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Abstract

Harvesting visible light of the solar spectrum by coupled semiconductor based systems

where sensitization of a wide band gap semiconductor with a small band gap semiconductor

advantageous for photocatalytic as well as photovoltaic applications. A facile one pot

synthesis of several CdS/CeO2 hetero nanostructures has been carried out without using

expensive surfactants, capping agents and molecular linkers. Various techniques such as X-

ray diffraction (XRD), Transmission electron microscopy (TEM), X-ray photoelectron

spectroscopy (XPS), diffuse reflectance UV-Vis spectroscopy, Raman spectroscopy and

BET surface area were used to characterize the samples. XRD and Raman spectroscopic

data provided the information about the presence of both CdS and CeO2 phases. TEM

proves the proper dispersion and well connectivity between the CdS and CeO2 which may

be due to the single step synthesis of the composites. XPS gives the information about the

presence of elements such as Cd, Ce, O, S, C and N, where the presence of latter two

elements can be attributed to the in-situ C and N doping during the combustion synthesis.

UV-visible spectroscopy reveals the absorption in both UV and visible regions due to the

presence of both CeO2 and CdS. The visible light activity of the composites have been

ascribed by the H2 production from water by using sacrificial reagents, simultaneous

removal of phenol and Cr(VI) from aqueous streams. Among the synthesized composites

CdS/CeO2 (1:1) has shown superior activity which can be attributed to the optimum

sensitization of CeO2 which induces enhanced electron transfer from CdS to CeO2 that

decreases the exciton recombination.
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Nomenclature
XRD: X-ray diffraction

UV-Vis Spectroscopy: Ultra Violet- Visible Spectroscopy

XPS: X-ray Photoelectron Spectroscopy

TEM: Transmission Electron Microscopy

GC: Gas Chromatography



viii

Contents

Declaration……………………………………………………………………………...ii

Approval Sheet…………………………………………………………………………iii

Acknowledgements............................................................................................................ iv

Abstract..............................................................................................................................vi

Nomenclature .......................................................................................................... vii

1 Introduction.............................................................................................................1

1.1 Search for Clean and Renewable Energy Source ......................................................... 1

1.2. Water pollution and Photocatalysis ............................................................................. 3

1.2.2 Water Treatment Techniques................................................................................. 4

1.2.2 Advanced Oxidation Processes ............................................................................. 5

1.2.3 What is Photocatalysis…? ..................................................................................... 6

1.2.4 Mechanism of photocatalysis ................................................................................ 7

1.2.5 Recombination of excitons…………………………………………………………8

1.2.6 Need for a visible light active photocatalyst……………………………………….9

1.3. Methods for Preparing Visible Active Titania………………………………………..9

1.3.1 Dye sensitization……………………………………………………………………9

1.3.2 Coupling with small band gap semiconductor…………………………………….10

1.3.3 Doping……………………………………………………………………………..11

1.3.4 Nitrogen doping……………………………………………………………………11

1.3.5 Carbon doping……………………………………………………………………..12

1.3.6 Sulfur doping………………………………………………………………… …...12

1.3.7 Doping with transition metals……………………………………………………..13

1.3.8 Synthetic methods for preparation of TiO2………………………………………..14
1.4. Combustion Synthesis………………………………………………………………….15

1.4.1 Synthesis of coupled semiconductors……………………………………………..16

2 Characterization techniques……………………………………………………17
2.1 X-ray Powder Diffraction (XRD)............................................................................... 18

2.2 X-ray Photoelectron Spectroscopy (XPS) .................................................................. 19

2.3 UV-vis Diffuse Reflectance Spectroscopy (DRS UV-vis) ......................................... 20



ix

2.4 N2 sorption analysis ...............................................................................................21-23

2.5 Electron microscopy…………………………………………………………….. 24-25

3 Experimental Section............................................................................................26

3.1 Synthesis of catalyst ................................................................................................... 26

3.2 Instruments Used…………………………………………………………………27-28

4 Results and Discussion .........................................................................................29

4.1 XRD............................................................................................................................ 29

4.2 TEM………………………………………………………………………………….30

4.3 Diffuse reflectance UV-Vis spectral studies…………………………………………31

4.4 Raman Spectroscopy…………………………………………………………………32

4.5 XPS………………………………………………………………………………33-35

4.6 N2 adsorption studies…………………………………………………………………36

4.7 Photocatalytic Studies……………………………………………………………36-37

4.7.1 Photocatalytic oxidation of phenol……………………………………………....38

4.7.2 Simultaneous oxidation of phenol and reduction of Cr(VI)……………………..39

4.7.3 Photocatalytic H2 production from water………………………………………..40

5 Conclusions………………………………………………………………………………41

References……………………………………………………………………...42-50



1

Chapter 1

Introduction

1.1 Search for Clean and Renewable Energy Source

Energy and environmental issues are important topics at global level in the present

day scenario [1-3]. It is indispensable to generate clean energy sources in order to

solve these issues. Hydrogen plays an important role as an energy carrier because it

is the ultimate clean energy source and it can be used in applications such as fuel

cells and chemical industries [4-6]. At present, hydrogen is mainly produced from

fossil fuels such as natural gas by steam methane reforming as represented by the

following equations [7].

CH4 + H2O           CO + 3H2 ……………………………. (1)

CO + H2O            CO2 + H2 …………………………….  (2)

In this process fossil fuels are consumed and CO2 is emitted. Gradual lack of

fossil fuel has become a major problem since they are obtained from the nature in

the form of oil, natural gas, coal etc. Moreover as they are obtained from the nature

the supply is not enough with respect to the demand of the society. Also fossil fuels

are depleting rapidly and cause harm to the society by causing acid rain, ozone layer

depletion, air pollution, oxygen depletion and climate change etc [8-9]. It indicates

that there is an immediate need for a clean energy source which causes no virulent
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effect to the society and should have enough supply of energy from that source so

that it can satisfy the requirements.

Although H2 can play an important role as an energy carrier about 95% H2 is

still derived from fossil fuels and obtained by steam reforming or catalytic

decomposition processes. Among these varieties only H2 has attracted much

attention because of its distinct properties [10-12].

• Low Gibbs free energy of formation, no toxicity, lightest element.

• It has highest mass specific energy. For example: 119.3 MJ/Kg for H2 compared

to 44.5 MJ/Kg for gasoline makes it favorable fuel of choice.

• Ecologically neutral ideal candidate to serve as fuel cell, produce little

emissions.

• It is safer than other commonly used natural gas either methane or petrol vapour

(due to high diffusion co-efficient).

• The major advantage is that it can be produced from water which is the most

easily available source of hydrogen.

Therefore Hydrogen can be considered as the simplest possible closed-shell

molecule that can attain great scientific and technological interest as a primary

energy carrier and as a potential transportation fuel [13]. However the present steam

methane reforming used for the H2 production from hydrocarbons is non-renewable

[13-16]. Therefore, there is a need to search for other methods to produce hydrogen

from renewable energy sources. The solar energy that falls on the earth’s surface far

exceeds our energy consumption, and is the only renewable energy that has the

capacity to fulfill current energy demand or those predicted for the future [18]. The

production of hydrogen by using water, catalyst and solar energy is an ideal future
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energy source, independent of fossil reserves. For the economical use of water and

solar energy catalyst that are sufficiently stable, inexpensive and capable of

harvesting light are required. That’s why it requires some special reagents that have

this property to do so. Photocatalysts are one of these reagents that are capable to act

in this way. Therefore photocatalyst can play crucial role to provide clean energy to

the society. Direct splitting of water using a particulate photocatalyst would be a

good way to produce clean and recyclable hydrogen in a large scale. As a result of

these potential environmental and economic benefits, photocatalytic hydrogen

production has been receiving increased attention [19]. Photocatalytic water splitting

promises to enable sustainable large scale hydrogen based energy system using solar

light, and great attention has been paid for the development of photocatalysts. It is

necessary to develop photocatalysts that function under visible light to utilize

sunlight efficiently. For the last 30 years there are various functional photocatalysts

found that can function under visible light.

1.2. Water pollution and photocatalysis

Water pollution has become one of the onerous matters to take challenge against it.

It occurs when surface water or ground water discharged with contaminants has lost its

utility to use for the human life [20]. When the components of water bears with increasing

concentration of many elements such as Ca, Be, Mg etc it is said to be polluted. Water

pollution is the contamination of water bodies (e.g. lakes, rivers, oceans, aquifers and

groundwater) with many organic and inorganic matters. Generally water pollution occurs

when the pollutants are directly or indirectly discharged into water bodies without adequate

treatment to remove noxious compounds [21-23]. Water pollution affects plants and

organisms living in these bodies of water. In almost all cases the effect is damaging not only

to individual species and populations, but also to the natural biological communities. Water
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pollution is a major global problem which requires ongoing evaluation and revision of water

resource policy at all levels [24-26].

1.2.1. Water Treatment Techniques

The treatment of contaminated water mainly involves the techniques such as

mechanical, biological, physical, and chemical processes. After filtration and elimination of

particles in suspension which are called as primary treatments, biological treatment is used

to perform as a secondary treatment. [27-30]. Unfortunately, there are certain pollutants

which are said to be bio-recalcitrant (non-biodegradable), for which much more effective

non-reactive systems, such as air stripping, adsorption on granulated activated carbon,

incineration, ozone and oxidation (tertiary treatments), are needed. These processes are

mainly to treat the wastewaters, and therefore to improve water quality, but some of these

technologies (such as adsorption and filtration) only concentrate the pollutants by

transferring them to other phases. Therefore the next problem may be how to properly

dispose the new pollutant rich streams. Generally organic pollutants are not completely

removable by traditional water treatment technologies like distillation, reverse osmosis, ion-

exchange, carbon adsorption, micro porous membrane filtration. On the other hand

distillation and reverse osmosis remove a wide range of water contaminants but one of their

major disadvantages is that they also remove the good stuff - that is, the trace mineral

elements (heavy metals e.g. copper, zinc, iron) that are also present in water and vital to

human health [31]. Therefore, management of toxic chemicals with strict environmental

legislation drives the development of clean and green processes, to eliminate the pollutants

before they are disposed into the environment. Furthermore, for these processes to be

effective, complete mineralization and degradation of all organic and inorganic

contaminants from water and wastewater, are required.

1.2.2. Advanced Oxidation Processes
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The strong potential of tertiary treatments called Advanced Oxidation Processes

(AOPs) for bio-recalcitrant wastewater treatment is universally recognized today, and many

researchers around the world are devoting their efforts to the development of these

processes [32-35]. Although they make use of different reaction systems, AOPs are all

characterized by the same chemical feature: the production of hydroxyl radicals (OH•).

These radicals can virtually destroy any organic contaminant present in water. They can

even destroy pollutants that are not amenable to biological treatments, which are all

characterized by high chemical stability and difficulty to be completely mineralized. In

order to apply a decontamination technique to these cases, it is necessary to adopt reactive

systems much more effective than those adopted in conventional purification processes.

Among AOPs, heterogeneous photocatalysis has confirmed its efficiency in degrading a

wide range of organic contaminants into CO2 and water. Over the past few decades,

photocatalysis has been the subject of extensive research in the removal of contaminants in

air and water streams. Several features, such as ambient operating conditions, complete

destruction of parent and their intermediate compounds and relatively low operating cost

have confirmed its applicability to water treatment.

1.2.3. What is Photocatalysis…?

Photocatalysis is generally a combination of photochemistry and catalysis. This

implies that both light and a catalyst are needed to enhance the rates of thermodynamically

favorable (ΔG < 0) but kinetically slow photophysical and photochemical transformations.

Photocatalysis has the capability of performing both oxidation and reduction which is a

unique property of it compared to other reactions where either oxidation or reduction may

takes place. Simply photocatalysis can be defined as “a catalytic reaction involving light

absorption by a catalyst or a substrate”[36].

Photocatalysis is believed to mimic natural process photosynthesis which involves

the conversion of CO2 and H2O into starch (chemical energy) in the presence of sunlight
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whereas photocatalysis involves the destruction of toxic organic compounds into CO2 and

H2O.

Figure 1.1. Diagrammatic representation of similarity between photosynthesis and

photocatalysis

1.2.4. Mechanism of photocatalysis

TiO2 under suitable irradiation (energy greater than band gap) can undergo

excitation to produce electron hole pairs. As shown in figure II the produced hole can

combine with OH- from the water to form OH., which is a strong oxidizing agent next to

fluorine. On the other hand the electron present in the conduction band of TiO2 may react

with O2 from atmosphere or O2 dissolved in water to from peroxide radical which on further

reactions can produce again OH. which is responsible for the oxidation capability of a

photocatalyst.
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Figure 1.2. Diagrammatic representation of photocatalytic mechanism

1.2.5. Recombination of excitons

Since the excitons produced during the irradiation of TiO2 are not stable they can

recombine in several ways such as surface recombination and volume recombination. If the

electron and hole recombines just before reaching the surface it is termed as surface

recombination whereas the recombination taking place within the bulk of the material is

called as volume recombination. Volume recombination can be minimized by preparing the

material in nano size, so that the time taken for the electron to reach the surface might be

less. Surface recombination can be reduced by doping of TiO2 where the dopant can trap the

electron thereby preventing the exciton recombination. Figure 1.3. clearly depicts the

different types of recombination that are taking place in a photo catalytic process.
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Figure 1.3. Diagrammatic representation of different recombination processes taking

place in photocatalysis

1.2.6. Need for a visible light active photocatalyst

Since the discovery of photocatalytic splitting of water on titania electrodes by

Fujishima and Honda in 1972 [37] heterogeneous photocatalysis have gained much

importance. Afterwards tremendous research has been done in understanding the

fundamental processes and in enhancing the photocatalytic efficiency of TiO2 which are

often related to energy renewal and energy storage [38-42]. Many semiconductors have

been tested so far as photocatalysts, although only TiO2 in the anatase form seems to have

the most interesting required attributes; such as high stability, good performance and low

cost. In this respect, the photodecomposition power of TiO2, for a wide variety of organic

compounds present in water, has been reported in the literature. However, its wide band gap

energy (3.0 eV for rutile and 3.2 eV for anatase) means that only 4% of solar spectrum

could be used as light source in an industrial application. Therefore, to use visible sunlight,

which composes the largest part of solar radiation, a photocatalyst TiO2 with strong

absorption in the visible region should be developed.
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1.3. Methods for Preparing Visible Active Titania

Due to the relatively large band gap of TiO2 (3.2 eV), UV light must be used in its

photo excitation process, allowing with this the use of only 5% of the solar light that reaches

the surface of the earth each day. Because of this, a great deal of research has focused on

lowering the threshold energy for the photo excitation process. As a consequence, a larger

fraction of the solar spectrum could be used effectively for photocatalysis and other

processes. Thus, the development of a photocatalytic TiO2 system capable of using natural

sunlight to degrade organic and inorganic contaminants in wastewater can be achieved.

These improvements in the overall performance of titania have been led by two main lines

of research: dye sensitization or coupling with small band gap semiconductor and doping

[43].

1.3.1. Dye sensitization

Dyes are natural light absorbers and electron transfer agents. They have been used

for energy conversion in a process that copies the plant photosynthesis mechanism in

electrochemical energy converting solar cells [44]. Dye sensitization is a process occurring

when a light-excited dye molecule adsorbed at the semiconductor surface injects electrons

into the conduction band of the semiconductor substrate. Titania based dye sensitization has

potentially low cost, low environmental impact, and good power conversion efficiency.

Figure 1.4. clearly shows the electron transfer processes taking place in case of dye

sensitized TiO2 photocatalyst. However, its more general use is limited by low quantum

efficiency, high carrier recombination, low adsorption of the dye to the surface of the

semiconductor material, dye desorption from the TiO2 due to solvent effects, lack of long-

term stability of the dye under light and heat, etc [45, 46].
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Figure 1.4. Diagrammatic representation of photocatalytic mechanism in dye

sensitized TiO2 system

1.3.2. Coupling with small band gap semiconductor

Sensitizing TiO2 with a small band gap semiconductor like CdS, CdSe, PbS, SnS2,

SnS, Bi2S3, In2S3, CuInS2, etc. is gaining increasing interest because of their matching

conduction band levels that can prevent recombination of hole and photoelectron [47−59].

Moreover these hybrid photocatalysts may have the potential to mimic the natural

photosynthesis [60]. CdS is one of the most suitable metal chalcogenides for photocatalytic

H2 production due to its high activity under visible light and sufficiently negative flat-band

potential [61,62]. Such coupled semiconductor hetero structures (or nano composites) can

also offer the advantages like synergetic effect, efficient charge separation and migration,

expanded visible light response, and improved photostability over the individual

components. TiO2 plays dual roles in the hybrid system as it stabilizes by preventing the

aggregation of CdS and also enhances the charge separation by forming a potential gradient

at the interface of CdS and TiO2. It has been reported that the rate of photo induced electron

transfer at CdS increases by tenfold in the presence of TiO2, and thereby photocatalytic

efficiency [63-65]. Figure 1.5 represents the schematic of photocatalytic mechanism in

coupled semiconductor systems.
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Figure 1.5. Diagrammatic representation of photocatalytic mechanism in coupled

semiconductor system

1.3.3. Doping

There has been a significant interest recently on both non-metal and transition metal

doping of titanium dioxide TiO2. The use of the so-called impurities creates extrinsic

properties in the oxide host and a decrease in the band gap energy. The consequence is an

increase in photoactivity under visible light irradiation. Different types of doping are

reported for titania [66, 67], such as doping of nitrogen, carbon, sulfur and metal ions.

1.3.4. Nitrogen doping

The idea of doping of titanium dioxide materials with nitrogen and other anionic

species was presented in 2001 [68]. This report shows theoretical results for the substitution

of C, N, F, P, or S atoms for oxygen atoms in the titania lattice. The study of density of

states (DOS) for anatase TiO2, suggests that substitutional doping using nitrogen is more

effective due to the mixing of nitrogen 2p states with oxygen 2p states, thus causing a

significant decrease in the width of the overall band gap [68]. The theoretical predictions
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presented in the report were supported by experimental results using visible light and

photooxidation tests for nitrogen doped TiO2.

1.3.5. Carbon doping

Among the various approaches to improve TiO2 visible light activity

[68,69], doping by anions has been extensively studied as the most prominent approach for

the development of visible light activated photocatalysts with carbon being the most

favorable dopant. It is reported that carbon doping not only can improve the significant

adsorption of organic pollutant molecules on the catalyst surface [70,71], but also can

enhance the conductivity of TiO2, which can thereby facilitate the charge transfer from the

bulk of the TiO2 to the surface where the desired redox reactions takes place [72,73].

Moreover theoretical studies also claimed that carbon doping has a potential advantage over

nitrogen doping [74].

1.3.6. Sulfur doping

Substitutional doping of sulfur similar to that of nitrogen doping has been reported

[68]. However, sulfur doping was dismissed experimentally due to its large ionic size

[68].The idea was that substitution of sulfur at the oxygen sites could significantly modify

the electronic structure of TiO2, but conventional doping techniques could not achieve this

because sulfur has a larger ionic radius compared to N or F [68]. Furthermore, narrowing

effect and delocalization of the valence band edge is expected to occur only in the case of

higher sulfur doping levels [75].

1.3.7. Doping with transition metals
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Figure 1.6. Schematic representation of photocatalytic mechanism in metal doped TiO2

Although the effect of metal doping of TiO2 has been studied widely in order to

improve its catalytic activity, ambiguous conclusions are still often found. Some authors

postulated that doping with cations having a valence higher than +4 can increase the

photoactivity [76] while doping with trivalent metal ions would show a negative effect in

photocatalytic activity [77].

However, both positive and negative effects have been reported for the

photocatalytic activity of metal doped TiO2. For example, doping using Fe 3+, Mo5+, Ru3+,

Os3+, Re5+, V4+, and Rh3+ was claimed to increase the photoreactivity for oxidation and

reduction processes however, the same study reported the opposite effect with Co3+ and Al

3+ showing a decrease in photoreactivity [78]. Similar effects were found with low valence

(Fe3+;Co2+;Ni2+) and high valence cations (Mo5+, Nb5+, W6+) [79]. Theoretically, the addition

of Ti3+,V3+, Cr3+, Mn3+, and Fe3+ in both anatase and rutile TiO2 crystal modifications were

studied and it was concluded that there is a significant band gap narrowing effect for

anatase; whereas, for the rutile modification no effect is expected [80].The positive effect of
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metal doping is believed to be related to the energy level and d-electron configuration of the

dopants in the host structure [78].

Additionally, it is believed that the presence of metal species allows the formation

of a permanent space charge region on the surface of the semiconductor, improving the

separation of photocarriers. Other authors conclude that although metal ion doping should

decrease the photo threshold energy of TiO2, the metal ion may also serve as a

recombination center for electrons and holes, thus diminishing the overall activity of the

photocatalyst [79, 81]. In conclusion, at present there is still no consensus in this matter and

more research is needed in order to resolve the conflicting metal doping effects reported

[81]. Figure 1.6. shows the schematic representation of photocatalytic mechanism in metal

doped TiO2.

1.3.8. Synthetic methods for preparation of TiO2

While different methods have been used for the preparation of ceramic oxides and

inorganic materials in general, most commonly solid-state synthetic routes are used.

However, these routes are time consuming and have high energy requirements [79]. Thus a

search for more energy efficient methods in the preparation and improvement of oxide

materials is relevant. A large number of methods is emerging as synthetic routes for the

preparation and doping of titania. These include: electrochemical methods [82, 83], ionized

cluster beam deposition [84], aerosol process [85, 86], gas condensation [87], homogeneous

precipitation at low temperatures [HPPLT ][88], sol-gel process [89], mechanochemical

synthesis [90],hydrothermal process [91-93] and combustion synthesis [79, 94-97].

Comparatively, each method has advantages and disadvantages. For instance, aerosol

process gives a pure product with no multiple steps, but the high temperature required leads

to aggregation of particles. Among low temperature methods, the hydrothermal approach is

attractive because of the use of TiOSO4 as raw material and the use of a low temperature

(300o C) in aqueous media. However, the total time required varies between 1-6 hours and
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post preparation annealing of samples is required (temperatures higher than 450 o C). Sol-

gel process is also a low temperature method, but it incorporates a series of successive steps

and costly chemicals and does not easily allow for control of composition. In addition, the

sample must be annealed in order to improve the photocatalytic activity [89]. On the other

hand, combustion synthesis exhibits advantages over the other methods for the preparation

of TiO2. Thus the present work has utilized this synthetic technique for the synthesis of C-

doped TiO2 nanomaterials.

1.4. Combustion Synthesis

Combustion synthesis, also known as self-propagating high-temperature synthesis

(SHS), uses a highly exothermic redox chemical reaction between metals and nonmetals, for

the synthesis of oxide and non-oxide materials [79]. This method presents a variety of

advantages that include: low energy requirement, generation of high-reaction temperature,

short duration of reaction, high yields, highly crystalline products, simplicity and low cost

[94, 98]. The synthesis is obtained through an exothermic, rapid, self-sustaining and self-

propagating reaction. This is possible due to the large amount of heat released by the

reaction itself, and is this exothermicity what makes the technique special and attractive [93,

98]. As with any other combustion reaction, combustion synthesis requires the presence of

an oxidizer (oxygen or any other electronegative element) and a fuel (source of reducing

elements to the reaction).

1.4.1. Synthesis of coupled semiconductors

Various preparation strategies, such as precipitation, micro emulsion process,

chemical bath deposition (CBD), chemical vapor deposition, and electrochemical

deposition, have been studied to synthesize CdS/metal oxide nano composites [99-103].

Many of these techniques deal separately the preparation of metal oxide nanostructures and

sensitization with low band gap semiconductor. It is well known that the contact ability

between QDs and metal oxide is less strong when compared with metal and metal oxide.
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Hence synthesis of stable and active and QDs/metal oxide composite materials is still a

challenge [104].

Over the past few years, intensive research has been focused on transition metal

oxides such as ZnO, TiO2, Fe2O3, etc [105–107]. However, little attention has been paid to

rare earth oxides, which have been widely used in up conversion materials, high-quality

phosphors, time-resolved fluorescence labels for biological detection, catalysts, and catalyst

supports due to their outstanding optical and catalytic properties [108–112]. Recently, the

optical, catalytic and electrical properties of CdS doped with rare earth elements have been

studied [113–115] but investigations of CdS/rare earth oxides hetero structures are still

rarely reported. Thus it is highly desirable to investigate the properties of CdS/rare earth

oxide hetero structures, especially for their photocatalytic activity. To evaluate this issue, we

examined a combination of CeO2 and CdS for photocatalytic hydrogen generation because

CeO2 has a suitable band gap (3.2 eV). Moreover, CeO2 has been recently used as a

photoactive material in solar cells and a photocatalyst in the degradation of dye pollutants

and hydrogen evolution [116–120]. In addition to this CeO2 has the following advantages

over TiO2: Titanylnitrate is not readily available, for the synthesis of titanylnitrate expensive

Ti(IV) iso-propoxide is needed, Handling of Ti(IV) iso-propoxide is difficult whereas

Ce(IV) nitrate is readily available and can be handled easily.

Therefore in the present study a novel synthesis of CdS/CeO2 hetero nanostructures

by using combustion synthesis followed by characterization to understand the physico-

chemical properties has been carried out. The catalytic activity of the as prepared catalysts

were evaluated for H2 production from water containing sacrificial agents and also for the

simultaneous and individual removal of phenol and Cr(VI).
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Chapter 2

Characterization Techniques

2.1. X-ray Powder Diffraction (XRD)

X-ray powder diffraction (XRPD) is an important analytical technique widely used

for the characterization of crystalline materials to identify unknown substances, by

comparing diffraction data with those in the international data base [121-124]. In fact each

crystalline solid produces distinctive diffraction patterns. When a monochromatic X-ray

beam passes through a crystalline sample, it interacts with the electrons in the atoms,

resulting in scattering of the radiation. If the matter is crystalline, i.e. the atoms are

organized in planes and the distances between the atoms are of the same magnitude as the

X-rays wavelength, constructive and destructive interference will occur. The process of

diffraction is described in terms of incident and reflected (or diffracted) rays, each forming

an angle, θ, with a fixed crystal plane. In particular, when the interaction of the incident rays

with the sample produces constructive interference (Fig. 2.1.), the diffraction phenomena

satisfy the so-called Bragg law [125].

nλ = 2d sinθ (1)

where:

λ = incident light wavelength.
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n = integer positive number (0,1,2,3, etc.).

d = interplane spacing.

θ = angle between the incident radiation and the planes (h k l).

Figure 2.1. Bragg’s law for X-ray diffraction. The diffracted X-rays exhibit

constructive interference when the distance between paths ABC and A’B’C’ differs by

an integer number of wavelengths (λ).

In this thesis the value of the FWHM (full width at half maximum) of the most

intensive line of each phase was used in order to measure the mean particle (crystallite) size,

by applying the Scherrer formula:

d hkl = (0.9 λ)/ β cosθ (2)

where:

d(hkl) = size (nm) of particles in the direction vertical to the corresponding lattice plane.

λ = X-ray incident wavelength.

β = line broadening at half maximum intensity (FWHM) expressed in rad.
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θ = incident angle.

2.2 X-ray Photoelectron Spectroscopy (XPS)

X-ray Photoelectron Spectroscopy is a surface chemical analysis technique based on

monitoring the energy of electrons emitted by a system under stimulation of X-rays.  X-ray

Photoelectron Spectroscopy (XPS) using soft X-ray (200-2000 eV) radiation is mainly to

examine core levels. Photoelectron spectroscopy is based upon a single photon in/electron

out process. The energy of a photon is given by the Einstein relation:

E= hν (3)

where h is the Planck constant (6.62·10-34 J·s), and ν is the frequency (Hz) of the radiation.

Photoelectron spectroscopy uses monochromatic sources of radiation (i.e. photons of fixed

energy). In XPS the photon is absorbed by an atom in a molecule or solid, leading to

ionization and the emission of a core (inner shell) electron. The kinetic energy distribution

of the emitted photoelectrons (i.e. the number of emitted photoelectrons as a function of

their kinetic energy) can be measured using any appropriate electron energy analyser and a

photoelectron spectrum can thus be recorded. Knowing the kinetic energy of the emitted

electrons (KE), the electron binding energy (BE) of each of the emitted electrons can be

determined as a difference between the energy of the primary photon (hν) and the kinetic

energy of the photoelectron:

KE= hν –BE (4)

The positions of the peaks in the XPS spectrum plotted as emission intensity vs. the electron

binding energy gives the information about the atomic composition of the sample surface.

Furthermore, the intensity of the peaks is related to the concentration of the element within

the sampled region. Thus, the technique provides a quantitative analysis of the surface

composition and is sometimes known by the alternative acronym, ESCA (Electron
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Spectroscopy for Chemical Analysis). The most commonly employed X-ray sources are

those giving rise to: Mg Kα radiation: hν = 1253.6 eV Al Kα radiation: hν= 1486.6 eV.

Figure 2.2. Basic scheme of XPS instrumentation

2.3. UV-vis Diffuse Reflectance Spectroscopy (DRS UV-vis)

Diffuse Reflectance Spectroscopy is based on the interaction between a UV or

visible beam and a powdered sample, from which the beam can be reflected in all directions.

Only the fraction of beam which is scattered within a sample and returned to the surface is

considered to be a diffuse reflection. All the reflected radiation can thus be collected within

an integrating sphere, enhancing the signal-to noise ratio. The internal walls of the sphere

are usually covered with barium sulfide, a compound that ensures a reflectivity greater than

0.98 in the UV-vis light region. Moreover the reflectance spectrum of a reference standard

(BaSO4) should always be recorded prior to that of any other sample.
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Figure 2.3. Schematic representation of the radiation interaction with the sample: Rs

stands for the specular reflected beam, Rd for the diffuse reflected beam

In the literature on photocatalysis, a photoabsorption spectrum, i.e. a plot of the

absorption extent as a function of wavelength, is usually reported in terms of absorbance

units or Kubelka–Munk function. The former, i.e. absorbance, is traditionally defined as

log(I0/I), where I0 and I are the intensities of incident and transmitted light, respectively.

2.4. N2 sorption analysis

Surface area and porosity are important parameters in powdered materials. The

most widely used techniques for estimating surface area are based on physical adsorption of

gas molecules on a solid surface. Generally gas adsorption on solid surfaces and in the pore

spaces is a complex phenomenon involving mass and energy interaction and phase changes.

Depending upon the strength of the interaction, all adsorption processes can be divided into

the categories of chemical or physical adsorption. The second category, reversible or

physical adsorption, exhibits characteristics that makes it most suitable for surface area

determinations as indicated by the following:

• Physical adsorption is accompanied by low heats of adsorption with no violent or

disruptive structural changes occurring on the surface during the adsorption measurements.
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• Unlike chemisorption, physical adsorption may lead to surface coverage by more than one

layer of adsorbate. Thus, pores can be filled by the adsorbate for pore volume

measurements.

• At elevate temperatures physical adsorption does not occur or is sufficiently slight that

relatively clean surfaces can be prepared on which to make accurate surface area

measurements. • Physical adsorption equilibrium is achieved rapidly since no activation

energy is required as in chemisorption. An exception here is adsorption in small pores,

where diffusion can limit the adsorption rate.

• Physical adsorption is fully reversible, enabling both the adsorption and desorption

processes to be studied.

• Physical adsorbed molecules are not restrained to specific sites and are free to cover the

entire surface. For this reason surface areas, rather than the number of sites, can be

calculated.

The kinetics and thermodynamics of adsorption have been extensively studied, but,

when surface area and pore structure are the subject of interest, it’s essential to establish the

meaning of an adsorption (desorption) isotherm. This is a measure of the molar quantity of

gas n (or standard volume Vα, or general quantity q) taken up, or released, at a constant

temperature T by an initially clean solid surface as a function of gas pressure P. In order to

increase the amount of physisorbed molecules (usually nitrogen) most frequently the test is

conducted at a cryogenic temperature, usually that of liquid nitrogen (LN2) at its boiling

point (77.35 K at 1 atm pressure). Convention has established that the quantity of gas

adsorbed is expressed as its volume at standard temperature and pressure conditions (0°C

and 760 torr and denoted by STP), while the pressure is expressed as a relative pressure,

which is the actual gas pressure P divided by the vapor pressure P0 of the adsorbing gas at

the temperature of the test. Plots of Vα as the ordinate against P/P0 as the abscissa reveal

much about the structure of the adsorbing material (called the adsorbent) simply from their
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shape. The theory mainly used in order to get essential information (such as surface area and

pore distribution) from experimental adsorption isotherm is known as BET theory from the

surnames of its creators, Brunauer, Emmett and Teller [126]. This is an extension to

multilayer adsorption of the Langmuir model (related to monolayer molecular adsorption)

and the resulting BET equation is expressed as follows:

Vα = (VmCP)/ (P0-P) [1+ (C-1) (P/P0)] (5)

where:

Vα = volume of adsorbed gas at pressure P.

Vm = monolayer volume.

P = gas pressure.

P0 = saturation gas pressure. The value of parameter C, fairly constant for a given class of

materials, e.g. oxides and metals, in simplest terms is given by the following equation:

C α exp [( q1-qL)/RT] (6)

where:

q1 = heat of adsorption of the first layer.

qL = heat of liquefaction of the adsorptive.

R = gas constant.

T = absolute temperature.

From the slope and intercept values of the BET linear plot it is possible to calculate

both the amount of adsorbate corresponding to the first monolayer, Vm, and the C

parameter can be calculated. Assuming that the surface occupied by a N2 molecule is
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16.2·10-20 m2, once calculated Vm, it’s easy to obtain the Specific Surface Area (SSA) of

the adsorbing material, by the following equation:

SSA= (Vm NA SN2)/ 22.414 g (7)

where:

NA = Avogadro number (6.023·1023 molecules mol-1).

SN2 = surface occupied by a N2 molecule adsorbed on the monolayer.

22.414 = volume (dm3) occupied by 1 mole of gas under standard conditions.

g = sample quantity (g).

2.5. Electron microscopy

Electron Microscopes are scientific instruments that use a beam of highly energetic

electrons to examine objects on a very fine scale. This examination can yield information

about the topography (surface features of an object), morphology (shape and size of the

particles making up the object), composition (the elements and compounds that the object is

composed of and the relative amounts of them) and crystallographic information (how the

atoms are arranged in the object).

When an electron beam interacts with the atoms in a sample, individual incident

electrons undergo two types of scattering - elastic and inelastic. In the former, only the

trajectory changes and the kinetic energy and velocity remain constant. In the case of

inelastic scattering, some incident electrons will actually collide with and displace different

kind of electrons from the specimen, thus loosing their kinetic energy. Figure 2.4.

summarizes the main secondary signals (with different relative intensity) that can be

produced due to electron–matter interactions [127]. TEM instruments must work under ultra
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high vacuum conditions (10-7-10-8 Pa) in order to avoid any kind of collision between the

electrons beam and atoms, which are not those contained in the investigated sample.

Figure 2.4. Generalized description of the three main imaging modes in TEM
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Chapter 3

Experimental Section

3.1. Synthesis of catalyst

Cadmium nitrate tetra hydrate, ceric nitrate and thiourea were purchased from

Merck and used as received. Different molar ratios of cerium and cadmium precursors

(0.1:1, 0.5:1, 1:1, 1:0.5 moles of cadmium and cerium precursors respectively) were taken in

order to obtain the composites with best characteristics. In an optimized synthesis, aqueous

solutions of cadmium nitrate, cerium (IV) nitrate and thiourea were mixed to form a

homogeneous solution. Dehydration followed by combustion in a preheated furnace at 350°

C results the product in few minutes. The resulting composites were labeled as CdS/CeO2

(0.1:1), CdS/CeO2 (0.5:1), CdS/ CeO2 (1:1)), CdS/ CeO2 (1:0.5) respectively. The specific

advantage of the present method is the fast reaction time and the samples do not need any

post treatments before testing catalytic activity.

3.2. Instruments Used

The synthesized CdS/CeO2 composites were characterized to examine its structural,

morphological and optical properties. Phase purity and crystallinity of the as-synthesized

composites was obtained from wide angle powder X-ray diffraction (PXRD) patterns

recorded on a PANalytical X’pert Pro powder X-ray diffractometer with a step size of 0.02

and at a scan rate of 0.50 min-1 using Cu-Kα (1.54 Å) radiation and Ni filter. Transmission

electron microscopic image of the CdS/ CeO2 samples were recorded at an operating voltage

of 200 kV and the sample was placed on a copper grid (TECNAI G-2 with EDS model),

whereas, diffuse UV-Vis reflectance spectra of the prepared composite samples were
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collected using Shimadzu UV-Vis spectrophotometer (UV-3600) with a spectral grade

BaSO4 as reference. X-ray photoelectron spectroscopic study was performed on Axis Ultra

instrument under ultra-high vacuum condition (<10-8 Torr) and by using a monochromatic

Al Kα X-ray source (1486.6 eV). The source power of XPS instrument was maintained at

150 W and the emitted photoelectrons were sampled from 750 μm x 300 μm area. The

analyzer pass energy was 80 eV for survey spectra and 40 eV for high-resolution spectra.

Raman spectra of the as synthesized samples were recorded using a dispersive Raman

spectroscope (Bruker Senterra), whereas, nitrogen adsorption/desorption isotherms of the

CdS/ CeO2 nano hetero structures were recorded on a Quantachrome autosorb automated

gas sorption system (NOVA 2200 e). Prior to adsorption studies, the samples were degassed

at 573 K for 3 h. The Brunauer–Emmett–Teller (BET) equation was used to determine the

surface area from the adsorption isotherm.

Photocatalytic experiments were carried out in a photo reactor which consists of

three 250 W halogen lamps. The intensity of light falling on the sample cells was found to

be 850-900 W/m2 as measured by using Newport optical power/energy meter (Model 842.

PE).Visible light activity of the TiO2 samples was assessed by simultaneous and individual

study of oxidation of phenol and reduction of Cr(VI) from aqueous streams. Before

exposing to light source the sample solutions along with catalysts were allowed to attain

adsorption desorption equilibrium by stirring in dark for a period of 30 min. Experiments

were carried out in the absence of light and without catalyst and it was observed that there

was no considerable oxidation of phenol or reduction of Cr(VI). During the light exposure

for every 15 min small aliquots were collected, centrifuged at an rpm of 2000 and the

catalysts particles were separated by filtering with milli Q membrane filters. Thereafter

phenol and Cr(VI) were estimated by using UV-Vis spectrophotometer.

Before spectrophotometric analysis, phenol was converted into a complex by adding

1ml of buffer (pH-9) followed by 1 ml of 0.05 M 4-aminoantipyrene and 1ml of 0.05 M
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potassium ferricyanide aqueous solution [128,129]. Then the obtained brownish red

antipyrene dye was estimated with UV-Vis Spectrometer (Shimadzu UV-Vis

spectrophotometer (UV-3600)) at 504 nm. Cr(VI) was estimated by forming a purple

coloured complex with 1, 5- Diphenyl hydrazide solution in acidic media [130]. The

concentration of Cr(VI) was estimated from the absorbance at 540 nm by using UV-Vis

spectrophotometer.

H2 production experiments were carried out under visible irradiation in a quartz

round bottomed flask containing 100 ml water and 100 mg of the catalyst. A solution

containing 1 M Na2S and 1M Na2SO3 was used sacrificial source. It has been observed that

there is no H2 production in the dark which confirms that there is no reaction in the dark. All

the studies were carried out under simulated visible light radiation with light intensity

around 800-900 W/m2, as measured by Newport power meter. At regular intervals the

produced H2 gas was analyzed by using a Shimadzu gas chromatography (GC-2014) with a

packed column. Every hour a 500 μl hydrogen gas was collected in a gas tight syringe

(Hamilton) and analyzed.



29

Chapter 4

Results and Discussion

4.1. XRD

Figure 4.1. shows the XRD patterns of CdS/ CeO2 composites along with pure CeO2

and CdS samples for comparison. It was observed that the peaks observed at 2θ of 28.5,

33.1, 47.4 and 56.3° with the corresponding d-spacing of 3.1, 2.7, 1.9 and 1.6 Å represent

(111), (200), (220) and (311) planes, respectively of cubic structure of CeO2 (PCPDF No.

810792). On the other hand for pure CdS, the peaks observed at 28.2, 24.8, 43.7, 26.5 and

47.9° corresponding to 101, 100, 110, 002 and 103 planes with the corresponding d-spacing

values of 3.6, 3.4, 3.2, 2.1 and 1.9 Å clearly indicate the existence of hexagonal CdS phase.

It was observed that all the composites have the peaks corresponding to the both fluorite

cubic phase CeO2 and hexagonal CdS phases with varying intensities which confirms the

coexistence of both the phases. The dotted lines in the figure correspond to the diffraction

peaks of hexagonal CdS whereas the dark lines indicated that of cubic phase CeO2. In the

case of CdS/ CeO2 (0.5:1) the XRD patterns shows rather weak CdS peaks, probably due to

the low loading of CdS. A similar observation was found in case of CdS/ CeO2 (1:0.5)

where the XRD pattern showed rather weak CeO2 peaks which may be due to the low

amount of CeO2. On the other hand, for CdS/ CeO2 (1:1), diffraction peaks corresponding to
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both CeO2 and CdS were observed, which can be attributed to the proper dispersion and

optimum loading of CdS on CeO2.

4.2. TEM

Figure 4.2. shows the TEM image of the CdS/CeO2 (1:1) sample which clearly

shows the presence of two distinct particles with different size. It also shows closely

connected CdS and CeO2 particles. This clearly shows the advantage of the present

synthesis. As observed from figure 2, the CeO2 particles have a size of around 10 nm

whereas CdS particles have relatively larger size of around 70 nm. In the HRTEM images of

the CdS/ CeO2 (Fig. 4.2.(b)), confirmed the formation of crystalline CeO2 and CdS. The

fringes with a lattice spacing of 0.27 and 0.33 nm for the CdS/ CeO2 composites (Fig. 4.2.

(b)) were assigned to (200) and (100) planes of cubic CeO2 (JCPDS file No. 65-2975) and

hexagonal CdS (JCPDS file No. 77-2306), respectively.
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4.3. Diffuse reflectance UV-Vis spectral studies

The composite nature of CdS/CeO2 may be further evidenced by the diffuse

reflectance UV−vis spectra as shown in figure 4.3. Pure CeO2 only absorbs in the UV region

with a band edge of approximately 400 nm (Eg = 3.2 eV). But the composite sample

exhibited two distinct absorption edges corresponding to CeO2 (around 380-400 nm) and a

strong absorbance in the visible light region CdS (around 550-570 nm). The studies show

that the CdS/ CeO2 hetero nano structures absorbs in the visible as well as in the UV region

of the solar spectrum.
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4.4. Raman Spectroscopy

It has been accepted that Raman spectroscopy is a powerful technique for the

investigation of the structural properties of nanoparticles. Decreasing particle size influences

the force constants and vibrational amplitudes. Figure 4.4. shows the Raman spectra of the

CdS/ CeO2 hetero nanostructure where dotted lines indicate the peaks corresponding to the

CdS and solid lines represents the peaks corresponding to the CeO2. For pure CeO2 sample a

strong peak at 464 cm-1 was observed which can be assigned to F2g Raman active interior

phonon mode of CeO2 fluorite structure  [44,  45], and can be viewed as a symmetric

breathing mode of the oxygen atoms around Ce4+ ions [46]. One more peak which was

observed at around 600 cm-1 for pure CeO2 may be due to the presence defect induced

oxygen vacancies (D-band) on the surface [44-46]. From figure 4.4. it is also clear that the

Raman peaks at 300 cm-1 and 600 cm-1 for pure CdS correspond to the first-order and second

order transverse optical phonon modes [62]. The relatively broad and symmetric nature of

Raman peaks of CdS indicates the lower crystallinity of CdS, which is also consistent with

the XRD observations. The intensity of Raman peaks for CdS/ CeO2 hetero nanostructures

is lower than either pure CeO2 or pure CdS. This may be attributed to scattering losses due

to the defects at the hetero junction. In all the CdS/ CeO2 composites (Except in case of

CdS/CeO2(0.1:1)) Raman peaks corresponding to CdS are predominant, probably due to the

high dispersion of CdS over CeO2.
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4.5. XPS

The presence of Ce, Cd, O, S, C and N elements in the CdS/ CeO2 composites and

their surface composition, valence states were determined by using XPS. Figure 4.5. depicts

the XPS spectra of Ce 3d, Cd 3d, S 2p, O1s, C 1s and N 1s core levels. As seen in figure

4.5.(a), the two peaks centered at 405.2 and 412.1 eV with a spin−orbit separation of 6.7 eV

were the characteristic peaks of Cd 3d5/2 and Cd 3d3/2 states of CdS which are consistent

with the reported values [134-137]. On the other hand, the peaks centered at 161.5 eV and

162.7 eV confirmed the S2p (figure 4.5.(b)) confirming the presence of sulfur in the non-

oxidized form.

Ce 3d core level spectra of these solid solutions are given in figure 4.5.(c). Since the

signal of the Ce 3d level has a very complicated satellite structure, the origins of the bands

for cerium are still under investigation [138–140]. According to the method that Burroughs

et al. established [141] the Ce 3d XPS peaks shown in figure 4.5.(c) are labeled for

identification, where the peaks labeled v and u are from the spin–orbit coupling 3d5/2 and

3d3/2, respectively. The peaks of v, v'' and v''' correspond to a mixing configuration of

Ce(IV) (3d94f2) O(2p4), Ce(IV) (3d94f1) O(2p5) and Ce(IV)(3d94f0) O(2p6), respectively.

The peaks vo and v' are assigned to a mixture of Ce(III) (3d94f2) O(2p5) and Ce(III)
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(3d94f1)O(2p6), respectively. The same assignments could be also applied to the u series of

peaks. In figure 4.5.(c), Ce3d spectrum of Ce(IV) has six peaks at the binding energies of

916.5, 907.5,900.9, 897.7, 889.3, and 882.4 eV, respectively. Among these peaks the peak

at 889.3 eV corresponds to the v' of Ce(III) whereas the remaining represents the

characteristic peaks for Ce(IV) oxidation state. Figure 4.5.(d) shows the O1s spectra with a

narrow peak at a binding energy of 530.4 eV can be attributed to the crystal lattice oxygen

of Ti−O.

The evidence of C doping was obtained from the deconvoluted spectrum (figure

4.5.(e)) from the peaks centered at 284.5 eV and 288.5 eV. The peak centered at 284.5 eV

was due to elemental carbon, whereas, the peak at 288.5 eV may be due to the carbonate

type of linkages. Sakthivel and Kwasch et. al. has reported two kinds of carbonate species at

binding energies of 287.5 and 288.5 eV [142]. In a similar manner, Ohno et al. detected only

one kind of carbonate species with a binding energy of 288.0 eV, and they concluded that

C4+ ions might be incorporated into the bulk phase of TiO2 [143]. Li et al. confirmed only

one kind of carbonate species at a binding energy of 288.2 eV [144], which is confirmed by

Ren et al. [145]. These results indicated that the peak at 288.5 eV in the C 1s spectrum may

be attributed to the O=C–O components [146].

The evidence for nitrogen doping was obtained from the N (1s) spectra, which

clearly show two peaks at 399.7 eV and 405 eV (figure 4.5.(f)). It is well known that the

binding energy of the N 1s is very sensitive to the chemical environment of the nitrogen and

it varies between 396-408 eV [147]. The peaks observed at 399.7 eV can be attributed to the

terminally bonded well screened molecular nitrogen (γ-N2), whereas, the 405 eV peak might

be due to terminally bonded poorly screened molecular nitrogen (γ-N2) [148].
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4.6. N2 adsorption studies

The specific surface area of the CdS/ CeO2 samples was obtained from the N2

adsorption-desorption isotherms by using BET method. The observed specific surface area

values are found to be 10, 18, 23, 27, 32, 8 m2g−1 for CdS/ CeO2 (0.1:1), CdS/ CeO2 (0.5:1),

CdS/ CeO2 (1:1), CdS/ CeO2 (1:0.5), CdS, CeO2 respectively. From these, it may be

concluded that pure CdS has more surface area than the composites and among the

composites CdS/ CeO2 (1:0.5) have higher surface area which of can be attributed to the

higher percentage CdS than CeO2.

4.7. Photocatalytic Studies

The improved visible light absorption and benefit of reduced exciton recombination

may be beneficial for the composites to show promising photocatalytic activity. In order to
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understand this, photocatalytic activity was assessed for oxidation of phenol and reduction

of Cr (VI) as model aqueous organic pollutants and the results are compared with standard

Evonik TiO2. Figure 4.6. shows the first order kinetic profiles of photocatalytic reduction of

100 ppm of Cr(VI) in the presence of all the photocatalysts. The first order rate constants

calculated from the slopes as shown in figure 4.6. are found to be 0.11, 0.14, 0.19, 0.16, 0.1,

0.04, 0.02 min-1 respectively for CdS/CeO2 (0.1:1), CdS/ CeO2 (0.5:1), CdS/ CeO2 (1:1),

CdS/ CeO2 (1:0.5), CdS, CeO2 (tu) and Evonik TiO2, highlighting the best activity of CdS/

CeO2 (1:1) and the activity was in the following order: CdS/ CeO2 (1:1) > CdS/ CeO2

(1:0.5) > CdS/ CeO2 (0.5:1) > CdS > CeO2 (tu) > Evonik TiO2.

In order to understand the effect of concentration on photocatalytic reduction of

Cr(VI) photocatalytic studies were carried out with different concentration of Cr(VI) such as

25, 50,75 and 100 ppm. Figure 4.7. shows the first order rate plots for the phtocatalytic

reduction of Cr(VI). The rate constants calculated from the slopes of first order plots were

found to be 0.15, 0.18, 0.23 and 0.28 min-1 respectively for 100, 75, 50 and 25 ppm of

Cr(VI). From these observations it is concluded that with increase of initial concentration of

Cr(VI) the rate constant decreases gradually. This can be explained based on the hindering

effect imposed with the increasing concentration of Cr(VI), which prevents the photons to
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reach the surface of photocatalyst [149]. In addition to this, with increasing concentration of

Cr(VI), the molecules adsorbed on the surface of photocatalyst might increase. This might

decrease the active sites on the photocatalyst which effects the generation of hydroxyl

radical, and hence lowers the activity [149].

4.7.1. Photocatalytic oxidation of phenol

The effect of phenol concentration on the activity of the photocatalyst is presented

in Fig. 4.8. Concentrations were tested between 20 and 50 ppm using 1 g/L of catalyst. It

has been observed that with increasing concentration of phenol rate constant decreases. The

rate constants observed are found to be 0.38, 0.32, 0.28 and 0.22 min-1 respectively for 20,

30, 40 and 50 ppm of phenol. This can be explained as follows: At higher concentration of

phenol, there might be a greater number of phenol molecules adsorbed on the surface and

they may form a “passive” monolayer [150]. This inhibits additional phenol molecules to

reach the CdS/CeO2 surface, hence, the reduction in photocatalytic degradation.
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4.7.2. Simultaneous oxidation of phenol and reduction of Cr(VI)

Since the industrial waste water consists of mixture of pollutants, simultaneous

oxidation and reduction of phenol and Cr(VI) respectively may be advantageous. In

addition, simultaneous treatment reduces the cost of the water treatment. Figure 4.9. shows

the first order kinetic plots for the simultaneous oxidation and reduction of phenol and

Cr(VI), respectively. 50 ppm of Cr(VI) aqueous solution and 30 ppm of phenol were taken

as a combination of pollutants. It is worth mentioning that there is no reaction in the dark or

without catalyst. From the rate constants, it is concluded that in case of simultaneous

reaction the rate constant was found to be two times higher than individual reactions, which

can be explained based on the plausible mechanism as described in the following sections.

Therefore simultaneous redox reactions not only decreases the water treatment cost but also

increases the efficiency of the reaction.

High activity of CdS/ CeO2 composites compared to the bare CdS and CeO2 can be

attributed to the electron transfer from CdS to CeO2 since the conduction band edge of CdS

is higher than that of CeO2. Under visible light irradiation CdS undergo excitation and the

photo generated electrons transfer from the conduction band of CdS to CeO2 and
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accumulate at the lower level conduction band of CeO2, while holes accumulate at the

valence band of CdS. Thus the exciton recombination can be prevented effectively.

4.7.3. Photocatalytic H2 production from water

Since all the composites are found to have good absorption in the visible region of

the solar spectrum, the visible light activity of the CdS/CeO2 photocatalysts were tested for

hydrogen production from water containing sacrificial agents. In order to reduce the

photocorrosion of CdS and to prevent further the recombination of excitons, water

containing 1M Na2S and 1M Na2SO3 as the sacrificial reagents was used. These sacrificial

reagents may interact with the holes that prevent the photocorrosion of CdS catalyst39.

During the photocatalytic reaction for every one hour H2 gas was collected by using a gas

tight syringe and analyzed by gas chromatography. The typical chromatogram observed was

shown in Fig S5 of supporting information. H2 production studies were carried out with all

the CdS/CeO2 samples along with pure CdS and CeO2 for comparison. The typical results

shown in figure 4.10. confirmed the formation of 504, 789, 1581, 2144, 2315 and 2778 μ

mol/h of hydrogen, respectively for CeO2 (1), CdS/ CeO2 (0.1:1), CdS/ CeO2 (0.5:1), CdS,

CdS/ CeO2 (1:0.5) and CdS/ CeO2 (1:1) respectively. These results confirmed that the

highest hydrogen evolution was achieved for CdS/ CeO2 (1:1).
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Chapter 5

Conclusions

In summary, a single step synthesis of CdS/ CeO2 hetero nanostructures by combustion

synthesis without using expensive surfactants and capping agents has been reported.

Various physico-chemical studies confirmed the formation of CeO2 and CdS, and confirmed

the best adsorption in the visible region. Photocatalytic activity of the composites was

assessed from the simultaneous oxidation of phenol and reduction of Cr(VI), whereas,

photocatalytic water splitting without the need of any noble metal indicated the promising

nature of CdS/ CeO2 system for H2 production.
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