-connected set in G.

Proof. Observe that it is enough to show that for anyu,v ∈ V (H) and anyC ⊆ V (G) \ {u,v} of
size strictly smaller than k , there is a path from u tov inG −C . SinceH is a k-connected subgraph
of G�, there is a path from u to v in G� −C . Letw1w2 . . .w� , wherew1 = u and v = w� , be a path
from w1 to w� in G� −C . Since for any i ∈ [� − 1], wiwi+1 ∈ E (G�), there are at least k vertex
disjoint paths from wi to wi+1 in G. Also, since |C | < k , there is a path from wi to wi+1 in G −C .
This implies that there is a path from w1 = u to w� = v in G −C , proving that H is a k-connected
set in G. �

This finishes the proof of correctness of our algorithm. We now analyze the total running time
of the algorithm. The graphG� can be constructed in time O (k · n2 (n +m)) using Proposition 2.2.
Also, checking whether the graph has degeneracy at least 4d − 1 can be done in time O (mn). Since
G� could potentially have O (n2) edges, by Lemma 6.9 the subgraph H can be computed in time
O (n4 logn). Thus, the total running time of our algorithm is O (n4 logn).

Lemma 6.10. There is an algorithm that given a graph G, a set of terminal pairs T and k ∈ N ,

runs in time O (|T | · n(n
2
3 +m) + n4 logn) and either correctly concludes that G does not contain a

(k + 1)-connected set of size at least 64k+1 · 4(k + 1)2 or finds an irrelevant vertex for the instance

(G,T ,k) of Multicut.

Proof. Let d = 64k+1 (k + 1)2. Our algorithm first runs the algorithm of Lemma 6.7 on the in-
stance (G,k + 1,d). If this algorithm (of Lemma 6.7) concludes that there is no (k + 1)-connected set
inG of size at least 4d , then our algorithm returns the same. Otherwise, the algorithm of Lemma 6.7
outputs a (k + 1)-connected set Y in G of size at least d + 1. Our algorithm then creates a digraph
D as mentioned in Lemma 6.6. It then applies the algorithm of Lemma 6.1 and computes a set Z of
irrelevant vertices for the instance (D,T , r ,k) of Digraph Pair Cut in the set Y . From Lemma 6.6,
Z is also a set of irrelevant vertices for the instance (G,T ,k) ofMulticut. Since |Y | ≥ d + 1 and the
number of relevant vertices for (D,T , r ,k) in the set Y is at most d (from Lemma 6.1), Z � ∅. Our
algorithm then outputs an arbitrary vertex v from the set Z as an irrelevant vertex for (G,T ,k).

By Lemmas 6.1 and 6.7, the total running time of our algorithm is O (|T | · n(n
2
3 +m) +

n4 logn). �

Lemma 6.11. There is an algorithm that given as input a graphG, a set of terminal pairsT and k ∈
N , runs in time O (|T | · n(n

2
3 +m) + n4 logn) and either concludes that there is no (k + 2)-connected

set of size at least 64k+2 · 4(k + 2)2 in G, or outputs a vertex v ∈ V (G) such that for any S ⊆ V (G)
with |S | ≤ k , S is a minimal multicut of T in G if and only if S ⊆ V (G) \ {v} and S is a minimal

multicut of T ′ = {{s, t } ∈ T | v � {s, t }} in G −v .

Proof. This algorithm runs the algorithm of Lemma 6.10 on the instance (G,T ,k + 1). If the
algorithm of Lemma 6.10 outputs that there is no (k + 2)-connected set of size 64k+2 · 4(k + 2)2 in
G, then our algorithm reports the same. Otherwise, let v be the vertex returned by the algorithm

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

32:28 D. Lokshtanov et al.

of Lemma 6.10, which is irrelevant for (G,T ,k + 1) (from Lemma 6.10), then it also returns v . The
running time of our algorithm follows from Lemma 6.10.
We now prove the correctness of this algorithm. For the forward direction, let S ⊆ V (G) be such

that |S | ≤ k and S is a minimal multicut of T in G. By the definition of an irrelevant vertex for
the instance (G,T ,k + 1), we conclude that S ⊆ V (G) \ {v}. SinceT ′ ⊆ T andG is a supergraph of
G −v , S is a multicut ofT ′ inG −v . Suppose, for the sake of contradiction, that S is not a minimal
multicut ofT ′ inG −v . Then, there exists S ′ � S such that S ′ is a minimal multicut ofT ′ inG −v .
If S ′ is multicut of T in G, then we contradict the fact that S is a minimal multicut of T in G.
Otherwise, there exists S ′′ ⊆ S ′ ∪ {v} and v ∈ S ′′, such that S ′′ is a minimal multicut of T in G,
which contradicts that v is an irrelevant vertex for (G,T ,k + 1). Hence, we have proved that S is
a minimal multicut of T ′ in G −v .
For the backward direction, let S ⊆ V (G) \ {v} be such that S is a minimal multicut of T ′ in

G −v . If S is a multicut of T in G, then S has to be a minimal multicut of T in G, as otherwise it
would contradict that S is a minimal multicut of T ′ inG −v . Otherwise, S ∪ {v} is a multicut of T
in G, because all the terminal pairs in T \T ′ contain v . Let S ′ ⊆ S ∪ {v} be a minimal multicut of
T inG. Note thatv ∈ S ′ and |S ′ | ≤ k + 1. This contradicts the fact that v is an irrelevant vertex for
(G,T ,k + 1). �

Lemma 6.5 can easily be proved by applying Lemma 6.11 at most n times.

Stable Multicut on General Graphs. Using our algorithm of Theorem 2 for Stable Multicut
on bounded degeneracy graphs and the Degeneracy Reduction Lemma (Lemma 6.5), we are now
ready to prove that Stable Multicut is FPT. Towards that, we first prove the following lemma,
which establishes a relationship between the degeneracy of the graph and the k-connected sets in
the graph:

Lemma 6.12. Let k,d ∈ N be such that k ≤ d + 1. Let G be a graph that does not contain a k-

connected set of size at least d . Then the degeneracy of G is at most 4d − 1.

Proof. For the sake of contradiction, assume that the degeneracy of G is at least 4d . Then, by
Lemma 6.9, there is a (d + 1)-connected subgraph H ofG. Since k ≤ d + 1 and |V (H) | ≥ d + 2, we
have that V (H) is a k-connected set in G of size at least d + 2, which is a contradiction. �

Theorem 6. Stable Multicut can be solved in time 2O (k3) · n6 logn.

Proof. Let (G,k) be an instance of Stable Multicut. First, we apply Lemma 6.5 and get an
equivalent instance (G�,T�), whereG� does not contain any (k + 2)-connected set of size 64k+2 ·
4(k + 2)2. Then, by Lemma 6.12, the degeneracy ofG� is at most 64k+2 · 16(k + 2)2 − 1. Then, using
Theorem 2, we get the solution. The running time of the algorithm follows from Lemma 6.5 and
Theorem 2. �

7 CONCLUSION

In this article, we presented two new combinatorial tools for the design of parameterized algo-
rithms. The first was a simple linear time randomized algorithm that given as input a d-degenerate
graph G and integer k , outputs an independent set Y , such that for every independent set X in G

of size at most k the probability that X is a subset of Y is at least (((d+1)k
k

) · k (d + 1))−1. We also
introduced the notion of a k-independence covering family of a graph G. The second tool was a
new (deterministic) polynomial time graph sparsification procedure that given a graph G, a set
T = {{s1, t1}, {s2, t2}, . . . , {s�, t� }} of terminal pairs, and an integer k returns an induced subgraph
G� ofG that maintains all of the inclusion minimal multi-cuts ofG of size at most k and does not
contain any (k + 2)-vertex connected set of size 2O (k) . Our new tools yield new FPT algorithms

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

Covering Small Independent Sets and Separators 32:29

for Stable s-t Separator, Stable Odd Cycle Transversal, and Stable Multicut on general
graphs, and for Stable Directed Feedback Vertex Set on d-degenerate graphs, resolving two
problems left open byMarx et al. [2013]. Observe that similar results will hold for a variant of these
problems where instead of the solution being independent, one asks for a solution that induces an
r -partite graph for some fixed r . To get this, one can first find a k-independent set covering fam-
ily and then guess/choose r sets in this family such that each partition of the r -partite solution
is contained inside exactly one of the chosen sets. By doing so, we again reduce our problem to
an annotated problem where one needs to find a solution that is contained in the union of the r
chosen sets. One of the most natural directions to pursue further is to find more applications of
our tools than given in the article. Apart from this there are several natural questions that arise
from our work.

(1) In the Stable Multicut problem, we ask for a multicut that forms an independent set.
Instead of requiring that the solution S is independent, we could require that it induces a
graph that belongs to a hereditary graph class G. Thus, corresponding to each hereditary
graph class G, we get the problem G-Multicut. Is G-Multicut FPT? Concretely, if S is
the set of forests, then is S-Multicut FPT?

(2) Given a hereditary graph class G, we can define the notion of k-G covering family, similar
to k-independence covering family. Does there exist other hereditary families, apart from
the family of independent sets, such that k-G covering family of FPT size exists?

(3) Observe that for all the problems whose non-stable version admits a 2O (k)nO (1) time al-
gorithm on general graphs, such as s-t Separator and Odd Cycle Transversal, we get
a 2O (k)nO (1) time algorithm for these problems on graphs of bounded degeneracy. As a

corollary, we get a 2O (k)nO (1) time algorithm for these problems on planar graphs, graphs
excluding some fixed graph H as minor or a topological minor and graphs of bounded

degree. A natural question is whether these problems admit a 2O (k)nO (1) time algorithm
on general graphs.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their useful comments and suggestions.

REFERENCES

Béla Bollobás and Andrew Thomason. 1998. Proof of a conjecture of Mader, Erdős, and Hajnal on topological complete

subgraphs. Eur. J. Comb. 19, 8 (1998), 883–887.

Nicolas Bousquet, Jean Daligault, and Stéphan Thomassé. 2011. Multicut is FPT. In Proceedings of the Symposium on the

Theory of Computing (STOC’11). 459–468.

Andreas Brandstadt, Jeremy P. Spinrad, et al. 1999. Graph Classes: A Survey. Vol. 3. Siam.

Nader H. Bshouty andAriel Gabizon. 2017. Almost optimal cover-free families. In Proceedings of the International Conference

on Algorithms and Complexity. Springer, 140–151.

Jianer Chen, Yang Liu, and Songjian Lu. 2009. An improved parameterized algorithm for the minimum node multiway cut

problem. Algorithmica 55, 1 (2009), 1–13.

Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. 2008. A fixed-parameter algorithm for the directed

feedback vertex set problem. J. ACM 55, 5 (2008), 21.

Rajesh Hemant Chitnis, Marek Cygan, Mohammad Taghi Hajiaghayi, and Dániel Marx. 2015. Directed subset feedback

vertex set is fixed-parameter tractable. ACM Trans. Algor. 11, 4 (2015), 28.

Rajesh Hemant Chitnis, Mohammad Taghi Hajiaghayi, and Dániel Marx. 2013. Fixed-parameter tractability of directed

multiway cut parameterized by the size of the cutset. SIAM J. Comput. 42, 4 (2013), 1674–1696.

Hyeong-Ah Choi, Kazuo Nakajima, and Chong S. Rim. 1989. Graph bipartization and via minimization. SIAM J. Discrete

Math. 2, 1 (1989), 38–47.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms. The MIT

Press.

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

32:30 D. Lokshtanov et al.

Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and

Saket Saurabh. 2015. Parameterized Algorithms. Springer.

Marek Cygan, Łukasz Kowalik, and Marcin Pilipczuk. 2013a. Open problems from the update meeting on graph separation

problems. http://worker2013.mimuw.edu.pl/slides/update-opl.pdf.

Marek Cygan, Marcin Pilipczuk, Michał Pilipczuk, and Jakub Onufry Wojtaszczyk. 2013b. Subset feedback vertex set is

fixed-parameter tractable. SIAM J. Discrete Math. 27, 1 (2013), 290–309.

Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour, and Mihalis Yannakakis. 1994. The com-

plexity of multiterminal cuts. Siam J. Comput. 23 (1994), 864–894.

Erik D. Demaine, Gregory Gutin, Dániel Marx, and Ulrike Stege. 2007. 07281 open problems—Structure theory and FPT

algorithmcs for graphs, digraphs and hypergraphs. In Structure Theory and FPT Algorithmics for Graphs, Digraphs and

Hypergraphs, 08.07.2007–13.07.2007.

R. Diestel. 2000. Graph Theory (2nd ed.). Springer, Berlin.

Lester R. Ford and Delbert R. Fulkerson. 1956. Maximal flow through a network. Canad. J. Math. 8, 3 (1956), 399–404.

Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. 2013. Characterisations of nowhere dense graphs (invited talk).

In Proceedings of the Foundations of Software Technology and Theoretical Computer Science (FSTTCS’13) (LIPIcs), Vol. 24.

21–40.

Jianxiu Hao and James B. Orlin. 1992. A faster algorithm for finding the minimum cut in a graph. In Proceedings of the 3rd

ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, 165–174.

Yoichi Iwata, Keigo Oka, and Yuichi Yoshida. 2014. Linear-time FPT algorithms via network flow. In Proceedings of the

ACM-SIAM Symposium on Discrete Algorithms (SODA’14). 1749–1761.

Richard M. Karp. 1972. Reducibility among combinatorial problems. In Complexity of Computer Computations. Springer,

85–103.

Ken-ichi Kawarabayashi and Bruce A. Reed. 2010. An (almost) linear time algorithm for odd cycles transversal. In Proceed-

ings of the ACM-SIAM Symposium on Discrete Algorithms (SODA’10). 365–378.

János Komlós and Endre Szemerédi. 1996. Topological cliques in graphs II. Combin. Prob. Comput. 5 (1996), 79–90.

Stefan Kratsch, Marcin Pilipczuk, Michał Pilipczuk, and Magnus Wahlström. 2015. Fixed-parameter tractability of multicut

in directed acyclic graphs. SIAM J. Disc. Math. 29, 1 (2015), 122–144.

Stefan Kratsch and Magnus Wahlström. 2012. Representative sets and irrelevant vertices: New tools for kernelization. In

Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS’12). 450–459.

Daniel Lokshtanov and Dániel Marx. 2013. Clustering with local restrictions. Inf. Comput. 222 (2013), 278–292.

Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh. 2014. Faster parame-

terized algorithms using linear programming. ACM Trans. Algor. 11, 2 (2014), 15:1–15:31.

Daniel Lokshtanov and M. S. Ramanujan. 2012. Parameterized tractability of multiway cut with parity constraints. In

Proceedings of the International Colloquium on Automata, Languages and Programming (ICALP’12). 750–761.

Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh. 2015. Linear time parameterized algorithms for subset feedback

vertex set. In Proceedings of the International Colloquium on Automata, Languages and Programming (ICALP’15). 935–946.

Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh. 2016a. A linear time parameterized algorithm for directed feed-

back vertex set. CoRR abs/1609.04347 (2016).

Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh. 2016b. A linear time parameterized algorithm for node unique

label cover. CoRR abs/1604.08764 (2016).

W. Mader. 1972. Existenzn-fach zusammenhängender Teilgraphen in Graphen genügend großer Kantendichte. Abhand.

Math. Sem. Univ. Hamburg 37, 1 (1972), 86–97.

Dániel Marx. 2006. Parameterized graph separation problems. Theor. Comput. Sci. 351, 3 (2006), 394–406.

Dániel Marx. 2011. Important separators and parameterized algorithms. In Proceedings of the International Workshop on

Graph-Theoretic Concepts in Computer Science. Springer, 5–10.

Dániel Marx, Barry O’Sullivan, and Igor Razgon. 2013. Finding small separators in linear time via treewidth reduction.

ACM Trans. Algor. 9, 4 (2013), 30.

Dániel Marx and Igor Razgon. 2014. Fixed-parameter tractability of multicut parameterized by the size of the cutset. SIAM

J. Comput. 43, 2 (2014), 355–388.

David W. Matula and Leland L. Beck. 1983. Smallest-last ordering and clustering and graph coloring algorithms. J. ACM

30, 3 (1983), 417–427.

Neeldhara Misra, Geevarghese Philip, Venkatesh Raman, and Saket Saurabh. 2012. On parameterized independent feedback

vertex set. Theor. Comput. Sci. 461 (2012), 65–75.

Jaroslav Nešetřil and Patrice Ossana de Mendez. 2008. Grad and classes with bounded expansion I. Decompositions. Eur. J.

Combin. 29, 3 (2008), 760–776.

Jaroslav Nešetril and Patrice Ossona de Mendez. 2009. From sparse graphs to nowhere dense structures: Decompositions,

independence, dualities. and limits. In Proceedings of the European Congress of Mathematics. 135–165.

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

http://worker2013.mimuw.edu.pl/slides/update-opl.pdf

Covering Small Independent Sets and Separators 32:31

Jaroslav Nešetřil and Patrice Ossona de Mendez. 2011. On nowhere dense graphs. Eur. J. Combin. 32, 4 (2011), 600–617.

Jaroslav Nešetřil and Patrice Ossona de Mendez. 2012. Sparsity—Graphs, Structures, and Algorithms. (Algorithms and Com-

binatorics, Vol. 28).Springer.

Marcin Pilipczuk and Magnus Wahlström. 2018. Directed multicut is W [1]-hard, even for four terminal pairs. ACM Trans.

Comput. Theor. 10, 3 (2018), 13.

M. S. Ramanujan and Saket Saurabh. 2014. Linear time parameterized algorithms via skew-symmetric multicuts. In Pro-

ceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA’14). 1739–1748.

Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. 2004. Finding odd cycle transversals. Oper. Res. Lett. 32, 4 (2004), 299–301.

Neil Robertson and Paul D. Seymour. 1995. Graph minors. XIII. The disjoint paths problem. J. Comb. Theory, Ser. B 63, 1

(1995), 65–110.

Mechthild Stoer and Frank Wagner. 1997. A simple min-cut algorithm. J. ACM 44, 4 (1997), 585–591.

Benny Sudakov. 2016. Graph theory. Lect. Notes (2016). http://www2.math.ethz.ch/education/bachelor/lectures/fs2016/

math/graph_theory/graph_theory_notes.pdf.

Received July 2018; revised January 2020; accepted January 2020

ACM Transactions on Algorithms, Vol. 16, No. 3, Article 32. Publication date: May 2020.

http://www2.math.ethz.ch/education/bachelor/lectures/fs2016/math/graph_theory/graph_theory_notes.pdf
http://www2.math.ethz.ch/education/bachelor/lectures/fs2016/math/graph_theory/graph_theory_notes.pdf

