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ABSTRACT

Targeted data breaches and cybersecurity attacks involving IoT de-

vices are becoming ever more concerning. To combat these threats

and risks, the IETF standardized Manufacturer Usage Description

(MUD), which allows IoT device vendors to specify the intended

communication patterns (MUD profile) of an IoT device. MUD pro-

file enables validation of the actual communication pattern of an IoT

device with the intended behavior at run-time. However, the MUD

specification was primarily intended for enforcement at the Local

Area Network (LAN) of the IoT device, thus fragmenting the solu-

tion across multiple heterogeneous networks. MUD enforcement

at higher levels in the network hierarchy (e.g., private edge for en-

terprise networks) eases security policy management and reduces

processing overheads on the existing security infrastructure.

To realize MUD enforcement at the edge, there are mainly two

challenges: (1) How to identify an IoT device at the edge so that

enforcing device-specific MUD profile on the IoT traffic is possible.

(2) How to scale MUD enforcement to a large network of IoT devices.

In this paper, we present our approach to address these challenges

and validate IoT device communication at the edge. In order to scale

MUD enforcement to a large IoT network, we leverage multi-stage

pipeline architecture and stateful ALUs of P4 programmable switch

and process IoT traffic in the dataplane.
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1 INTRODUCTION

The Internet of Things (IoT) connect a massive number of smart

devices enabling services in a wide range of application domains

such as e-governance, agriculture, transportation, education, smart-

homes, health care, and e-shopping. Despite the advantages of IoT,

the majority of IoT device manufacturers do not pay much-needed

attention to security, thus increasing the attack surface. Adversaries

can exploit device vulnerabilities and launch network-based attacks

that have serious negative implications for critical infrastructure

(e.g., DDoS attack [28], Mirai [18], VPNFilter [26]).

The main pain point is that we cannot protect what we cannot

see. More specifically, a few concerns of IoT device owners are: to

which entities an IoT device is talking to? what kind of data the IoT

device is transferring to those entities? To address this problem, the

National Cybersecurity Center of Excellence (NCCoE) advocates

Manufacturer Usage Description (MUD) to mitigate network-based

attacks [4]. The key idea is to let device manufacturers formally

specify the communication pattern of an IoT device, called the MUD

profile. Network operators would use MUD profiles as a reference

and ensure that the IoT device is indeed talking to intended entities

(e.g., IoT device manufacturer servers, devices within the LAN, other

IoT devices from the same manufacturer).

Incentives for MUD enforcement at higher levels in network

hierarchy. The MUD specification focused on the possibility of

enforcing the rules of the concerned IoT devices at the local net-

work such as WiFi access point and Customer Premise Equipment

(CPE) [9] where IoT device identity (e.g., MAC address) is available

as in Figure 1. Consequently, the majority of works [19–21, 25] in
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this space also concentrate on frameworks and methods involv-

ing MUD that function within the local network. However, MUD

enforcement at an elevated vantage point higher in the network

hierarchy can present unique opportunities from an administrative

viewpoint. More specifically, the overheads of existing security in-

frastructure (i.e., middleboxes) can be greatly reduced by enforcing

MUD at the edge. For instance, MUD can filter unintended traffic

with destination IPs not specified in MUD profile such that a DDoS

detection system would only need to monitor IoT traffic destined to

IP addresses specified by MUD. This will reduce memory overheads

of DDoS monitoring and detection systems. Similarly, MUD-based

filtering can reduce bandwidth and processing overheads of Deep

Packet Inspectors (DPI) by inspecting only unintended traffic (e.g.,

destination IP not specified in MUD).

Challenges. To realize this idea, we observe that identifying in-

dividual IoT devices beyond the local network (i.e., WiFi access

points) is challenging. First, traffic originating from the IoT device

loses its identifying factor (e.g., source MAC address) outside the

local network. This implies an increased difficulty for applying the

rules specified in an IoT device MUD file. That is, we have to classify

IoT and non-IoT traffic, then dissect the IoT traffic (based on types

of devices), and then apply device-specific MUD rules. Moreover,

Network Address Translator (NAT) rewrites both the source IP ad-

dress and the port number. Therefore all traffic will appear to have

the same source IP address (i.e., WiFi access point IP or CPE IP).

Second, enforcing MUD rules at higher levels of network hierarchy

means that MUD enforcement system needs to scale to support a

large number of IoT devices and process high volumes of traffic.

The first work that proposes a framework to implement MUD-

based filtering beyond local network [10, 11] does so using on-path

ISP core switch and off-path Virtual Network Function (VNF). But

this approach has large resource overheads as it invokes off-path

VNF for every new connection from each IoT device.

In this paper, we present our approach and system design for

enforcing IoT device-specific MUD rules in the edge network. Our

system first identifies IoT devices and their type, and then applies

MUD rules specific to an IoT device type. The system can be adapted

and deployed at ISP edge for home networks, or at the private edge

for campus and enterprise networks. The main ideas are: (1) For IoT

device identification, we rely on packet marking capability of CPEs

or WiFi access points and stateful packet-processing features of P4

programmable switch (more details in §3.2, §3.3). (2) For scaling

MUD enforcement to a large number of IoT devices, we leverage

the multi-stage pipeline of P4 programmable switch and design an

SRAM-based packet classification algorithm (more details in §3.4).

2 BACKGROUND

IoT devices. It is expected that the number of IoT devices used

worldwide will exceed 24 billion by 2030 [16]. The work done

by [24] provides a fine-grained view into the IoT device demo-

graphic. They report that out of a total 14.3k unique vendors, 90%

of all devices globally are manufactured by only 100 of them. This

observation is relevant to our work, where we can conservatively

state that the endpoints that IoT devices talk to may repeat across

devices from the same vendor. For example, different devices from

the same vendor may contact the same remote endpoint. In this

Figure 2: MUD file to ACL rules

case, the number of MUD rules required may have overlapping

subsets.

IoT device discovery and MUD profile retrieval. An IoT de-

vice can be uniquely identified using its MAC address (also called

hardware address) on the local network. According to the MUD

standard [4], the HTTPS MUD URL from the IoT device is carried

through either DHCP, LLDP or an X.509 constraint. A network

device in the middle parses the URL, and its corresponding signed

MUD file is downloaded from the MUD server. In our system design,

we assume the use of DHCP discovery messages containing either

the option 161 in case of IPv4 or 112 in the case of IPv6 where the

MUD URL is encoded as a string. Typically, a network device can be

configured to forward DHCP requests to an SDN controller, and the

controller will download the MUD profile from the manufacturer’s

website or a central repository.

MUD profiles. The MUD specification [4] explicitly character-

izes the network behaviour of IoT devices. Contained in the JSON

formatted MUD file are key-value pairs, which are intended to be

processed as ACL rules for enforcement (highlighted with colours

in Figure 2). More specifically, the MUD profile has MUD access

control entries (ACEs) which specify the expected behaviour of the

device. For example, the profile may state that the device can com-

municate with a specific set of domains (e.g., google, amazon, NTP

servers, device vendors, etc.) on a specific port, or/and devices that

belong to the same manufacturer, or/and devices connected to the

same LAN. Figure 2 shows an example MUD profile and associated

access control rule (rule 1), where the rule is a tuple with 6 fields:

typEth, protocol, sPort, dPort, srcIP and, dstIP. The (∗) represents

a wildcard character signifying that header field could take any

arbitrary value. In our work, we are only concerned with the layer

3 header fields due to visibility constraints outside the LAN.

UNSW IoT device MUD Profiles. The work done in [21] has

been instrumental for the proliferation of MUD-based IoT security

solutions. A total of 28 real IoT devices have been profiled and

published at [2]. The subset of rules that specify device behaviour

on the LAN are not relevant to our system. Among the other rules,

we observe that the highest count of forward traffic rules (traffic

originating from the IoT device) is 102 (seen in Chromecast Ultra).
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Further observing the MUD ACEs, the protocol field is always spec-

ified for rules addressing non-local communication (i.e., remote

endpoint domain name or IP address). Port and IP address details

may contain don’t cares (∗) in certain cases involving ICMP (proto-

col 1) and IGMP (protocol 2) or DNS (dPort 53). We explain in §3.4

the nuances involved in scaling the number of rules stored per

programmable switch.

Network Structure. As shown in Figure 3, to access the internet,

a CPE (e.g., WiFi access point) is placed on the LAN which typically

marks its periphery [9]. The CPEs are directly configurable by the

network edge through the TR-069 management protocol [22]. They

periodically initiate communication with an Auto-Configuration

Server (ACS) through a HTTP-based client-server protocol that

treats the CPEs as the client. The ACS also exposes a northbound

interface, through which remote applications (SDN controller in our

case) can control the managed devices (i.e., WiFi access points). For

instance, the controller can send configuration requests (through

ACS) to the CPE to configure parameters (e.g., IPtables, DNS, etc.).

3 SYSTEM DESIGN

3.1 Overview

Our main idea is to enforce IoT MUD files at the edge. This means

the MUD enforcement system has to scale to a large network with

manyCPEs andmany IoT device types across CPEs. One approach is

to distributeMUD enforcement load across multiple virtual network

functions (VNFs). But this approach has high operational costs (e.g.,

management, CPU processing costs) and introduces delays. In this

paper, we propose a system design that converts MUD files to

whitelist ACL rules at an SDN controller and installs them on a P4

programmable switch placed at the edge. However, to implement

this design in a real network, there are a few challenges that we

will address in this paper.

Firstly, each device type has its ownMUD file, so before applying

device-specific MUD rules, our system has to identify IoT device

and its type. The challenge arises due to the non-visibility of IoT

device MAC address (identifier) outside the local network, that is,

beyond CPE. We address this problem by forwarding DHCP packets

with IoT device MAC address from CPE to an SDN controller. Next,

we instruct the CPE to mark subsequent data traffic (from that

IoT) such that the marking enables the identification of IoT device

type in the edge network. We use DSCP bits for packet marking

and custom values to determine IoT device type. This approach is

similar to the one proposed in [10].

Secondly, though the device identification is made possible for

traffic in forward direction via packet marking at CPEs, the traffic

in backward direction from a remote endpoint may not be marked.

This is because, the remote endpoints are typically not under the

control of the edge network to perform any kind of marking. Thus,

identifying MUD rules for reverse traffic becomes a challenge. To

address this, in the switch dataplane, we keep track of connections

initiated from IoT devices in the forward direction and lookup these

connections while processing traffic in the backward direction. If

found, the associated MUD rules for traffic towards IoT devices are

applied. To realise this, we leverage hash constructs and stateful

registers and design a bloom filter-based data structure which is

updated by forward traffic and queried by backward traffic.

Figure 3: MUD enforcement at the edge using P4 switch

Finally, we observe that many header fields in MUD-based ACL

rules have few distinct values. This means placing ACL rules in a

single large and wide TCAM table is inefficient as the same header

values are repeated across multiple entries. Also, header values are

only of two types, either exact or don’t care (∗), but no prefix-based

values (e.g., /24). This means fast parallel lookup supported by

TCAM can be replaced with SRAM-based exact match tables. Based

on these observations, we propose a decision tree based technique

that carefully splits header fields and places their values (exact)

in multiple switch stages so that SRAM memory associated to the

stage can be leveraged. Compared to using TCAM for match-action

table, this approach supports more CPEs and IoT device types.

3.2 Enrollment of IoT devices

Our design is meant to scale for a large number of CPEs but we

restrict a generalized representative example using two CPEs (CPE1

and CPE2) shown in Figure 3. Through this example, we try to cover

all scenarios. There are three devices in CPE1 (T1, T1 and T2) and

two devices in CPE2 (T1, T3). We repeat the annotation to denote

that two individual devices are of the same type. The edge network

consists of components like Auto-Configuration Server (ACS), SDN

controller, and the P4 programmable switch. As mentioned earlier,

consider that IoT device MAC address is not visible outside the CPE

boundaries and the traffic going out of a CPE has CPE’s IP address

as the source IP address. This section explains our approach to

classifying IoT traffic followed by the identification of device type.

Enrollment at the control plane. Consider that an IoT device

informs the network of its underlying MUD URL via DHCP options.

Note that MUD URL is the device type identifier and all devices of

the same type have the same MUD URL. We configure all the CPEs

in the network tomirror a copy of all DHCP packets to the controller

through the ACS. This is accomplished through the management

capabilities exposed by the TR-069 protocol, which creates IP table

records to forward all DHCP packets to our SDN controller. Since a

DHCP packet inherently contains theMAC address of the IoT device

(as part of the payload), we obtain important telemetry details for

a particular IoT device. Figure 4 shows the flow of events and the

telemetry data received through the DHCP packet: (1) Source IP

address of the CPE Gateway (from DHCP IP packet) (2) IoT device

MAC address (present in the DHCP payload) and (3) Device type

(through the MUD URL in options of DHCP payload).
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Figure 4: Enrollment and state maintenance

Packet marking at CPE. The controller, now on receiving the

DHCP packets, maintains a record of CPE address, the device type,

and it’s MAC address. The table present in Figure 4 shows the

mappings corresponding to the two CPEs in the example. We mark

packets using the 6-bit Diffserv DSCP field. We observe that only

23 values are reserved and in use as per RFCs [3]. We make use

of the remaining 41 values. Each of the 41 custom DSCP values

will denote a device type in a CPE. Further, the controller assigns

unused DSCP values to each new device type it encounters (a new

DSCP value for every new MUD URL).

DSCP values are assigned on a first come first serve basis as seen

in the fourth column of the table in Figure 4. We also note that the

value assigned is endemic to each CPE IP address. For example, an

IoT device of type T1 in CPE1 could be mapped to DSCP value 2

and the same device type in CPE2 could be mapped to either 2 or 3

depending on the order of enrollment in that CPE. In Figure 4, the

value of 2 has been assigned for device type T1 in CPE1, whereas

the same device type has been assigned a value of 3 in CPE2. The

idea is to differentiate between the types of devices within a CPE.

Essentially, each CPE maintains a separate set of DSCP markings

for different device types.

Once mapped, the CPE is instructed to mark all traffic (with

custom DSCP values) from a particular IoT device type based on

it’s MAC address. The TR-069 management protocol can configure

CPEs to mark packets based on the source MAC address of the IoT

(as per mapping assigned at the control plane). Therefore, all traffic

originating from a particular CPE are essentially partitioned into

marked and non-marked packets based on their DSCP value. They

respectively correspond to the IoT that supports MUD and other

traffic (non-IoT or IoT without MUD support). Moreover, we gain

visibility over the type of IoT device the traffic belongs to. At this

point in time, we can claim that an IoT device has been identified

and enrolled within our system. The traffic is now processed at the

network edge as per the markings and CPE identity.

3.3 MUD rule enforcement

Simultaneous to the creation of the mapping described earlier, the

corresponding MUD server is queried using the recorded MUD

URL (from DHCP options). Thus, the controller also maintains a

repository of MUD files corresponding to each device type. The

MUD profile entries are converted to MUD ACL rules (details in

the next subsection) as per the relevant access control entries. As

mentioned earlier, the destination endpoints (i.e., source or destina-

tion IP address) in the MUD ACL rules could be domain names as

well. Thus, resolving them at run-time leads to multiple addresses

per domain (we handle this scenario later).

The final ACL rules are then formulated as a combination of

the assigned DSCP value (Table 2 in Figure 5) and the freshly de-

rived MUD rules as shown in Table 1 in Figure 5. We classify the

bi-directional IoT traffic as forward (egress from IoT device) and

backward (reply traffic ingress to IoT device). Table 1 in Figure 5

contains one MUD ACL rule each for forward traffic (rule 1) and

backward traffic (rule 2) at the control plane.

Forward traffic. From the sample traces and traffic from real IoT

devices, we observe most of the connections are initiated by IoT

devices and uses either TCP or UDP as the underlying protocol.

Therefore, the dataplane uses the following header fields from the

forward traffic for match-action: (1) source IP address (CPE IP

address) (2) DSCP value (contains device type marking) (3) protocol

(4) destination port and (5) destination IP.

In order for the dataplane to maintain state and keep track of

forward and backward flows, we use bloom filters [15]. Bloom filters

are space efficient data structures used to test the membership

of an element in a set. Therefore they are suitable for resource-

constrained dataplanes (e.g., memory) compared to a regular hash

table. On packet arrival, we hash 4-tuple (srcIP, protocol, dPort,

dstIP) and the bit(s) in bloom filter indexed by the hash value is

set to 1. The packet subsequently traverses the MUD MAT (Table 3

in Figure 5) where the validity of the IoT traffic is determined using

installed MUD ACL rules (by matching header fields described

above). Most importantly, the above steps are applied only if the

DSCP value is a custom value (marked by CPE). Else, the traffic is

forwarded normally (signifies non-IoT traffic).

The CPE IP address and DSCP values are the primary identifiers

and are rightly placed at the first two stages of the MAT for forward

traffic. The next three stages contain values directly extracted from

the MUD file entries. We thus, classify the MUD rules according to

the device type (identified by the DSCP marking) which are in turn

classified according to the CPE source IP address. The hierarchical

nature of the rules could be exploited to optimize the repeated

occurrences and thus elicit memory savings (described in §3.4).

The bloom filter size can be determined based on the maximum

bound on the number of IoT traffic flows that is expected out of

a particular CPE. Earlier we reported a maximum of 102 forward

rules for one of the 28 IoT devices we examined [2]. Fixing this as

the upper bound for number of rules per IoT device (in forward di-

rection), we calculate the flow upper bound based on the remaining

41 custom values used to mark IoT packets. Thus, the maximum

number of flows expected per CPE is 41 * O (maximum number of

MUD rules) which in turn translate to 41 * 102 totalling 4182 flows.

We can then estimate the total number of rules (flows) required to

be handled depending on the number of CPEs an ISP/edge network

manages. For example, an ISP handling 100 CPEs would need to

store 418200 rules in the worst case.

We however note that hash calculation does not involve the

DSCP mark and thus, the number of active flows stay well below

the calculated upper bound. To reduce false-positive rate, we can

use multiple bloom filter bits indexed by multiple hash values.
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Figure 5: Traffic mapping and MUD rule enforcement

However, there could be chances of collisions where two flows

could map to the same index in the bloom filter. With respect to our

scenario we enumerate the possibilities: (1) IoT traffic originating

from different CPEs from the same device are always differentiated

by the CPE source IP address (thus different hash value). (2) Traffic

from two same device types in the same CPE has high collision

probability and rightly so as the set of MUD rules to be applied

would be same for devices of same type. (3) Traffic from two differ-

ent IoT device types from the same source CPE has a probability of

collision only if the same port, protocol and destination endpoints

are used (two different devices from the same vendor). Moreover,

the bloom filter has to be reset periodically by control plane.

Backward traffic. A packet in the backward direction queries the

bloom filter to check whether the switch has seen associated flow

in the forward direction. If so, we apply MUD MAT for backward

traffic (Table 4 in Figure 5). Otherwise, we allow the traffic. We note

that the bloom filter query is based on the following packet headers:

destination IP (contains CPE IP address), protocol, source port, and

source IP address (contains the remote endpoint IP address).

For backward traffic, if corresponding bloom filter bit is set, we

apply backward MAT for all traffic (irrespective of whether it is

going to IoT or non-IoT). To understand this, let us consider two

devices, one IoT and one non-IoT device both talking to the same

endpoint (from the same CPE). In this case, the backward traffic will

be identical with respect to the hash inputs (header fields) we use.

Since the endpoint is most likely whitelisted (by implication from

forward MAT), the traffic is allowed in the backward direction by

backward MAT. However, false positives are possible for non-IoT

device traffic, that is, non-IoT traffic is misclassified as IoT traffic. In

this case, if there is no matching entry in the backward MAT, which

is most likely the case, then this traffic is treated as suspicious and

sent to the control plane for further analysis (slow path). To reduce

such events, we can use either multiple hash functions to reduce the

false-positive rate or keep track of connections of non-IoT devices

using another bloom filter. In our future work, we plan to study the

tradeoff among bloom filter memory, false-positive rate, and reset

frequency for different IoT workloads.

3.4 MUD-based rules in MAT

In the MUD rules for 28 IoT devices [2], we observe port number

and IP address fields contain don’t cares (∗) in certain cases to allow

protocol traffic like DNS, ICMP and IGMP. For example, consider

that an IoT device sends DNS requests to a remote endpoint whose

exact destination IP or domain name is not specified in the MUD

profile in advance. In this case, the destination IP address could be

∗. Similarly, ICMP traffic (protocol 1) should be allowed with dport

and dstIP set to ∗. In a P4 program, when we define a common table

for rules with both don’t care values (to allow protocol traffic) and

other MUD rules with exact values (to allow data traffic), we notice

that TNA-based tofino model [12] switch uses TCAM memory.

We see from the ACL rule table in Figure 2 that protocol values

are repeated. Similarly, CPE address and DSCP values (Table 3

in Figure 5) also recur. Therefore, we are not efficient when we

repeat values in a TCAM-based single table implementation ofMUD

ACL rules. Thus, using TCAM for rule enforcement (at the network

edge) for a large network would not scale well as available TCAM

memory is limited, and is usually shared with other core network

functions (e.g., routing). As an alternative, we explore SRAM-based

packet classification algorithm that runs entirely in the switch data

plane. To be specific, the multi-stage programmable switch pipeline

could be used to carefully place ACL rules in multiple SRAM-based

exact match tables. By doing so, we can scaleMUD rule enforcement

to a large number of IoT devices.

It is well known that decision trees are often used to represent

functions on a wide input domain and save memory by avoiding

common path repetition. We expect to exploit this property and

represent ACL rules in a decision tree followed by encoding the

decision tree in exact match tables (i.e., SRAM memory) in the

data plane. The basic idea of using a decision tree in the control

plane is not new by itself [27], but the realization that we can tilt

the data structure sideways in the P4 data plane and handle one

5
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header field per pipeline stage is new. The decision tree would be

amenable to drive per-packet decision (i.e., forward or deny) while

allowing dynamic rule addition and rule deletion at run time. In our

future work, we will expose APIs for the same and study memory

overhead reduction using decision tree-based approach.

3.5 Discussion

Device-to-device communication. Traffic between IoT devices

under the same CPE are not monitored in our design. We concen-

trate on the IoT traffic that traverses the edge access switch (outside

the LAN).

DSCP value count. Our system is limited by the availability of

only 41 values to represent device types per CPE. This is sufficient

in a smart home like setup where all IoT devices connected to one

or two wifi access points (or CPEs). In setups with many IoT devices

under a CPE, our system could benefit by using alternative reserved

bit fields which could be used for packet making.

System scale. We estimate the scale of rules stored at an edge

switch with SRAM memory of 100MB and 41 device types per CPE.

We could estimate the number of rules as No. of CPEs * 41 + (No.

of IoT device types * MUD rules per IoT device). Assuming there

are 14.3K IoT device types [24] and 100 MUD-based ACL rules per

IoT device where the size of each rule is approximately 12 bytes,

we can support up to a total of 0.43 million CPEs. We also estimate

that applying optimization techniques (like decision trees) would

further increase the number of CPEs supported.

DHCP overhead. Our system design proposes mirroring of all

DHCP discover packets from the CPE to an SDN controller at the

edge. However, it can be noted that DHCP requests are generated

whenever a new device joins the network. Assume a new IoT device

joins a CPE for every one hour, which means 1 DHCP packet per

hour per CPE. For a scale of a million homes (i.e., one million CPEs),

we can observe 1 million DHCP requests per hour, that is, the SDN

controller receives about 278 DHCP packets per second which can

be handled with enough compute at the edge.

DHCP security concerns. We acknowledge that exposing DHCP

server details could lead toDHCP starvation and spoofing attacks [13].

However, in our system design, we do not forward subsequent local

DHCP communication containing server address (i.e., offer, ack,

etc) to the SDN controller. Thus we reduce attack possibilities for

an adversary intercepting the DHCP packets outside the CPE’s

local network. As a definitive defense, we could use gRPC based

encrypted channels to forward DHCP packets [17].

Attacks on the system. The state maintained at the control plane

and the rules installed in the data plane are initiated by MUD

URLs carried by DHCP packets from the source CPE. An attacker

could send spurious DHCP packets with MUD URLs of devices

not present in the CPE with an aim to either exhaust DSCP bits or

pollute dataplane tables, leading to resource exhaustion and DoS

like attacks. To address this, we need a self-defense mechanism to

authenticate IoT devices before they are enrolled into the network.

4 RELATEDWORK

IoT MUD profiling.MUD maker [1] and Mudgee [21] can be used

to generate MUD files. Such tools are very useful due to the lack of

universal vendor support for MUD profiles. Our work uses theMUD

profiles from these tools and focuses on a systematic and scalable

framework for enforcing MUD profiles at the network edge.

MUD enforcement using openflow. [19, 20, 25] propose tech-

niques to enforce and realize MUD profiles on OpenFlow-based

virtual switch (OVS) in a local network. Since these systems are

designed to work in local networks, they use MAC addresses in the

MAT to identify IoT devices. Also, they use a single common MAT

to accommodate all header fields. A similar approach in our system

may not scale well as it needs TCAM memory in the dataplane

when don’t cares are present. In contrast, our system enables MUD

enforcement on P4 switches at the network edge where lack of de-

vice identity and scaling to a large network are the two important

problems addressed in this paper.

MUD enforcement at ISP level. [10] enforces MUD rules at the

ISP level using off-path NFVs in the control plane. The ISPmaintains

whitelist MUD rules at the control plane and applies them on IoT

traffic (as blacklist rules) from all its customer networks. However,

this approach relies on a copy of a packet from every flow traversing

a router in the ISP network, thus having high bandwidth overhead

between data plane and control plane and processing overhead

at the control plane. In comparison, our approach adopts their

control (i.e., TR-069) and packet marking schemes. However, we

place whitelist rules in the P4 switch data plane and apply them to

IoT traffic at line rate. By doing so, our approach does not send a

packet for each flow, thus scales well.

Middleboxes to secure IoT. The works presented in [5–8, 14,

23, 29, 30] use middleboxes at the network edge for deep packet

inspection and fine-grained analysis. Our work complements these

efforts by filtering most of the traffic in the data plane, thus reducing

processing delays and resource overheads.

5 CONCLUSION AND FUTUREWORK

We propose a system design for MUD enforcement in the edge

network using SDN control plane and P4-based programmable

data plane. We address challenges related to IoT device identifica-

tion and scalability by leveraging packet marking at the CPEs and

multi-stage pipeline and stateful ALUs at the switch. We believe

our approach complements the existing middlebox-based security

infrastructures at the network edge (e.g., firewalls, IDS, IPS) for

multiple classes of networks (e.g., home, campus, enterprise) and

reduce the overheads on such infrastructure by filtering most of

the traffic in the data plane. In our future work, we plan to imple-

ment the proposed system on a testbed with IoT devices, CPEs,

SDN controller, and a programmable switch. In addition to the im-

plementation of the core functionality, we will study the system

performance interms of memory overheads, false positive rate, reset

frequency, feasibility of decision tree based rules, and control- and

data-plane bandwidth.
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