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Abstract In this work, we have studied lepton flavor violat-
ing (LFV) decays of Z gauge boson and Higgs boson (H ) in
the scotogenic model. We have computed branching ratios
for the decays Z → �α�β and H → �α�β in this model.
Here, �α and �β are different charged lepton fields. After fit-
ting to the neutrino oscillation observables in the scotogenic
model, we have found that the branching ratios for the LFV
decays of Z and H can be as large as ∼ 10−8 and ∼ 10−3

respectively. However, after satisfying the constraints due to
non-observation of �α → �βγ decays, the above mentioned
branching ratio results are found to be suppressed by a factor
of ∼ 10−7.

1 Introduction

Physics beyond the standard model [1,2] can be probed by
searching for lepton flavor violating (LFV) [3] processes
in experiments. So far no LFV signal has been observed
in experiments, and as result, upper bounds exist on vari-
ous LFV processes [4]. In the standard model these exper-
imental limits are satisfied, since LFV processes are highly
suppressed due to Glashow–Iliopoulos–Maiani cancellation
mechanism. On the other hand, in a beyond standard model,
the branching ratios for these processes can be appreciably
large and the model can be constrained by experiments.

Scotogenic model [5] is an extension of standard model,
which explains the neutrino mass and dark matter problems,
which are briefly described below. Neutrino masses are found
to be tiny [6], and hence, in order to explain the smallness of
neutrino masses a different mechanism should be proposed
for them [7]. Regarding the dark matter problem, it is known
that the universe consists of nearly 25% of energy in the
form of non-baryonic matter [8], which cannot be explained
by the standard model. In the scotogenic model, the origin
of neutrino masses are explained by a radiative mechanism
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by proposing an extra scalar doublet (η), three right-handed
Majorana neutrinos (Nk) and an additional Z2 symmetry.
Under Z2 symmetry, which is unbroken, η and Nk are odd
and all the standard model fields are even. As a result of
this, the lightest among the neutral Z2-odd particles can be a
candidate for the dark matter.

Various phenomenological consequences of scotogenic
model have been studied in relation to LFV, dark matter,
matter-antimatter asymmetry and colliders [9–20]. In the
studies on LFV in the scotogenic model, the following pro-
cesses have been analyzed: �α → �βγ , �α → 3�β and con-
version of μ to e [9,10]. In a related direction, see Ref. [21],
for a study on LFV in the supersymmetric scotogenic model
[22]. In contrast to above mentioned studies, in this work, we
analyze the LFV decays of Z and Higgs boson in the sco-
togenic model [5]. The decays Z → �α�β and H → �α�β

are driven at 1-loop level by η± and Nk , where η± is the
charged component of η. We compute branching ratios for
these decays, which we find to be dependent on the Yukawa
couplings and masses of η± and Nk . By varying the param-
eters of the model, we study on the reach of the values of the
above mentioned branching ratios.

The current experimental bounds on the branching ratios
of Z → �α�β and H → �α�β are as follows [23–28]:

Br(Z → eμ) < 7.5 × 10−7,

Br(Z → eτ) < 9.8 × 10−6,

Br(Z → μτ) < 1.2 × 10−5. (1)

Br(H → eμ) < 6.1 × 10−5,

Br(H → eτ) < 4.7 × 10−3,

Br(H → μτ) < 2.5 × 10−3. (2)

In future, LFV decays of Z and H will be probed. For
instance, in the upcoming e+e− collider such as the FCC-ee,
the following sensitivities can be probed for the LFV decays
of Z [29].
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Br(Z → eμ) ∼ 10−10 − 10−8,

Br(Z → eτ) ∼ 10−9,

Br(Z → μτ) ∼ 10−9. (3)

Similarly, the bounds on LFV decays of Higgs boson, given
in Eq. (2), may be reduced in future by the LHC. Since in
future experiments, there is an interest to probe LFV decays
of Z and H , it is worth to compute the branching ratios of
these decays in the scotogenic model. It is also interesting
to analyze the status of the above mentioned decays in this
model, in relation to the present and future bounds on them.

As already stated, the LFV decays of Z and H are medi-
ated at 1-loop by η±, Nk in the scotogenic model. The same
mediating particles, in this model, can also drive �α → �βγ

at 1-loop level. As a result of this, there exist a correlation
between branching ratios of Z , H → �α�β and that of �α →
�βγ . Since stringent bounds exists on the non-observation
of �α → �βγ [4], we have studied the implications of those
bounds on the branching ratios of Z , H → �α�β . For related
studies on LFV decays of Z and H , see Refs. [30–43].

The neutrino masses in the scotogenic model are gener-
ated at 1-loop level through the mediation of neutral compo-
nents of η and Nk . As a result of this, neutrino masses in this
model depend on neutrino Yukawa couplings and masses of
neutral components of η and Nk . As already stated before,
the branching ratios for Z , H → �α�β also depend on the
neutrino Yukawa couplings and masses of η± and Nk . One
can notice that there exist a correlation between branching
ratios of Z , H → �α�β and neutrino masses and mixing
angles. We have explored this correlation and we have found
that the branching ratios of Z → �α�β can reach as high as
10−8 by satisfying the perturbativity limits on the parameters
of the scotogenic model. On the other hand, the branching
ratios for H → �α�β can reach as high as 10−3. However,
the above mentioned results are obtained without imposing
the constraints due to non-observation of �α → �βγ . After
imposing the constraints due to �α → �βγ , we have found
that the above mentioned results on the branching ratios are
suppressed by a factor of 10−7. As a result of this, the decay
H → μτ is found to have the highest branching ratio of
∼ 10−10, in our analysis on the LFV decays of Z and H .

In this work, although we study LFV decays of both Z
and H , only the LFV decays of H have been studied in Ref.
[44]. Our method of computing the branching ratios for LFV
decays of H is different from that of Ref. [44]. Moreover,
only an estimation on the branching ratio of H → μτ has
been made in Ref. [44], in the context of scotogenic model.
Whereas, we have studied branching ratios for all LFV Higgs
decays in more details here. We compare our results with that
of Ref. [44] towards the end of this paper. See Ref. [45] for
some discussion on LFV decays of Z and H in the context
of generalized scotogenic model.

The paper is organized as follows. In the next section, we
briefly describe the scotogenic model. In Sect. 3, we present
analytic expressions on the branching ratios of Z → �α�β

and H → �α�β in the scotogenic model. In Sect. 4, we ana-
lyze these branching ratios and present our numerical results
on them. We conclude in the last section.

2 Scotogenic model

Scotogenic model [5] is an extension of the standard model,
where the additional fields are one SU (2) scalar doublet
η = (η+, η0)T and three singlet right-handed neutrinos Nk .
This model has an additional discrete Z2 symmetry, under
which η, Nk are odd and all the standard model fields are
even. To construct the invariant Lagrangian of this model, we
can choose a basis where the Yukawa couplings for charged
leptons and the masses of right-handed neutrinos are diag-
onal. In such a basis, the Lagrangian of this model in the
lepton sector is [5]

− LY = fα L̄ Lαφ�Rα + hαk L̄ LαηcNk + Mk

2
Nc
k Nk + h.c.

(4)

Here, α = e, μ, τ and k = 1, 2, 3. LLα = (νLα, �Lα)T is
a left-handed lepton doublet, �Rα is a right-handed singlet
charged lepton, φ = (φ+, φ0)T is the scalar Higgs doublet
and ηc = iσ2η

∗, where σ2 is a Pauli matrix. φ and η are
the only two scalar fields of this model. The scalar potential
between these two fields is given below [5].

V = m2
1φ

†φ + m2
2η

†η + 1

2
λ1(φ

†φ)2 + 1

2
λ2(η

†η)2

+λ3(φ
†φ)(η†η) + λ4(φ

†η)(η†φ)

+1

2
λ5[(φ†η)2 + h.c.]. (5)

Here, λ5 is chosen to be real, without loss of generality. Since
Z2 is an exact symmetry of this model, we should have m2

1 <

0 and m2
2 > 0 so that only φ acquires vacuum expectation

value (VEV), whereas η does not acquire VEV. Since only φ

acquires VEV, the physical fields in the neutral components
of φ and η can be written as

φ0 = H√
2

+ v, η0 = 1√
2
(ηR + iηI ) (6)

Here, H is the Higgs boson and v ≈ 174 GeV. Now, after the
electroweak symmetry breaking, the physical components of
φ and η acquire masses, whose expressions in the form of
mass-squares are given below [5].

m2(H) ≡ m2
H = 2λ1v

2,

m2(η±) ≡ m2
η± = m2

2 + λ3v
2,

m2(ηR) ≡ m2
R = m2

2 + (λ3 + λ4 + λ5)v
2 = m2

0 + λ5v
2,
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m2(ηI ) ≡ m2
I = m2

2 + (λ3 + λ4 − λ5)v
2 = m2

0 − λ5v
2.

(7)

Here, m2
0 = m2

2 + (λ3 + λ4)v
2.

After the electroweak symmetry breaking, the first term
of Eq. (4) give masses to charged leptons, whose expressions
can be written as

m�α = fαv. (8)

On the other hand, since η does not acquire VEV, the second
term of Eq. (4) do not generate Dirac masses for neutrinos.
As a result of this, neutrinos are massless at tree level. How-
ever, at 1-loop level, neutrinos acquire masses through the
mediation of neutral components of η and Nk [5]. By taking
� = diag(�1,�2,�3), the mass expressions for neutrinos
at 1-loop level can be written as follows [5].

(Mν)αβ = (h�hT )αβ =
3∑

k=1

hαkhβk�k,

�k = Mk

16π2

[
m2

R

m2
R − M2

k

ln
m2

R

M2
k

− m2
I

m2
I − M2

k

ln
m2

I

M2
k

]
.

(9)

Using the Casas–Ibarra parametrization [46], the matrix con-
taining Yukawa couplings hαk can be parametrized as

h = U∗
PMNS

√
mνR

√
�

−1
. (10)

Here, UPMNS is the Pontecorvo–Maki–Nakagawa–Sakata
matrix, which can be parametrized [4] in terms of the three
neutrino mixing angles, one CP violating Dirac phase and
two Majorana phases. mν is a diagonal matrix containing the
neutrino mass eigenvalues, which can be written as mν =
diag(m1,m2,m3). R is a complex orthogonal matrix which
satisfies RRT = I = RT R. Using the parametrization of
Eq. (10), one can notice that

Mν = U∗
PMNSmνU

†
PMNS . (11)

From the above equation, we can see that the unitary matrix
which diagonalize Mν is UPMNS . Hence, the mixing pat-
tern in the neutrino sector of the scotogenic model can be
explained by parametrizing the Yukawa couplings as given
by Eq. (10).

As described in Sect. 1, the aim of this work is to analyze
LFV decays of Z and H . One can notice that the LFV pro-
cesses in the scotogenic model are driven by the off-diagonal
Yukawa couplings of the second term of Eq. (4). In the next
section, we explicitly show that the branching ratios of the
LFV decays for Z and H are proportional to off-diagonal
elements of hαk . As a result of this, the above mentioned
branching ratios are unsuppressed if hαk ∼ 1. On the other
hand, hαk also determine neutrino masses from Eq. (9). As
already pointed in Sect. 1, masses of neutrinos are very small.

Hence, in order to explain the smallness of neutrino masses
along with hαk ∼ 1, one can make �k very small. The above
statement is possible if one takes m2

R and m2
I to be nearly

degenerate, which is described below. In this work, we take
the masses of the components of η and Mk to be around few
hundred GeV. Now, after using λ5 � 1 in the expressions
for m2

R and m2
I , up to first order in λ5, we get

�k = Mk

8π2

λ5v
2

m2
0 − M2

k

[
1 − M2

k

m2
0 − M2

k

ln
m2

0

M2
k

]
. (12)

Using the above equation, one can notice that the smallness
of neutrino masses in the scotogenic model can be explained
by suppressing the λ5 coupling. For this choice of λ5, the
Yukawa couplings hαk are O(1), which can lead to unsup-
pressed decay rates for LFV processes in the scotogenic
model.

3 Analytic expressions for the branching ratios of
Z → �α�β and H → �α�β

In the scotogenic model, the LFV decays of Z and H are
dominantly driven by η± and Nk , which are shown in Fig. 1.

The amplitudes from the individual diagrams of Fig. 1
can have divergences. But the sum of the amplitudes from
the diagrams of Fig. 1 is finite. For computing the amplitudes
from the diagrams of Fig. 1, we have followed the work of
Ref. [47]. In the individual diagrams of Fig. 1, we assign the
momentum p to the incoming Z or H . We assign momen-
tum p1 and p2 to the outgoing charged leptons �α and �β ,
respectively. In the next two subsections, we present analytic
results for the branching ratios of Z , H → �α�β .

3.1 Branching ratios of Z → �α�β

In all the diagrams of Fig. 1, we can see propagators due to
η± and Nk . Hence, it is convenient to define the following
quantities

Dk = q2 − M2
k , D1η = (q + p1)

2 − m2
η± ,

D2η = (q − p2)
2 − m2

η± (13)

Here, q is a 4-momentum. While computing the amplitudes
from the diagrams of Fig. 1, one come across the following
integrals [48,49], through which we define the quantitiesbk1,2,

ck1,2, dk1,2, f k and uk .

∫
ddq

(2π)d

qμ

DkD1η

= −bk1 p
μ
1 ,

∫
ddq

(2π)d

qμ

DkD2η

= bk2 p
μ
2 ,

∫
ddq

(2π)d

qμ

DkD1ηD2η

= −ck1 p
μ
1 + ck2 p

μ
2 ,
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∫
ddq

(2π)d

qμqν

DkD1ηD2η

= dk1 p
μ
1 pν

1 + dk2 p
μ
2 pν

2 − f k(pμ
1 pν

2 + pμ
2 pν

1) + ukgμν

(14)

The above integrals are expressed in d-dimensions and at the
end of the calculations we take d → 4. From these integrals,
we can notice that bk1,2 and uk are divergent quantities. On

the other hand, ck1,2, dk1,2 and f k are finite. Using the integrals
of Eq. (14), one can obtain the following relations

bk1 − bk2 = (dk1 − dk2 )m2
Z + (κk

1 + κk
2 )(m2

�α
− m2

�β
), (15)

m2
�α
bk1 − m2

�β
bk2 = (m2

�α
dk1 − m2

�β
dk2 )m2

Z + (m2
�α

− m2
�β

)

×[2uk − f km2
Z + κk

1m
2
�α

+ κk
2m

2
�β

],
(16)

κk
1 = dk1 + f k − ck1, κk

2 = dk2 + f k − ck2 (17)

Here, mZ is the mass of Z gauge boson.
All the diagrams in Fig. 1 give divergent amplitudes for

the case of Z → �α�β . However, one can notice that the sum
of the amplitudes from these diagrams is finite, after using
Eqs. (15) and (16). For the decay Z → �+

α �−
β , we have found

the total amplitude from the diagrams of Fig. 1 as

− iMZ = ū(p2)[AL
1 γ μPL + AR

1 γ μPR

+AL
2 iσ

μν pνPL + AR
2 iσ

μν pν PR]v(p1)εμ(p),

PL(R) = 1 ∓ γ5

2
, σμν = i

2
[γ μ, γ ν],

AL
1 =

3∑

k=1

g

cW

(
s2
W − 1

2

)
h∗

αkhβk(d
k
Z − f kZ )m2

Z ,

AR
1 =

3∑

k=1

g

cW
h∗

αkhβkκ
k
Zm�αm�β ,

AL
2 =

3∑

k=1

g

cW

(
s2
W − 1

2

)
h∗

αkhβkκ
k
Zm�β , AR

2

=
3∑

k=1

g

cW

(
s2
W − 1

2

)
h∗

αkhβkκ
k
Zm�α ,

dkZ = dk1 = dk2 = −i

16π2

∫ 1

0
dx

∫ 1−x

0

dy
y2

−y(1 − x − y)m2
Z + xM2

k + (1 − x)m2
η±

,

f kZ = −i

16π2

∫ 1

0
dx

∫ 1−x

0

dy
y(1 − x − y)

−y(1 − x − y)m2
Z + xM2

k + (1 − x)m2
η±

,

ckZ = ck1 = ck2 = −i

16π2

∫ 1

0
dx

∫ 1−x

0

dy
y

−y(1 − x − y)m2
Z + xM2

k + (1 − x)m2
η±

,

κk
Z = κk

1 = κk
2 = dkZ + f kZ − ckZ . (18)

Here, sW (cW ) = sin θW (cos θW ), where θW is the weak-
mixing angle. g is the coupling strength of SU (2) gauge
group of the standard model. From the above amplitude,
notice that, except AL

1 , rest of the form factors of it are propor-

tional to charged lepton masses. Since
m2

�α

m2
Z

� 1, the form

factors AR
1 and AL ,R

2 give subleading contributions to the
branching ratio of Z → �+

α �−
β . As a result of this, the lead-

ing contribution to the branching ratio of Z → �α�β is found
to be

Br(Z → �α�β) = �(Z → �+
α �−

β ) + �(Z → �−
α �+

β )

�Z

=
(

g

cW

)2 (
s2
W − 1

2

)2

× m5
Z

12�Z

∣∣∣∣∣

3∑

k=1

h∗
αkhβk(d

k
Z − f kZ )

∣∣∣∣∣

2

(19)

Here, �Z is the total decay width of Z gauge boson. In our
numerical analysis, which is presented in the next section,
we have taken �Z = 2.4952 GeV [4].

Fig. 1 Feynman diagrams
representing the decays
Z , H → �α�β . In these
diagrams, wavy line
corresponds to either Z gauge
boson or Higgs boson
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3.2 Branching ratios of H → �α�β

While computing the amplitude for H → �α�β , we can
define the integrals of Eq. (14). Moreover, the relations in
Eqs. (15) and (16) are also valid in this case after replac-
ing m2

Z with m2
H in these equations. Now, for the case of

H → �α�β , the top two diagrams of Fig. 1 give divergent
amplitudes, whereas, the bottom diagram of this figure give
finite contribution. Hence, only the analog of Eq. (15) is suf-
ficient to see the cancellation of divergences between the top
two diagrams of Fig. 1. Now, after summing the amplitudes
from the diagrams of Fig. 1, for the decay H → �+

α �−
β , we

have found the total amplitude as

iMH = ū(p2)
[
AL
H PL + AR

H PR

]
v(p1)

AL
H = √

2
3∑

k=1

h∗
αkhβk

(
λ3c

k
H + m2

�α

v2 κk
H

)
vm�β ,

AR
H = √

2
3∑

k=1

h∗
αkhβk

(
λ3c

k
H +

m2
�β

v2 κk
H

)
vm�α (20)

The expressions for ckH and κk
H are respectively same as that

for ckZ and κk
Z , after replacing m2

Z with m2
H in these expres-

sions. The first term in AL ,R
H is arising due to the bottom

diagram of Fig. 1. On the other hand, the top two diagrams
of Fig. 1 contribute to the second term in AL ,R

H . One can see

that for λ3 ∼ 1, the second term in AL ,R
H gives negligibly

small contribution. In our numerical analysis, we consider
λ3 ∼ 1. Hence, for a case like this, the branching ratio for
H → �α�β is found to be

Br(H → �α�β) =
�(H → �+

α �−
β ) + �(H → �−

α �+
β )

�H

= mH

4π�H
(λ3v)2(m2

�α
+ m2

�β
)

∣∣∣∣∣∣

3∑

k=1

h∗
αkhβkc

k
H

∣∣∣∣∣∣

2

(21)

Here, �H is the total Higgs decay width.
In our numerical analysis, which is presented in the next

section, we have taken mH = 125.1 GeV [4] and �H =
4.08 × 10−3 GeV [50]. This value of �H is same as that
for the Higgs boson of standard model. We have taken this
value for �H in order to simplify our numerical analysis.
The above mentioned value of �H has an implication that
the Higgs boson should not decay into Z2-odd particles of
the scotogenic model. We comment further about this later.

4 Numerical analysis

From the analytic expressions given in the previous section,
we can see that the branching ratios of Z , H → �α�β are

proportional to the Yukawa couplings hαk . The same Yukawa
couplings also drive neutrino masses which are described in
Sect. 2. It is worth to explore the correlation between neutrino
oscillation observables and the branching ratios of Z , H →
�α�β . Here, our objective is to fit the neutrino oscillation
observables in the scotogenic model in such a way that the
branching ratios for Z , H → �α�β can become maximum in
this model. It is explained in Sect. 2 that the above objective
can be achieved by taking hαk ∼ 1 and �k very small. Below
we describe the procedure in order to achieve this objective.

The neutrino oscillation observables can be explained in
the scotogenic model by parametrizing the Yukawa couplings
as given in Eq. (10). In this equation, R is an orthogonal
matrix, whose elements can have a magnitude of O(1). To
simplify our numerical analysis we take R to be a unit matrix.
In such a case we get

h = U∗
PMNS · diag

(√
m1

�1
,

√
m2

�2
,

√
m3

�3

)
(22)

In our analysis we have parametrized UPMNS as [4]

UPMNS =
⎛

⎝
c12c13 s12c13 s13e

−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13
s12s23 − c12c23s13e

iδCP −c12s23 − s12c23s13e
iδCP c23c13

⎞

⎠

(23)

Here, ci j = cos θi j , si j = sin θi j and δCP is theCP violating
Dirac phase. We have taken Majorana phases to be zero in
UPMNS . Shortly below we describe the numerical values for
neutrino masses and mixing angles. Using these values, we
can see that the elements of UPMNS can have a magnitude
of O(1). Hence, we need to make mk

�k
∼ 1 for k = 1, 2, 3 in

order to get hαk ∼ 1. Since neutrino mass eigenvalues mk

are very small, �k should be proportionately small in order
to achieve hαk ∼ 1. It is described in Sect. 2 that �k can be
made very small by suppressing the λ5 parameter.

From the global fits to neutrino oscillation data the fol-
lowing mass-square differences among the neutrino fields
are found [6].

m2
s = m2

2 − m2
1 = 7.5 × 10−5 eV2,

m2
a =

{
m2

3 − m2
1 = 2.55 × 10−3 eV2 (NO)

m2
1 − m2

3 = 2.45 × 10−3 eV2 (IO)
. (24)

Here, NO(IO) represents normal(inverted) ordering. In the
above equation we have given the best fit values. In order to
fit the above mass-square differences, we take the neutrino
mass eigenvalues as

NO : m1 = 0.1ms , m2 =
√
m2
s + m2

1, m3 =
√
m2
a + m2

1.

IO : m3 = 0.1ms , m1 =
√
m2
a + m2

3, m2 =
√
m2
s + m2

1.

(25)
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Table 1 Best fit and 3σ ranges for the neutrino mixing angles and CP
violating Dirac phase, which are obtained from the global fits to neutrino
oscillation data [6]

Parameter Best fit 3σ range

sin2 θ12/10−1 3.18 2.71–3.69

sin2 θ13/10−2 (NO) 2.200 2.000–2.405

sin2 θ13/10−2 (IO) 2.225 2.018–2.424

sin2 θ23/10−1 (NO) 5.74 4.34–6.10

sin2 θ23/10−1 (IO) 5.78 4.33–6.08

δCP/o (NO) 194 128–359

δCP/o (IO) 284 200–353

The above neutrino mass eigenvalues satisfy the cosmologi-
cal upper bound on the sum of neutrino masses, which is 0.12
eV [51]. Apart from neutrino masses, neutrino mixing angles
are also found from the global fits to neutrino oscillation data
[6]. The best fit and 3σ ranges for these variables are given
in Table 1.

In the next two subsections, we present numerical results
on the branching ratios of Z , H → �α�β . From the analytic
expressions given in the previous section, we can see that the
above mentioned branching ratios can become maximum for
large values of Yukawa couplings and λ3 parameter. In order
to satisfy the perturbativity limits on these variables, we apply
the following constraints on the Yukawa couplings and the λ

parameters of the scotogenic model.

|hαk | ≤ √
4π, |λi | ≤ 4π. (26)

4.1 Z → �α�β

As explained previously, to satisfy perturbativity limit, |hαk |
can be as large as

√
4π . Since the magnitude of the elements

of UPMNS are less than about one, from Eq. (22) we can see
that mk

�k
can be as large as 4π in order to satisfy the above

mentioned perturbativity limit. �k depends on Mk , m0 and
λ5. We have plotted mk

�k
versus λ5 in Fig. 2.

In these plots, we have chosen masses for right-handed
neutrinos to be between 100 to 200 GeV. The reason for
such a choice is that, for these low masses of right-handed
neutrinos Br(Z → �α�β) can become maximum. Results
related to Br(Z → �α�β) will be presented shortly later.
In the plots of Fig. 2, for the case of NO, all the lines are
distinctly spaced because of the fact that the neutrino masses
are hierarchical in this case. On the other hand, the neutrino
mass eigenvalues m1 and m2 are nearly degenerate for the
case of IO. As a result of this, red and blue lines in the right-
hand side plot of Fig. 2 are close to each other. From this
figure, we can see that mk

�k
increases when λ5 is decreasing.

This follows from the fact that in the limit λ5 → 0, m2
R

and m2
I are degenerate, and hence, �k becomes vanishingly

small. From Fig. 2, in the case of NO, for λ5 = 3 × 10−3

we get m3
�3

≈ 4π . Hence, for λ5 < 3 × 10−3 and for the
values of m0, Mk taken in Fig. 2, the perturbativity limit for
Yukawa couplings, which is given in Eq. (26), can be violated.
Similarly, from the right-hand side plot of Fig. 2, we can see
that the above mentioned perturbativity limit can be violated
for λ5 < 3.7 × 10−3, in the case of IO.

From Fig. 2, we have obtained the minimum value of λ5

through which the perturbativity limit on the Yukawa cou-
plings can be satisfied. Using this minimum value of λ5 we
have plotted branching ratios for Z → �α�β in Fig. 3 for the
case of NO.

In the plots of this figure, we have taken mη± to be as
low as 170 GeV. One can understand that by increasing this
value, branching ratios for Z → �α�β decreases. The plots
in Fig. 3 are made after fitting to the neutrino oscillation
observables in the scotogenic model. We can see that the
branching ratios for Z → �α�β , in this model, can be as large
as 10−8 − 10−9. These branching ratio values are lower than
the current experimental limits on them, which are given in
Eq. (1). On the other hand, these values can be probed in
the future FCC-ee collider, which can be seen in Eq. (3).
However, as will be described below, the above mentioned
branching ratio values will be suppressed, if constraints due
to non-observation of �α → �βγ are applied. We have also
made the analog plots of Fig. 3, for the case of IO, by taking
λ5 = 3.7 × 10−3. We have found that, in the case of IO, the
branching ratios for Z → �α�β are slightly higher than that
of plots in Fig. 3. But, otherwise, the shape of the curves for
Br(Z → �α�β), in the case of IO, are same as that of Fig. 3.

Regarding the shape of the curves in Fig. 3, we can notice
that the shapes of Br(Z → eμ) and Br(Z → μτ), with
respect to δCP , are similar. On the other hand, the shapes
of Br(Z → eμ) and Br(Z → eτ), with respect to δCP ,
are opposite to each other. We have found that the shapes of
the curves for Br(Z → eμ) and Br(Z → eτ), with respect
to δCP , do not change by changing the values for neutrino
mixing angles. On the other hand, the shape of the curve for
Br(Z → μτ), with respect to δCP , changes with s2

23. For
s2

23 > 0.5, which is the case considered in Fig. 3, the shape
of the curves for Br(Z → eμ) and Br(Z → μτ) are found
to be similar. In contrast to this, for s2

23 < 0.5, the shape
of the curve for Br(Z → μτ) is found to be similar to that
of Br(Z → eτ). Whereas, for s2

23 = 0.5, the shape of the
curve for Br(Z → μτ) has no resemblance with either to
that of Br(Z → eμ) and Br(Z → eτ). The shapes of the
above mentioned branching ratios with respect to δCP depend
on the Yukawa couplings, which in our case is given in Eq.
(22). After using the form of these Yukawa couplings in the
branching ratio expressions of Eq. (19), one can understand
the above described shapes with respect to δCP .

Plots in Fig. 3 are made for a minimum value of λ5 for
which the Yukawa couplings can be close to a value of

√
4π .
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However, the Yukawa couplings hαk can also drive the decays
�α → �βγ , whose branching ratios in the scotogenic model
are as follows [9].

Br(�α → �βγ ) = 3αEW

64πG2
Fm

4
η±

∣∣∣∣∣

3∑

k=1

h∗
αkhβk F2

(
M2

k

m2
η±

)∣∣∣∣∣

2

,

F2(x) = 1 − 6x + 3x2 + 2x3 − 6x2 ln x

6(1 − x)4 . (27)

Here, αEW and GF are fine-structure and Fermi constants,
respectively. The decays �α → �βγ are not observed in
experiments. Hence, the branching ratios for these decays
are constrained as follows [52,53].

Br(μ → eγ ) < 4.2 × 10−13,

Br(τ → eγ ) < 3.3 × 10−8,

Br(τ → μγ ) < 4.4 × 10−8. (28)

After comparing Eqs. (19) and (27), we can see that the same
set of model parameters which determine Br(Z → �α�β)

also determine Br(�α → �βγ ). For the set of model param-
eters taken in Fig. 3, we have found that the branching ratios

for �α → �βγ exceed the experimental bounds of Eq. (28).
The reason for this is as follows. In the plots of Fig. 3, the
Yukawa couplings are close to

√
4π and the masses of medi-

ating particles are between 100 to 200 GeV. For such large
Yukawa couplings and low masses, the branching ratios for
�α → �βγ are quite large that they do not respect the bounds
of Eq. (28). Hence, the plots in Fig. 3 give us the maximum
values that the branching ratios of Z → �α�β can reach in
the scotogenic model, without applying constraints due to
non-observation of �α → �βγ .

Now, it is our interest to know the branching ratios of
Z → �α�β after applying the constraints from Br(�α →
�βγ ). One can notice that Br(�α → �βγ ) depends on
Yukawa couplings, masses of right-handed neutrinos and
η±. Hence, to satisfy the bounds on Br(�α → �βγ ), one
has to suppress Yukawa couplings and increase the masses
for right-handed neutrinos and η±. The mass of η± can be

written as mη± =
√
m2

0 − λ4v2. To satisfy the perturbativ-
ity limit on λ4, we choose λ4 = −4π . With this choice,
the mass of η± can take maximum value, for a fixed value
of m0. Now, the Yukawa couplings depend on m0, λ5 and

Fig. 2 Plots between mk
�k

and λ5. Red, blue and green lines are for m1
�1

, m2
�2

and m3
�3

respectively. Horizontal line indicates the value 4π . Left- and
right-hand side plots are for NO and IO respectively. In both the plots, we have taken m0 = 150 GeV, M1 = 100 GeV, M2 = M1 + 50 GeV and
M3 = M2 + 50 GeV

Fig. 3 Plots between Br(Z → �α�β) and δCP for the case of NO,
without applying the constraints due to non-observation of �α → �βγ .
Numerical values for neutrino masses are taken from Eq. (25). Neutrino
mixing angles are taken to be the best fit values, which are given in Table

1. In both the plots, we have taken λ5 = 3 × 10−3, m0 = 150 GeV, mη±
= 170 GeV, M1 = 100 GeV, M2 = M1 + 50 GeV and M3 = M2 + 50
GeV. In the left-hand side plot, red and blue lines are for eμ and eτ
modes respectively
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masses of right-handed neutrinos, apart from neutrino oscil-
lation observables. Hence, for the above mentioned choice,
Br(Z → �α�β) and Br(�α → �βγ ) depend on m0, λ5

and masses of right-handed neutrinos, apart from neutrino
oscillation observables. In Fig. 4, we have plotted branch-
ing ratios of Z → �α�β after applying the constraints from
Br(�α → �βγ ).

In Fig. 4, we have varied λ5 up to 0.61. The reason for
this is explained below. For the parametric values of Fig. 4,
we can see that the lightest Z2-odd particle in the scotogenic
model is ηI . The mass of ηI decreases with λ5. At λ5 = 0.61,
we get mI ≈ 63.5 GeV. Since the Higgs boson mass is 125.1
GeV, for λ5 > 0.61 there is a possibility that the Higgs can
decay into a pair of ηI . It is described in the previous section
that the total decay width for the Higgs boson in our analysis
is taken to be the same as that in the standard model. Hence,
to avoid the above mentioned decay, we have varied λ5 up to
0.61 in Fig. 4.

From Fig. 4, we can see that the branching ratios for Z →
�α�β vary in the range of 10−17 − 10−15. These values are
suppressed by about 10−7 as compared that in Fig. 3. The
reason for this suppression is due to the fact that the λ5 and
the masses of right-handed neutrinos and η± are large as
compared to those in Fig. 3. As already stated before, the
masses of right-handed neutrinos and η± should be taken

large, otherwise, the constraints on Br(�α → �βγ ) cannot
be satisfied. The mass of lightest right-handed neutrino in
Fig. 4 is taken to be 1 TeV. We have found that, for the case
of M2 = M1+100 GeV and M3 = M2+100 GeV, M1 should
be at least around 500 GeV in order to satisfy the constraints
from Br(�α → �βγ ). However, in such a case, the allowed
range for λ5 becomes narrower than that in Fig. 4 and the
allowed ranges for Br(Z → �α�β) are found to be nearly
same as that in Fig. 4. Although the right-handed neutrino
masses are taken to be non-degenerate in Fig. 4, the plots in
this figure do not vary much with degenerate right-handed
neutrinos of 1 TeV masses. It is stated above that another
reason for the suppression of Br(Z → �α�β) in Fig. 4 is
due to the fact that λ5 is large. This suppression is happening
because Yukawa couplings reduce with increasing λ5. This
fact can be understood with the plots of Fig. 2 and also with
Eq. (22).

In the plots of Fig. 4, we have fixed m0 to 150 GeV. By
increasing this value to 500 GeV, we have found that Br(Z →
�α�β) reduces as compared to that in Fig. 4. This is happening
because mη± increases. Another difference we have noticed
is that, for m0 = 500 GeV and right-handed neutrino masses
to be same as in Fig. 4, the allowed range for λ5 is found to
be ∼ 1.5 − −8.0. This is happening because, by increasing
m0, one has to increase λ5 in order to suppress the Yukawa

Fig. 4 Plots between Br(Z → �α�β) and λ5 for the case of NO, after
applying the constraints from Br(�α → �βγ ). In these plots, solid lines
are allowed and dotted lines are excluded by the constraints due to
Br(�α → �βγ ). Numerical values for neutrino masses are taken from

Eq. (25). Neutrino mixing angles and δCP are taken to be the best fit
values, which are given in Table 1. We have taken m0 = 150 GeV,

mη± =
√
m2

0 + 4πv2, M1 = 1000 GeV, M2 = M1 + 100 GeV and
M3 = M2 + 100 GeV
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couplings and thereby satisfy the constraints on Br(�α →
�βγ ).

We have plotted Br(Z → �α�β) for the case of IO, which
are presented in Fig. 5.

In this case, for m0 = 150 GeV we have found that M1

should be at least around 1.7 TeV in order to satisfy the
constraints on Br(�α → �βγ ). As a result of this, in the plots
of Fig. 5, we have taken M1 = 2 TeV. Comparing the plots of
Figs. 4 and 5, we can conclude the following points. In both
the cases of NO and IO, Br(Z → μτ) is larger than that for
the other LFV decays of Z gauge boson. In the case of NO,
Br(Z → eμ) is one order less than Br(Z → eτ). On the
other hand, in the case of IO, Br(Z → eμ) is slightly larger
than Br(Z → eτ).

4.2 H → �α�β

In this subsection, we present numerical results on the
branching ratios of H → �α�β . After comparing Eqs. (19)
and (21), we can see that a common set of parameters deter-
mine both Br(Z → �α�β) and Br(H → �α�β). Apart from
this common set of parameters, λ3 is an additional parameter
which determine Br(H → �α�β). In our analysis, we have
taken λ3 = 4π in order to satisfy the perturbativity limit
and also to maximize Br(H → �α�β). Apart from the above
mentioned parameters, Br(H → �α�β) also depends on the
charged lepton masses. We have taken these masses to be the
best fit values, which are given in Ref. [4].

First we present the results on Br(H → �α�β) after fitting
to the neutrino oscillation observables, but without satisfying
the constraints from Br(�α → �βγ ). These results are given
in Fig. 6 for the case of NO.

One can compare the branching ratios in this figure with
the current limits on them, which are given in Eq. (2). We can
see that the values for Br(H → eμ) and Br(H → eτ) from
this figure are marginally lower than the current experimen-
tal limits on them. Whereas, the values for Br(H → μτ)

are just below the current experimental limit on this. How-
ever, in the plots of Fig. 6, we have taken λ5 = 3 × 10−3

and the masses of right-handed neutrinos and η± are chosen
to be between 100 to 200 GeV. For this choice of param-
eters, as already explained in the previous subsection, the
Yukawa couplings can be large, and hence, Br(H → �α�β)

can become maximum. Plots in Fig. 6 are made for the case
of NO. We have plotted Br(H → �α�β) for the case of IO by
taking λ5 = 3.7 × 10−3 and for the mass parameters which
are described above. In this case, we have found a slight
enhancement in the values of Br(H → �α�β) as compared
to that of Fig. 6. But otherwise, in the case of IO, the shape
of the curves for Br(H → �α�β) are found to be the same as
that in Fig. 6.

In the plots of Fig. 6, constraints from Br(�α → �βγ ) are
not applied. After applying the constraints from Br(�α →

�βγ ), branching ratios for H → �α�β are given in Fig. 7 for
the case of NO.

One can see that the branching ratios in this figure are
suppressed by a factor of about 10−7 as compared to that in
Fig. 6. The reason for this suppression, which can be under-
stood from the reasoning’s given around Fig. 4, is due to the
fact that λ5 and masses of right-handed neutrinos and η± are
large as compared that in Fig. 6. The mass of lightest right-
handed neutrino is 1 TeV in Fig. 7. As already pointed around
Fig. 4, the value of M1 should be at least around 500 GeV in
order to satisfy the constraints from Br(�α → �βγ ) for the
case of Fig. 7. Even with M1 = 500 GeV, we have found the
allowed ranges for Br(H → �α�β) are nearly same as that of
Fig. 7. Although the right-handed neutrino masses are non-
degenerate in Fig. 7, with degenerate right-handed neutrinos
with masses of 1 TeV we have found that the allowed ranges
for Br(H → �α�β) are similar to that in Fig. 7. In this fig-
ure, among the three LFV decays of H , the branching ratios
of H into τ mode are large, since these branching ratios are
proportional to m2

τ .
We have plotted Br(H → �α�β), after applying the con-

straints from Br(�α → �βγ ), for the case of IO. These plots
are given in Fig. 8.

The masses for right-handed neutrinos are different in this
figure as compared to that in Fig. 7. Nevertheless, the allowed
range of values for Br(H → �α�β) are found to be nearly
same in Figs. 7 and 8.

Among the LFV decays of Z and H , after applying the
constraints from Br(�α → �βγ ), H → μτ is found to have
the largest branching ratio, which is around 10−10. This indi-
cates that probing LFV decays of Higgs boson in experi-
ments is one possible way to test the scotogenic model. How-
ever, in our analysis of LFV decays of H , we have taken
λ3 = 4π , which is the maximum possible value for this
parameter. In this model, the λ3 coupling can also drive the
decay H → γ γ . In the LHC experiment, it is found that there
is no enhancement in the signal strength of this decay as com-
pared to the standard model prediction [4]. As a result of this,
one can expect some constraints on λ3 parameter. Apart from
this, the model parameters of the scotogenic model can get
additional constraints due to precision electroweak observ-
ables and relic abundance of dark matter. One may expect
that the above mentioned constraints can lower the allowed
ranges for the branching ratios of LFV decays of Z and H
in this model.

As stated in Sect. 1, in the context of scotogenic model,
branching ratio for H → μτ has been estimated as Br(H →
μτ) � 10−7λ2

3 [44], after applying the constraint from
Br(τ → μγ ). In our analysis, we have applied constraints
due to non-observation of all LFV decays of the form
�α → �βγ and we have found that Br(H → μτ) can be
as large as ∼ 10−10, even with λ3 = 4π . Hence, our result
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Fig. 5 Plots between Br(Z → �α�β) and λ5 for the case of IO, after
applying the constraints from Br(�α → �βγ ). In these plots, solid lines
are allowed and dotted lines are excluded by the constraints due to
Br(�α → �βγ ). Numerical values for neutrino masses are taken from

Eq. (25). Neutrino mixing angles and δCP are taken to be the best fit
values, which are given in Table 1. We have taken m0 = 150 GeV,

mη± =
√
m2

0 + 4πv2, M1 = 2000 GeV, M2 = M1 + 100 GeV and
M3 = M2 + 100 GeV

Fig. 6 Plots between Br(H → �α�β) and δCP for the case of NO, without applying the constraints from Br(�α → �βγ ). See the caption of Fig.
3, for parametric values and neutrino oscillation observables, which are used in these plots
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Fig. 7 Plots between Br(H → �α�β) and λ5 for the case of NO, after
applying the constraints from Br(�α → �βγ ). In these plots, solid lines
are allowed and dotted lines are excluded by the constraints due to

Br(�α → �βγ ). See the caption of Fig. 4, for parametric values and
neutrino oscillation observables, which are used in these plots

Fig. 8 Plots between Br(H → �α�β) and λ5 for the case of IO, after
applying the constraints from Br(�α → �βγ ). In these plots, solid lines
are allowed and dotted lines are excluded by the constraints due to

Br(�α → �βγ ). See the caption of Fig. 5, for parametric values and
neutrino oscillation observables, which are used in these plots
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on Br(H → μτ) is more stringent than the above mentioned
estimation of Ref. [44].

5 Conclusions

In this work, we have studied LFV decays of Z gauge boson
and Higgs boson in the scotogenic model. After deriving
analytic expressions for the branching ratios of the above
mentioned decays, numerically we have studied how large
they can be in this model. The above mentioned numerical
study has been done by satisfying the following quantities: fit
to neutrino oscillation observables, constraints on Br(�α →
�βγ ) and perturbativity limits on the parameters of the model.
If we satisfy only the fit to neutrino oscillation observables
and the perturbativity limits on the model parameters, we
have found the following maximum values for the branching
ratios of LFV decays of Z and H : Br(Z → eμ, eτ) ∼ 10−9,
Br(Z → μτ) ∼ 10−8, Br(H → eμ) ∼ 10−7, Br(H →
eτ) ∼ 10−4, Br(H → μτ) ∼ 10−3. However, in addition
to satisfying the above mentioned quantities, after satisfying
constraints on Br(�α → �βγ ), the above mentioned results
on the branching ratios get an additional suppression of about
10−7. If the scotogenic model is true, results obtained in this
work can give indication about future results on LFV decays
of Z and H in the upcoming experiments.

Note added: While this manuscript was under preparation,
Ref. [54] had appeared where LFV decays of Higgs boson
were studied in the scotogenic model. The method of com-
puting the branching ratios for these decays and numerical
study done on them in Ref. [54] are found to be differ-
ent from what we have done in this work. After comparing
Br(H → �α�β) versus Br(�α → �βγ ) in Ref. [54], it is
shown that the allowed values for Br(�α → �βγ ) are sup-
pressed to around 10−34. Moreover, the branching ratio for
H → μτ is also shown to be suppressed to around 10−37.
The above mentioned results are different from what we have
presented here.
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