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Abstract—In this paper, we propose a secure block pruning
scheme called securePrune for reducing the storage space of a full
node and synchronization time of bootstrapping nodes joining the
Peer-to-Peer (P2P) network in an Unspent Transaction Outputs
(UTXO) based blockchain like bitcoin using RSA accumulators.
In our scheme, the miners periodically release a snapshot of the
blockchain state (UTXO set), the other full nodes in the network,
securely prune the historical blocks after attaining the required
number of confirmations to the snapshot block. This is achieved
through the modification of the block structure by including
a representation for the state as an RSA accumulator called
accumulator state in the block header and proofs of knowledge for
deletion/inclusion of the current block’s input/output transactions
in the block. The secure and periodic pruning of the old blocks,
reduce the synchronization time for a new node joining into the
network. The simulation results demonstrate a significant reduc-
tion in the storage space of a full node and the bootstrapping
cost of the new nodes.

Index Terms—Blockchain, UTXO set, RSA Accumulator,
Pruning, NI-PoE Proofs, Bootstrapping.

I. INTRODUCTION

The Blockchain is a revolutionary technology behind the

Peer-to-Peer (P2P) networks like bitcoin [1], Ethereum [2] and

Hyperledger [3].

The bitcoin blockchain is a P2P network of miners, full

nodes and simplified payment verifiation nodes (SPV) [1]. The

miners play a key role in generating the blocks through Proof-

of-Work (PoW) puzzle [1].

Every full node stores three types of databases in its storage

space - total blocks in the blockchain since the genesis block,

unconfirmed transactions (Memory pool) and UTXO set [4].

The UTXO set keep track of all unspent output transactions

of the historical blocks and used as sources for new input

transactions. A full node contributes to the security of the

network through validation of transactions in a block through

UTXO set database. However, running a full node incurs

storage costs as the blockchain data grows exponetially [5]

with time. The main advantage of storing the all blocks by the

full node is to make the bootstrapping nodes to synchronize

with the existing network nodes.

In [6], a bootstrapping node skips the script validation of the

transactions for parents of known-good blocks, without chang-

ing the security model. However, the new nodes still need to

download entire historical data to create the current state of the

blockchain. In coinPrune [7], the authors proposed a method

for pruning older blocks by creating a snapshot of the state

at regular intervals, provided the collective reaffirmations to

snapshot by the miners in a duration of reaffirmation window.

However, there is a possibilty of the Denial-of-Service (DOS)

attack by the miners in reaffirming the snapshot. So, there is

no gaurantee that pruning will happen at every reaffirmation

window of a snapshot release.

In this paper, we propose a periodic pruning of the historical

blocks based on the security confirmations guaranteed by

the RSA accumulator [8], [9] of the UTXO set, proofs of

knowledge for deletion and inclusion of the current block’s

input and output transactions. We propose a modified PoW

and block validation algorithms based on the modified block

structure which include accumulator state in the block header

and Non-Interactive proof of Exponentiation (NI-PoE) proofs

[9] for deletion of the UTXO sources of the input transactions

and inclusion of the new output transations of the current

block. Every full node validates a new block using the NI-

PoE proofs and the UTXO set using the block validation

algorithm. The miners release a snapshot of the UTXO set

at regular intervals of time and every full node prunes the

historical blocks prior to the snapshot based on the number of

confirmations to the snapshot block.

The simulation results demonstrate the 85% reduction in the

storage space of a securePrune protocol full node compared

to the bitcoin full node and also significant reduction in the

synchronization time due to the requirement of validation of

less number of historical blocks compared to the validation of

all the historical blocks in the bitcoin.

The rest of the paper is organized as follows. In Section

II, we describe the system model and notations used in the

protocol. Section III describes the preliminaries of the crypto

primitives. In Section IV, we decribe the proposed protocol

for secure and periodic pruning and synchronization of the

bootstrapping nodes. In Section V, we present and discuss the

simulation results. Section VI presents the concluding remarks

and future works.

II. SYSTEM MODEL AND PARAMETERS

The following functions of the bitcoin protocol [1] are used

in securePrune protocol.

• hash(.) : cryptographic hash function

• root(.) : Merkle root of a set of transactions
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• PoW (.) : Proof-of-Work function

• validate(.) : Transaction validation function

A. Overview of the transactions and UTXO set

The full node stores the UTXO set in the chainstate database

of the Bitcoin core [10]. The database consists of records of

key-value pairs [4] . The key of the record is transaction hash

and the value stores the transaction information. Every record

in the UTXO set represent the outputs yet to be spent in future

transactions.

Let at a block height i, every full node in the blockchain

stores a copy of the state Si reprersented as

Si = {uj : j = 1, 2, . . . , |Si|} (1)

Where, uj is a record in the UTXO set

B. The modified block structure in the proposed protocol

The blockchain at a height h is modeled as a vector of

blocks represented as

Ch = (B0, B1, . . . , Bh) (2)

where,

Bi = < Hi, (A
′
i−1, πd, πa), ti > (3)

Where, The set ti = {tx1, tx2, ...., tx|ti|} represents the set of

transactions in block Bi. The block header Hi consists of an

extra element called accumulator state Ai in addition to the

elements of the bitcoin block header.

Hi = (hi−1, Ri, nonce,Ai, x) (4)

where, hi−1 = hash(Hi−1), Ri is the merkle root of the ti,

nonce is a variable to solve the PoW puzzle and x is the other

meta data (like version, time, difficulty etc) similar to bitcoin

block header [1].

The tuple (A′
i−1, πd, πa) results from the state transition of

the UTXO set. The element πd denotes the NI-PoE proof for

deletion of Set of utxos Sd spent in the new block Bi from

the accumulator state and πa denotes the NI-PoE proof for

addition of set of output transactions Sa in the new block

Bi to be added to the accumulator state. The intermediary

accumulator state A′
i−1 is the result of state transition after

the deletion of the set Sd from Ai.

III. PRELIMINARIES

The following definitions of RSA accumulators [8], [9] are

used in our work.

Let G be a group of unknown order and g ∈ G, Si = {uj :
j = 1, 2, ..., |Si|} and Uj = Hprime(uj). Where, Hprime(.) is

the prime representation function.

The accumulator state Ai of block Bi is computed as

Ai = g
∏|Si|

j=1
Uj (5)

The membership witness for um ∈ Si is defined as

Wm = g
∏|Si|

j=1,j �=m
Uj (6)

While creating a new block, the miner computes new accu-

mulator state Ai from Ai−1 as follows

Ai = BatchAdd(BatchDel(Ai−1, Sd), Sa) (7)

The Non-interactive PoE (NI-PoE) [9] proofs πd and πa are

generated during the batch updates for the efficient verification

without any interaction between prover(miner) and verifier(full

node).

Let Sd = {u1, u2, . . . , u|Sd|} and Sa = {v1, v2, . . . , v|Sa|}.

BatchDel creates an intermediary accumulator state A′
i−1 and

πd.

A′
i−1 = Wagg = g

∏
s∈Si−1\Sd

s
(8)

where, Wagg is an aggregated membership witness of all uj ∈
Sd computed by using Shamir Trick [9].

πd = NI − PoE(A′
i−1, U

∗, Ai−1) (9)

Finally, BatchAdd compute Ai and πa as follows

Ai = (A′
i−1)

V ∗

(10)

πa = NI − PoE(A′
i−1, V

∗, Ai) (11)

where,

U∗ =
∏

uj∈Sd

Hprime(uj), V
∗ =

∏

vj∈Sa

Hprime(vj) (12)

The miner calculates new membership witnesses for the ele-

ments of new state Si through updateMemWit function. Let

s ∈ Si−1\Sd and ws is the membership witness of s before

deletion of set Sd as per (6), then the updated membership

witnesses for all s ∈ Si−1\Sd are generated as follows

w′
s = ShamirT rick(A′

i−1, ws, U
∗, s) (13)

The memebrship witness updates for all s ∈ Si−1\Sd ∪ Sa

after the addition of elements of the set Sa are calculated as

follows

w′′
s = (w′

s)
V ∗

(14)

The membership witnesses for all vj ∈ Sa are calculated as

follows

wvj = (A′
i−1)

∏
vm∈Sa,vm �=vj

vm
(15)

IV. SECURE BLOCK PRUNING PROTOCOL

The protocol requires the modification in the block gener-

ation procedure by the miners and the validation procedure

of a block by the full nodes in the network based on the

accumulator state and NI-PoE proofs.

A. Requirements of the securePrune protocol

1) State transition Algorithm: The UTXO set of the

blockchain is dynamic and changed for every new block

addition to the blockchain. Algorithm 1 describes the transition

of a miner (or full node) while generating a new block (or

after receiving a new block). The new state transition function

returns the set of deleted elements (Sd) and added elements

(Sa) along with the new UTXO set.

����������	
���
���
����
����
����
������
�����
�������������������������� !�"

175

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on September 24,2022 at 09:04:30 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1 State transition Algorithm

Input: Si−1, ti
output: Si - new state, Sd, Sa

1: procedure STATETRANSISTION (Si−1, ti)

2: S′ ← Si−1

3: for tx in ti do

4: isV alid ← validate(tx)
5: if isV alid then

6: for input in tx do

7: id ← input[txHash]
8: S′.delete(uj[id]), Sd.append(uj[id])
9: end for

10: for output in tx do

11: S′.append(output), Sa.append(output)

12: end for

13: else

14: return False

15: end if

16: end for

17: Si ← S′

18: return Si, Sd, Sa

19: end procedure

2) Modified PoW Algorithm: The modified PoW function

for mining a new block is described in Algorithm 2. This

PoW funtion includes Accumulator state Ai along with other

parameters into the block header for providng immutable

blockchain state Si. It also includes NI-PoE proofs (πd, πa)

for deletion and addition of the new set of elements (Sd, Sa)

to the state from the current transaction set ti.

Algorithm 2 The modified PoW function

for the secure prune protocol

Input: Si−1, Ci−1, M ,W

output: Ci

1: procedure SECUREPRUNEPOW(Si−1, Ci−1)

2: for tx in M do

3: ti.append(tx)

4: if size of Bi > Max Block Size then

5: break

6: end if

7: end for

8: Si, Sd, Sa ← stateT ransation(Si−1, ti)
9: A′

i−1, πd ← BatchDel(Ai−1, Sd,W )
10: Ai, πa ← BatchAdd(A′

i−1, Sa)
11: nonce ← PoW (Hi−1, Rti , Ai, x)
12: Hi ← < Hi−1, Rti , Ai, x, nonce >

13: Bi ← < Hi, πd, πa, ti >

14: W ← W ′, Ci ← Ci−1Bi

15: W ′ = updateMemWit(A′
i−1,W, Sd, Sa)

16: return Ci

17: end procedure

Algorithm 3 Block Validation Algorithm

Input: Si−1, Ci−1, Bi

output: Ci, Si

1: procedure VALIDATEBLOCK(Si−1, Ci−1, Bi)

2: ti ← Bi[ti], count ← 0
3: for tx in ti do

4: isV alid ← validate(tx)
5: if not isV alid then

6: return False

7: end if

8: count ← count+ 1
9: end for

10: if Ri �= root(ti) then

11: return False

12: end if

13: if count == |ti| then

14: A′
i−1, πd, πa ← Bi, Ai−1 ← Bi−1[accState]

15: Si, Sd, Sa ← stateT ransition(Si−1, ti)
16: a ← NI−PoE.V erify(

∏
s∈Sd

s, A′
i−1, Ai−1, πd)

17: b ← NI − PoE.V erify(
∏

s∈Sa
s, A′

i−1, Ai, πa)
18: end if

19: if a ∧ b then

20: Si ← S′, Ci ← Ci−1Bi

21: end if

22: return Ci

23: end procedure

3) Block Validation Algorithm: We defined a validation

function in Algorithm 3 to check the validity of Ai, ti, Ri,

πd and πa from the present state Si−1 and the received new

block Bi. If Bi is valid, the full nodes append Bi to Ci−1,

otherwise discard the block.

B. securePrune Protocol

The protocol differs from the bitcoin protocol by issuing

a snapshot of the UTXO set at regular intervals of every

Δs blocks called snapshot interval. The miners while cre-

ating a new block as per the Algorithm 2 at a height cΔs

(c = 1, 2, 3, . . . ) releases the snapshot along with the block

Bp+cΔs
created at that particular height. The snapshot conststs

of an indetifier and a copy of the state Sp+cΔs
(include the

unspent transactions of the current block also). The snapshot

identifier is the accumulator state present in the block header

of snapshot block Bp+cΔs
. The chain subsequent to the

snapshot block Bp+cΔs
is termed as the tailchain. The full

node follows the Algorithm 3 for validation of a block created

during Δs (present in the tailchain) by verifying the NI-PoE

proofs πd and πa, merkle root Ri and transactions ti.

The full nodes in the network prune all the historical blocks

prior to the snapshot block Bp as shown in Fig. 1, provided

that the block Bp achieved k number of confirmations from

the tailchain blocks created in the network. The full nodes

choose the tip of the longest chain similar to bitcoin [1] for

deciding the number of confirmations on Bp.
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Genesis B1 Bp−1 Bp

Sp

Bp+k Bp+Δs

Sp+Δs

Bp

tailchain

Fig. 1: Overview of securePrune protocol: The blue coloured

blocks are pruned after attaining a k confirmations to block

Bp.

C. Synchronization of the Bootstrapping nodes

The new node joining the network bootstrap in three steps

- First, it obtains the most recent snapshot with the longest

tailchain. Second, the new node downloads the entire header-

chain since the genesis block and verifies the validity of the

headerchain. Third, the node downloads the tailchain from its

peers and validate all the blocks since the most recent snapshot

block to obtain its state.

Let Sp is the most recent snapshot and • denotes the state

transition function. If a node joins the network at height h,

then the state of the new node at height h is obtained as

Sh = Sp •Bp+1 • · · · •Bh (16)

The bootstrap node acts as a full node to bootstrap the new

joining nodes after obtaining its final state from the most

recent snapshot and tailchain.

V. RESULTS AND DISCUSSION

Table I lists the values of the parameters used for generating

the results in this section.

We have conducted an event-driven simulation using python

by generating events as per information propagation protocol

[11] of bitcoin for propagating a block from miner to reach

the entire network. The events are classified as inv - sending a

new block hash invitation, getblock - requesting a new block,

block - sending a block to its peers and addblock - adding a

received block to its local copy of blockchain.

We have simulated for a duration of 70 days (equivalent to

10000) blocks with a block creation rate of λ = 1

600
(1 block

per every 10 minutes) similar to bitcoin block generation rate.

We have chosen 13 nodes as miners with hash rates as per

hash distribution shown in [12].

TABLE I:

Parameter values used for simulations

Parameter value Description

n 1000 Number of nodes

np 8 Number of peers

λ 1/600 Block creation rate

Tp 30 msec Propagation delay

b 0.25 MB Block size

R 10 Mbps Average download bandwidth

k 500 Number of confirmations

Δs 1000 Snapshot interval

0 2000 4000 6000 8000 10000
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Fig. 2: Storage comparisons of a nodes of bitcoin and se-

curePrune protocols

Fig. 2 show the total blockchain size of the nodes with

respect to the block height. We have chosen the Δs = 1000
blocks between the two consecutive snapshots and k = 500
number of confirmations (as per the calculations given in [1]

≈ 462 number of confirmations required for double-spend to

succeed by an attacker (with fraction of hash rate q = 0.45)

with a probability < 10−4) for pruning the blocks prior to the

snapshot. The nodes prune old blocks at height h = 1000 +
500c (c = 1, 2, 3, . . . ).

For values given in TABLE I, the simulation results in

Fig. 2 show the maximum storage of securePrune node is

approaximately 400 MiB ((Δs + k) × b) for a block size of

0.25 MiB, while the size of the bitcoin full node increases

with block height. The results show that 85% reduction in the

the storage space of a securePrune node compared to bitcoin

full nodes. As a result, the synchronization time of a new boot

strapping node decreases significantly in securePrune network.

VI. CONCLUSION AND FUTURE WORK

In this paper, we show the periodic and secure pruning

of the blocks prior to a certain block height based on the

RSA accumulators. We proposed algorithms for generation

of a block and validation of the block using NI-PoE proofs

and accumulator state for securing the state of the blockchain

along with the transactions of the blocks. Through simulation

results, we show the reduction in the storage space of a

node in the proposed protocol which in turn reduces the

synchronization time required to bootstrap a new node.

In future, we explore the exchanging of a snapshot from

an existing node during the bootstrapping process of a new

node while the state of the serving node changes with the

creation of new blocks. We also consider the trade-off between

the computational complexity of the proposed algorithms and

transaction throughput of the securePrune network.
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