Cross-correlation of Dark Energy Survey Year 3 lensing data with ACT and Planck thermal Sunyaev-Zel’dovich effect observations. II. Modeling and constraints on halo pressure profiles

Pandey, S. and Gatti, M. and Desai, Shantanu and et al, . (2022) Cross-correlation of Dark Energy Survey Year 3 lensing data with ACT and Planck thermal Sunyaev-Zel’dovich effect observations. II. Modeling and constraints on halo pressure profiles. Physical Review D, 105 (12). pp. 1-25. ISSN 2470-0010

[img] Text
PhysRevD_.pdf - Published Version
Available under License Creative Commons Attribution.

Download (1MB)

Abstract

Hot, ionized gas leaves an imprint on the cosmic microwave background via the thermal Sunyaev-Zel'dovich (tSZ) effect. The cross-correlation of gravitational lensing (which traces the projected mass) with the tSZ effect (which traces the projected gas pressure) is a powerful probe of the thermal state of ionized baryons throughout the Universe and is sensitive to effects such as baryonic feedback. In a companion paper (Gatti et al. Phys. Rev. D 105, 123525 (2022)PRVDAQ2470-0010), we present tomographic measurements and validation tests of the cross-correlation between Galaxy shear measurements from the first three years of observations of the Dark Energy Survey and tSZ measurements from a combination of Atacama Cosmology Telescope and Planck observations. In this work, we use the same measurements to constrain models for the pressure profiles of halos across a wide range of halo mass and redshift. We find evidence for reduced pressure in low-mass halos, consistent with predictions for the effects of feedback from active Galactic nuclei. We infer the hydrostatic mass bias (BM500c/MSZ) from our measurements, finding B=1.8±0.1 when adopting the Planck-preferred cosmological parameters. We additionally find that our measurements are consistent with a nonzero redshift evolution of B, with the correct sign and sufficient magnitude to explain the mass bias necessary to reconcile cluster count measurements with the Planck-preferred cosmology. Our analysis introduces a model for the impact of intrinsic alignments (IAs) of galaxy shapes on the shear-tSZ correlation. We show that IA can have a significant impact on these correlations at current noise levels. © 2022 American Physical Society.

[error in script]
IITH Creators:
IITH CreatorsORCiD
Desai, Shantanuhttp://orcid.org/0000-0002-0466-3288
Item Type: Article
Additional Information: This paper has gone through internal review by the DES and ACT Collaborations. S. P. is supported in part by the U.S. Department of Energy Award No. DE-SC0007901 and NASA ATP Grant No. NNH17ZDA001N. E. S. is supported by DOE Award No. DE-AC02-98CH10886. K. M. acknowledges support from the National Research Foundation of South Africa. Z. X. is supported by the Gordon and Betty Moore Foundation. J. P. H. acknowledges funding for SZ cluster studies from NSF AAG No. AST-1615657. A. D. H. acknowledges support from the Sutton Family Chair in Science, Christianity, and Cultures. C. S. acknowledges support from the Agencia Nacional de Investigación y Desarrollo (ANID) under FONDECYT Grant No. 11191125. Funding for the DES Projects has been provided by the U.S. Department of Energy, U.S. National Science Foundation, Ministry of Science and Education of Spain, Science and Technology Facilities Council of the United Kingdom, Higher Education Funding Council for England, National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, Kavli Institute of Cosmological Physics at the University of Chicago, Center for Cosmology and Astro-Particle Physics at The Ohio State University, Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológic and the Ministério da Ciência, Tecnologia e Inovação, Deutsche Forschungsgemeinschaft, and the collaborating institutions in the Dark Energy Survey. The collaborating institutions are Argonne National Laboratory, University of California at Santa Cruz, University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, University of Chicago, University College London, the DES-Brazil Consortium, University of Edinburgh, Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, University of Illinois at Urbana-Champaign, Institut de Ciències de l’Espai (IEEC/CSIC), Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, University of Michigan, National Optical Astronomy Observatory, University of Nottingham, The Ohio State University, University of Pennsylvania, University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory at NSF’s NOIRLab (NOIRLab Prop. ID 2012B-0001; PI: J. Frieman), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation.
Subjects: Physics
Divisions: Department of Physics
Depositing User: . LibTrainee 2021
Date Deposited: 11 Oct 2022 11:26
Last Modified: 11 Oct 2022 11:26
URI: http://raiithold.iith.ac.in/id/eprint/10892
Publisher URL: http://doi.org/10.1103/PhysRevD.105.123526
OA policy: https://v2.sherpa.ac.uk/id/publication/32263
Related URLs:

Actions (login required)

View Item View Item
Statistics for RAIITH ePrint 10892 Statistics for this ePrint Item