
Rabbits Approximate, Cows Compute Exactly!
Balagopal Komarath !

IIT Gandhinagar, India

Anurag Pandey !

Department of Computer Science, Saarland University, Saarland Informatics Campus, Germany

Nitin Saurabh !

Department of Computer Science and Engineering, IIT Hyderabad, India

Abstract
Valiant, in his seminal paper in 1979, showed an efficient simulation of algebraic formulas by
determinants, showing that VF, the class of polynomial families computable by polynomial-sized
algebraic formulas, is contained in VDet, the class of polynomial families computable by polynomial-
sized determinants. Whether this containment is strict has been a long-standing open problem. We
show that algebraic formulas can in fact be efficiently simulated by the determinant of tetradiagonal
matrices, transforming the open problem into a problem about determinant of general matrices
versus determinant of tetradiagonal matrices with just three non-zero diagonals. This is also optimal
in a sense that we cannot hope to get the same result for matrices with only two non-zero diagonals
or even tridiagonal matrices, thanks to Allender and Wang (Computational Complexity’16) which
showed that the determinant of tridiagonal matrices cannot even compute simple polynomials like
x1x2 + x3x4 + · · · + x15x16.

Our proof involves a structural refinement of the simulation of algebraic formulas by width-3
algebraic branching programs by Ben-Or and Cleve (SIAM Journal of Computing’92). The tetradi-
agonal matrices we obtain in our proof are also structurally very similar to the tridiagonal matrices
of Bringmann, Ikenmeyer and Zuiddam (JACM’18) which showed that, if we allow approximations
in the sense of geometric complexity theory, algebraic formulas can be efficiently simulated by the
determinant of tridiagonal matrices of a very special form, namely the continuant polynomial. The
continuant polynomial family is closely related to the Fibonacci sequence, which was used to model
the breeding of rabbits. The determinants of our tetradiagonal matrices, in comparison, is closely
related to Narayana’s cows sequences, which was originally used to model the breeding of cows.
Our result shows that the need for approximation can be eliminated by using Narayana’s cows
polynomials instead of continuant polynomials, or equivalently, shifting one of the outer diagonals of
a tridiagonal matrix one place away from the center.

Conversely, we observe that the determinant (or, permanent) of band matrices can be computed
by polynomial-sized algebraic formulas when the bandwidth is bounded by a constant, showing that
the determinant (or, permanent) of bandwidth k matrices for all constants k ≥ 2 yield VF-complete
polynomial families. In particular, this implies that the determinant of tetradiagonal matrices in
general and Narayana’s cows polynomials in particular yield complete polynomial families for the
class VF.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory; Theory
of computation → Computational complexity and cryptography; Theory of computation → Circuit
complexity

Keywords and phrases Algebraic complexity theory, Algebraic complexity classes, Determinant
versus permanent, Algebraic formulas, Algebraic branching programs, Band matrices, Tridiagonal
matrices, Tetradiagonal matrices, Continuant, Narayana’s cow sequence, Padovan sequence

Digital Object Identifier 10.4230/LIPIcs.MFCS.2022.65

Related Version Full Version: https://nitinsau.github.io/pubs/cow-sequences.pdf [13]

Acknowledgements We thank Arkadev Chattopadhyay for herding us towards this beautiful problem
and sharing his insights! We also thank Meena Mahajan for bringing the reference [3] to our notice.
We also thank the organizers of GCT2022 workshop for hosting a talk by Avi Wigderson which
prompted us towards this investigation. We thank anonymous reviewers for helpful suggestions.

© Balagopal Komarath, Anurag Pandey, and Nitin Saurabh;
licensed under Creative Commons License CC-BY 4.0

47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022).
Editors: Stefan Szeider, Robert Ganian, and Alexandra Silva; Article No. 65; pp. 65:1–65:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bkomarath@rbgo.in
mailto:anurag.pandey3113@gmail.com
mailto:nitin@cse.iith.ac.in
https://doi.org/10.4230/LIPIcs.MFCS.2022.65
https://nitinsau.github.io/pubs/cow-sequences.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


65:2 Rabbits Approximate, Cows Compute Exactly!

1 Introduction

Valiant in his seminal work [20] laid the foundation for investigation of algebraic analog
of the P versus NP problem, the flagship problem of theoretical computer science. He
introduced algebraic formulas and determinants as models for computing polynomial fam-
ilies and identified them as notions of efficient computation, while the permanent family,
pern(x11, . . . , xnn) :=

∑
σ∈Sn

∏n
i=1 xi,σ(i) was identified as a family that is highly likely to be

hard to compute. He defined the complexity class VF as the set of polynomial families that
can be computed by formulas of polynomially-bounded size, and VDet as the set of families
that can be expressed as the determinant of a symbolic matrix of polynomially-bounded
dimension. He also showed, among other things, that a polynomial computable by an
algebraic formula of size s can be expressed as the determinant of a symbolic matrix of size
(s + 2) × (s + 2), thus showing the containment VF ⊆ VDet. Conversely, the smallest known
formulas for the determinant family, detn(x11, . . . , xnn) :=

∑
σ∈Sn

sgn(σ)
∏n

i=1 xi,σ(i), have
size nO(log n) [11, 6]. Thus the two notions of efficient computation are not known to be
equivalent. It is a long standing open problem whether algebraic formulas of polynomial size
exist for the determinant family.

▶ Problem 1. Is the determinant family strictly more expressive than algebraic formulas?
In other words, is VF ⊊ VDet?

An improved construction of a formula for the determinant family has resisted all attempts
for long, which can be interpreted as an evidence to an affirmative answer to Problem 1.
Though the relationship between the classes VF and VDet is poorly understood as of now,
they themselves are very natural otherwise. Not only they contain many natural examples of
polynomial families, there are many differing, but equivalent, ways to define them too.

For example, the class VDet is equivalently captured by the model of algebraic branching
programs of polynomial size, denoted VBP. Recall, an algebraic branching program (ABP)
is a directed acyclic graph G with two special nodes, say s (source node) and t (sink node),
and edges labeled with variables or constants. For every s-to-t path p in G we associate
a monomial mp obtained by multiplying the edge labels on this path. The polynomial
computed by the algebraic branching program G is defined to be the sum over all monomials
given by s-to-t paths, i.e.,

∑
p : s-to-t path p mp. Rephrasing the characterization, we know

VDet = VBP. We can assume, wlog, branching programs to be layered, i.e., the vertices
are topologically ordered in layers, from left to right, such that the edges only go between
consecutive layers. Then the width of a branching program is defined to be the maximum
number of vertices in any one layer.

In an influential work, Ben-Or and Cleve [5] showed that branching programs of constant
width characterize formulas. In other words, they showed VF = VBP3, where VBP3 denotes
the class of algebraic branching programs of width 3 and polynomial size. In light of this,
Problem 1 can be rephrased as asking whether VBP3 ⊊ VBP, that is, whether algebraic
branching programs of width 3 are computationally strictly weaker than algebraic branching
programs of arbitrary width. This seems even more likely when phrased this way!

In a recent work, Bringmann, Ikenmeyer and Zuiddam [8] took this one step further by
showing that the topological closure of VF is equivalent to the topological closure of VBP2,
i.e. VF = VBP2, where VBP2 is the class corresponding to algebraic branching programs of
width 2! Stated differently, they showed that algebraic branching programs of width 2 can
efficiently approximate all polynomials that are efficiently computed (or, approximated) by
algebraic formulas. In fact, the equivalent width 2 algebraic branching programs given by
the reduction have very special structure, which make them equivalent to the determinant of



B. Komarath, A. Pandey, and N. Saurabh 65:3

tridiagonal symbolic matrices of a very special form. These tridiagonal matrices have non-
trivial entries, variables and constants, on the main diagonal while the other two diagonals
are fixed to all ±1s. Determinant of such tridiagonal symbolic matrices is well-studied in
the literature and is known as the continuant, deriving its name from continued fractions
since continuants are used to represent the convergents of continued fractions. They are also
related to the Fibonacci sequence via the following recursive definition: F0 := 1, F1 := x1,
and Fn := xnFn−1 + Fn−2 for all n ≥ 2. Thus, for a positive resolution of Problem 1, it is
sufficient to show that the determinant of certain family of tridiagonal matrices, namely the
continuant family {Fn}, cannot efficiently approximate the determinant of general matrices.

The continuant is known to have rich algebraic structures [16, 10, 9, 17], which may be
helpful in separating VF from VDet. Although quite promising, an additional challenge this
formulation poses is that we now need to deal with approximations. In other words, we need
to show a stronger separation VF ⊊ VDet. It would be very pleasing if we could have the
result of Bringmann, Ikenmeyer and Zuiddam [8] without using approximations. That is, if
the following would be true – the continuant family {Fn} can efficiently exactly simulate
formulas. However, such a result is an impossibility! Allender and Wang [4] showed that the
simple polynomial, x1x2 + x3x4 + · · · + x15x16, cannot even be expressed by the continuant
family, irrespective of efficiency. Thus, one may wonder what is the simplest class of matrices
whose determinants can efficiently exactly simulate algebraic formulas?

Motivated by this question, we study the determinant of matrices with few diagonals,
also known as band matrices, and identify two polynomial families that are as simple as the
continuant family {Fn}, but unlike it they simulate formulas exactly and efficiently.

The Narayana’s cows polynomial. The m-th polynomial in this family, denoted Nm(x1,. . .

, xm), is defined by the recurrence N0 := 1, N1 := x1, N2 := x1x2, and Nm = xmNm−1 +
Nm−3 for all m ≥ 3. Just as the continuant polynomial is based on the Fibonacci sequence,
the Narayana’s cows polynomial is based on the Narayana’s cows sequence [1, 21]. This
sequence originated in the following problem studied by the 14-th century mathematician
Narayana Pandita in his book Ganita Kaumudi [18]: A cow produces a calf every year. Cows
start producing calves from the beginning of the fourth year. Then, starting from 1 cow
in the first year, how many cows are there after m years? This sequence is given by the
recurrence: Nm = Nm−1 + Nm−3 with N0 = N1 = N2 = 1, where Nm−1 gives the population
after m years. Thus, the sequence captures the growth in the population of cows in the
same way as the Fibonacci sequence captures the growth in the population of rabbits. The
Narayana’s cows sequence has wide applications in combinatorics. (See, e.g., [1, 14] and
references therein.)

The Padovan polynomial. The recurrences for Fibonacci and Narayana’s cows sequences
are similar. Exploring this similarity and considering the only remaining two-term recurrence:
Pn = Pn−2 +Pn−3, we obtain another lesser known cousin of Fibonacci, called as the Padovan
sequence [2, 23, 19]. Analogously, we can define the Padovan polynomial via the recurrence
P0 := 1, P1 := 0, P2 := x1, and Pn = xn−1Pn−2 + Pn−3 for all n ≥ 3. This generalizes the
univariate Padovan polynomial that is known in the literature [22].

Our results complement the results of Bringmann, Ikenmeyer and Zuiddam [8] by showing
that the aforementioned polynomial families, namely Narayana’s cows and Padovan, based
on the lesser known cousins of Fibonacci, are complete for the class VF. In other words, both
families can efficiently exactly simulate formulas.

MFCS 2022



65:4 Rabbits Approximate, Cows Compute Exactly!



x1 −1

1

−1
1 xn


(a) Continuant polynomial
Fn := xnFn−1 + Fn−2.



x1 0 1

1
1

0
1 xm


(b) Narayana’s cows polynomial
Nm := xmNm−1 + Nm−3.



0 −x1 1

1
1

−xn−1

1 0


(c) Padovan polynomial
Pn := xn−1Pn−2 + Pn−3.

Figure 1 Polynomial families defined by determinants of simple matrices and their recurrences.

1.1 Our findings
We discover the simplest class of matrices whose determinants characterize algebraic formulas.
We find that tetradiagonal matrices of a very special form suffice for this purpose.

▶ Theorem 2 (Informal, See Theorem 16 and Corollary 23). The determinant family of
tetradiagonal symbolic matrices is polynomially equivalent to algebraic formulas.

In fact, the tetradiagonal matrices (Figures 1b and 1c) that is sufficient for efficiently
simulating algebraic formulas are remarkably similar to the tridiagonal matrices (Figure 1a)
used by Bringmann, Ikenmeyer and Zuiddam [8] to efficiently approximate algebraic formulas.
It follows from the above theorem and Allender and Wang’s separation [4], that tetradiagonal
matrices are more expressive than tridiagonal matrices, but at the same time it can also
be seen (Figure 1) to be nearly as simple as tridiagonal matrices – having just one extra
diagonal whose entries are all 0s! We thus have the following equivalent reformulation of
Problem 1.

Is the minimum size of a tetradiagonal matrix whose determinant equals detn su-
perpolynomially large, where detn is the determinant of a general n × n symbolic
matrix?

This further motivated us to investigate matrices with few non-zero diagonals. Such
matrices are called band matrices in the literature. We say that a matrix M is a band
matrix of type (k1, k2) if all the non-zero entries of the matrix is concentrated between
k1 diagonals below the main diagonal and k2 diagonals above the main diagonal. That is,
Mij = 0 if j < i − k1 or j > i + k2. A band matrix of type (k1, k2) will also be referred as
(k1, k2)-diagonal matrix. The bandwidth of such matrices are defined to be k := max(k1, k2).

For example, diagonal matrices are (0, 0)-diagonal and has bandwidth 0, tridiagonal
matrices are (1, 1)-diagonal with bandwidth 1, tetradiagonal matrices are either (1, 2)-
diagonal or (2, 1)-diagonal with bandwidth 2, and pentadiagonal matrices are (2, 2)-diagonal
with bandwidth 2. Figures 1b and 1c are examples of (1, 2)-diagonal matrices.

If follows from Theorem 2 that (1, 2)-diagonal matrices can simulate formulas, and
hence any (k1, k2)-diagonal matrix can simulate formulas as long as min(k1, k2) ≥ 1 and
max(k1, k2) ≥ 2. It is then interesting to investigate the converse, i.e., for which (k1, k2)-
diagonal matrices their determinants have small formulas?

We observe that determinants of bandwidth k matrices can be computed by polynomial-
sized algebraic formulas when the bandwidth k is bounded by a constant. In fact, our
constructions give efficient (syntactic) multilinear ABPs and circuits for low bandwidth



B. Komarath, A. Pandey, and N. Saurabh 65:5

matrices. These are circuits for which every intermediate polynomial that is computed is
also multilinear. A polynomial is said to be multilinear if every monomial of the polynomial
is multilinear, and a monomial is called multilinear if every variable has degree at most
1 in it. In comparison, polynomial size circuits for the determinant of general matrices
given by Berkowitz [6] and polynomial size ABPs given by Mahajan and Vinay [15] are
non-multilinear.

▶ Theorem 3 (Informal, See Corollary 23). Determinants of symbolic band matrices are
computable by polynomial-sized algebraic formulas when bandwidth is bounded by a constant.

In fact, the above theorem holds for the permanent of a band matrix too. Combining
Theorems 2 and 3, we get a nice characterization of algebraic formulas in terms of determinants
(or, permanents) of band matrices of small bandwidth. In other words, determinants of
band matrices with bounded bandwidth yield polynomial families which are complete for the
complexity class VF.

▶ Theorem 4 (Informal, See Theorem 16, Theorem 19, and Corollary 23). For all constant
k ≥ 2, the determinant (or, permanent) family of symbolic matrices of bandwidth k is
VF-complete.

1.2 Proof methods
Ideas for Theorem 2 (Simulating formulas via determinant of tetradiagonal matrices).
We prove Theorem 2 in Section 3, where we begin with tetradiagonal matrices of type (1, 2).
That is, the non-zero entries are limited to one diagonal below the main diagonal, the main
diagonal, and two diagonals above the main diagonal. We first show that the symbolic
determinant of such tetradiagonal matrices can be written as a product of 3 × 3 matrices
whose entries are variables (or their negations), 0, and 1, where the number of matrices
in the product is linear in the size of the original matrix. This is obtained by exploiting a
simple recurrence revealed while computing the determinant of these (1, 2) tetradiagonal
matrices using Laplace expansion, see Lemma 12. Thus, to prove Theorem 2, it is sufficient
to show that algebraic formulas can be efficiently simulated by the matrix product of the
3 × 3 matrices obtained above. In fact, Ben-Or and Cleve, in their simulation of algebraic
formulas using width 3 algebraic branching programs, showed that algebraic formulas can be
efficiently simulated by the matrix product of 3 × 3 matrices. Thus, it might be tempting
to conclude that we are already done. However, it turns out that the 3 × 3 matrices whose
products equals the determinant of tetradiagonal matrices desire more structure than the
matrices used in the proof of Ben-Or and Cleve. This is where the core technical novelty
of our work lies – we show that algebraic formulas can indeed be efficiently simulated by
product of 3 × 3 matrices of the form whose products are equivalent to the determinant
of (1, 2)-tetradiagonal matrices. In fact, we are able to efficiently simulate formulas with
even more structure on the matrices, allowing us to conclude that formulas can be efficiently
simulated by tetradigonal matrices where the variable entries are only on the main diagonal,
the diagonal below the main diagonal is all 1s, whereas the two diagonals above the main
diagonal are all 0s and all 1s respectively, see Section 3.1 for details.

Ideas for Theorem 3 (Formulas for determinant of symbolic band matrices). Theorem 3
is relatively simpler to derive from the literature. We prove it in Section 4 taking two different
constructions for computing determinants of general matrices and carefully specializing those
constructions in the case of bandwidth k matrices, ensuring that the undesirable blowups

MFCS 2022



65:6 Rabbits Approximate, Cows Compute Exactly!

are limited to parameter k, allowing us to get polynomial-sized formulas when k is bounded
by a constant. In our first construction, we modify the construction of Grenet for computing
permanent of an n×n matrix using algebraic branching programs. For bandwidth k matrices,
we are able to get syntactic multilinear ABPs of length linear in the size of matrix and
exponential in the bandwidth, see Theorem 22 for details. Applying standard conversion
from ABPs to formulas yield Theorem 3. This gives us a formula of depth O(k log(n))
and size nO(k). In our second construction, we adapt the generalized Laplace expansion to
low bandwidth matrices, see Theorem 26 for details. The construction yields a syntactic
multilinear arithmetic circuit of size O(exp(k)n) and depth O(poly(k) log(n)), which can be
converted to algebraic formulas using standard conversion from circuits to formulas, giving
an alternative proof of Theorem 3.

The rest of this paper is organized as follows: Section 3 gives efficient simulations of
algebraic formulas via determinant of tetradiagonal symbolic matrices. Subsections 3.1 and
3.2 show that Narayana’s cows polynomials and Padovan polynomials are complete for VF.
Section 4 shows that determinants of all matrices with constant bandwidth have polynomial
size formulas. See the full version [13] for omitted proofs.

2 Preliminaries

We define computational models that are of interest in this paper.

▶ Definition 5. An algebraic circuit C is a rooted directed acyclic graph where the source
nodes are labeled by elements of F or variables x1, . . . , xn, and the internal nodes have
in-degree 2 and are labeled by + or ×. It naturally computes a polynomial p ∈ F[x1, . . . , xn]
in a bottom-up fashion. An algebraic formula is a circuit whose underlying graph is a tree.
The size of a circuit is the number of nodes in the graph and the depth of a circuit is the
number of edges on the longest path from the root to some source node.

We recall the definition of ABPs.

▶ Definition 6. An ABP is a layered directed acyclic graph with source node s and sink node
t such that each edge is labeled by a variable or a constant. The polynomial computed by the
ABP is given by

∑
p mp, where p is an s to t path and mp is the product of edge labels on

the path p. The width of an ABP is the maximum number of nodes in any layer and the
length is the number of layers.

It is easy to see that width-w, length-ℓ ABPs are equivalent to product of a sequence of ℓ

matrices of order w × w.
We now define a notion of reduction that allows us to relate the complexity of polynomials

under the above model.

▶ Definition 7. A polynomial f(x) ∈ F[x1, . . . , xn] is a projection of a polynomial g(y) ∈
F[y1, . . . , ym], denoted f ≤ g, if and only if f(x1, . . . , xn) = g(a1, . . . , am), where ai ∈
F ∪ {x1, x2, . . . , xn}.

It is easy to see that if g is computed by a formula of size s and depth d and f ≤ g, then f

is also computed by a formula of size at most s and depth at most d.
As is usually the case in algorithms and complexity, formula size or depth for fixed

polynomials is rarely of interest. Instead, we look at families of polynomials and the
asymptotic growth of size and depth of formulas computing them.



B. Komarath, A. Pandey, and N. Saurabh 65:7

▶ Definition 8. A polynomial family over a field F is a sequence f = (fn)n∈N of polynomials
such that both the number of variables and the degree of fn are polynomially bounded functions
in n.

A sequence of formulas F = (Fn)n∈N is said to compute a polynomial family f = (fn) if
and only if Fn computes fn for all n. The size and depth of the sequence F is defined as
functions such that s(n) and d(n) are the size and depth of Fn.

We now extend the definition of reductions to families.

▶ Definition 9. A polynomial family (fn) is a p-projection of another family (gm), denoted
(fn) ≤p (gm) if and only if there exists a polynomially bounded function t : N 7→ N such that
fn ≤ gt(n) for all n.

Note that if (gn) is computed by polynomial size formulas and (fn) ≤p (gn), then (fn) is
also computed by polynomial size formulas.

▶ Definition 10. The algebraic class VF is defined as the set of all polynomial families that
have polynomial size formulas.

The class VDet (equivalently VBP) is defined as the set of all polynomial families f such
that f ≤p det, where det is the family of determinants over n × n symbolic matrices.

Using the above notion of reduction, we can define completeness for classes.

▶ Definition 11. A polynomial family f = (fn) is said to be complete for a class C w.r.t p-
projections if and only if f ∈ C and for all g ∈ C, we have g ≤p f .

Note that det is trivially complete for VDet. Ben-Or and Cleve [5] showed that the polynomial
family per3,n, the (1, 1) entry of the product of n 3 × 3 symbolic matrices is complete for VF.

3 Determinant of (1, 2)-diagonal matrix versus algebraic formulas

In this section, we show that the determinants of (1, 2)-diagonal symbolic matrices are
polynomially equivalent to algebraic formulas, thereby, proving Theorem 2. We begin with
the easier direction, that is, by showing that the determinant of (1, 2)-diagonal symbolic
matrix has polynomial-sized algebraic formulas. In fact, we give a polynomial-sized algebraic
branching programs for them of width-3, which can then be converted into a polynomial-sized
formula using a divide and conquer algorithm.

▶ Lemma 12. The determinant (or, permanent) of (1, 2)-diagonal symbolic matrix of
dimensions n × n can be computed by a width-3 syntactic multilinear ABP of length at most
3n − 2.

In particular, they can be computed by (syntactic) multilinear formulas of size poly(n).

Proof. Let M denote the following (1, 2)-diagonal symbolic matrix,

M =



x11 x12 x13

x21

xn−2,n

xn−1,n

xn,n−1 xn,n


. (1)

MFCS 2022



65:8 Rabbits Approximate, Cows Compute Exactly!

For 0 ≤ i ≤ n − 1, define K(n − i) to be the determinant of the principal submatrix of M

obtained by deleting both the first i rows and columns. Furthermore, set K(0) := 1 and
K(−1) := 0. Note that, by definition, K(n) = det(M) and K(1) = xnn. Then we have the
following recursive formula for K(n):

K(n) = x11K(n − 1) − x12x21K(n − 2) + x13x32x21K(n − 3). (2)

The correctness of the above formula easily follows from a backward induction on i. Rewriting
the recurrence in a matrix form we obtain K(n)

K(n − 1)
K(n − 2)

 =

x11 −x12x21 x13x32x21
1 0 0
0 1 0

 K(n − 1)
K(n − 2)
K(n − 3)

 (3)

=

x21 x11 0
0 1 0
0 0 1

 0 −x12 x13
1 0 0
0 1 0

 1 0 0
0 1 0
0 0 x32

 K(n − 1)
K(n − 2)
K(n − 3)

 (4)

Unrolling Eq. (4) and using K(1) = xnn, K(0) = 1, and K(−1) = 0 we obtain the claimed
width-3 ABP for K(n). ◀

We now consider a special kind of (1, 2)-diagonal symbolic matrices where entries in both
the lowermost and the uppermost diagonals are only 1. We show that the determinant (or,
permanent) of such a matrix is equivalent to a special kind of width-3 ABP. These matrices
would serve as the key building block in our main proofs. However, we first need a name for
the special kind of (1, 2)-diagonal matrices that we are going to be dealing with.

▶ Definition 13. Let (α, β, γ, δ) ∈ (F ∪ {∗})4. A (1, 2)-diagonal matrix is said to be of type
(α, β, γ, δ) if all entries on the lowermost diagonal, main diagonal, first upper diagonal and
second upper diagonal equals α, β, γ and δ respectively. Furthermore, if α, β, γ, or δ equals
∗ then the entries on the respective diagonals are not restricted.

For example, a general (1, 2)-diagonal symbolic matrix, shown in Equation 1, is of type
(∗, ∗, ∗, ∗) and a (1, 2)-diagonal matrix of type (α, β, γ, δ) ∈ F4 is also a Toeplitz matrix.
The special kind of (1, 2)-diagonal matrices that we consider are of type (1, ∗, ∗, 1). We
now characterize the determinant of such matrices by a restricted width-3 ABP where the
interconnections between layers are given by a special 3 × 3 matrix.

▶ Lemma 14. Let M denote the following (1, 2)-diagonal symbolic matrix of type (1, ∗, ∗, 1)
of dimension n × n:

M =



x11 x12 1

1

1

xn−1,n

1 xn,n


.

Then, det(M) is given by the (1, 1) entry of the following iterated matrix multiplication over
3 × 3 matrices,x11 −x12 1

1 0 0
0 1 0

 x22 −x23 1
1 0 0
0 1 0

 · · · · · ·

x(n−1)(n−1) −x(n−1)n 1
1 0 0
0 1 0

 xnn 0 1
1 0 0
0 1 0

 .



B. Komarath, A. Pandey, and N. Saurabh 65:9

Conversely, the (1, 1) entry of the following iterated matrix multiplication:α1 β1 1
1 0 0
0 1 0

 α2 β2 1
1 0 0
0 1 0

 · · · · · ·

α(n−1) β(n−1) 1
1 0 0
0 1 0

 αn βn 1
1 0 0
0 1 0

 ,

is given by the determinant of the following (1, 2)-diagonal matrix of type (1, ∗, ∗, 1),

M =



α1 −β1 1

1

1

−βn−1

1 αn


.

Proof. The equivalence follows from observing that in this special case the recurrence of (3)
becomes K(n)

K(n − 1)
K(n − 2)

 =

x11 −x12 1
1 0 0
0 1 0

 K(n − 1)
K(n − 2)
K(n − 3)

 ,

=

x11 −x12 1
1 0 0
0 1 0

 · · ·

x(n−1)(n−1) −x(n−1)n 1
1 0 0
0 1 0

  K(1)
K(0)

K(−1)

 ,

where K(i), −1 ≤ i ≤ n, as defined in the proof of Lemma 12, is the determinant of the
principal submatrix of M obtained by deleting both the first n − i rows and columns with
K(0) = 1 and K(−1) = 0. ◀

3.1 Narayana’s cows polynomial is VF-complete
In this section, we simulate algebraic formulas with tetradiagonal matrices of type (1,∗,0,1).
The determinant of such matrices follow the same recurrence as that of Narayana’s cows
polynomial described in Section 1. This simulation along with Lemma 12 finishes the proof
of completeness of Narayana’s cows polynomial families for the class VF.

We know from Lemma 14 that the determinant (or, permanent) of (1, 2)-diagonal matrices
of type (1, ∗, 0, 1) is equivalent to the (1, 1) entry of an iterated matrix multiplication where

the base matrices are of the form:

∗ 0 1
1 0 0
0 1 0

. For notational convenience, let us denote the

base matrix

z 0 1
1 0 0
0 1 0

 by A(z). In the following we will only work with iterated matrix

multiplication over the base matrix A(∗) and use the equivalence given by Lemma 14 to
represent the matrix product as the determinant (or, permanent) of (1, 2)-diagonal matrix of
type (1, ∗, 0, 1).

For a better understanding of the algorithm we will present the algorithm in a recursive
way. In particular we will have intermediate computations where the matrices will be of the

form

0 f 1
1 0 0
0 1 0

. We will denote such matrices by B(f). Note that A(0) = B(0). We now

state and prove our simulation of formulas as a product of base matrices A(z).

MFCS 2022



65:10 Rabbits Approximate, Cows Compute Exactly!

▶ Lemma 15. Let p be a polynomial computed by a formula of depth d. Then, both A(p) and
A(−p) can be expressed as an iterated matrix multiplication of length at most 30 · 4d − 29 over
the base matrices A(z), where z is either a field constant, a variable, or a negated variable.

Proof. The proof is by induction on depth.
Base case: d = 0. Then it computes either a field constant, a variable or a negated

variable which can be represented by a single base matrix A(z), where z is the label of the
node.

Induction step: d = m. There are two cases to be considered depending on whether the
node at depth m is an addition or a multiplication node.

Case 1: (Addition). Suppose p = f + g, where f and g are computable by depth
m − 1 formulas. By induction hypothesis, we can express both A(f) and A(g). Then,
A(p) = A(f) · A(0) · A(0) · A(g). In other words,f + g 0 1

1 0 0
0 1 0

 =

f 0 1
1 0 0
0 1 0

 0 0 1
1 0 0
0 1 0

 0 0 1
1 0 0
0 1 0

 g 0 1
1 0 0
0 1 0

 .

Similarly one can express A(−p).
Case 2: (Multiplication). Suppose p = f · g, where f and g are computable by depth

m − 1 formulas. We will use the following equation to compute f · g.

A(f · g) = A(0) · A(0) · B(−g) · B(f) · A(0) · B(g) · B(−f). (5)

We will now show how to compute B(f) using matrices of type A(·) which will complete
the recursive algorithm. Similar to Eq. (5), the following equation computes B(f · g) using
matrices of type A(·).

B(f · g) = A(0) · A(−f) · A(0) · A(g) · A(f) · A(0) · A(−g). (6)

We can thus use appropriate substitutions in Eq. (6) to get B(f), B(g), B(−f), and B(−g)
and complete the algorithm. However, note that to compute B(f) we need to make two calls
to f as A(−f) and A(f). This would result in a total length of O(8d). To bring down the
length to O(4d), we now show how to compute B(f) using a single call to A(f). Consider
the following equation:

B(f) = A(0) · B(−1) · A(0) · A(1) · A(f) · A(0) · A(−1) · B(1) · A(0) · A(0). (7)

We can use Eq. (6) to obtain B(−1) and B(1), thus completing the algorithm to compute
B(f) with a single call to A(f). We can now use equations (5) and (7) to compute A(f · g).
Similarly one can express A(−p).

The upper bound on the length of the iterated matrix multiplication follows from the
following recurrence: T (d) ≤ 4 · T (d − 1) + 87 and T (0) = 1. ◀

As a corollary to Lemmas 12 and 15, we obtain the following characterization of formulas.

▶ Theorem 16. Let Mn denote the following (1, 2)-diagonal symbolic matrix of type (1, ∗, 0, 1)
of dimension n × n:

Mn =



x1 0 1

1
1

0
1 xn

.

Then the sequences of polynomials {det(Mn)}n≥1 and {per(Mn)}n≥1 are VF-complete
with respect to p-projections.



B. Komarath, A. Pandey, and N. Saurabh 65:11

Proof. Follows from Lemmas 12 and 15, and depth reduction of formulas [7]. ◀

We are now all set to deduce the completeness of the Narayana’s Cows polynomial family
for class VF.

▶ Theorem 17. Narayana’s cows polynomial family is VF-complete.

Proof. We observe that the determinants of the sequence of (1, 2)-diagonal symbolic matrices
of type (1, ∗, 0, 1) follow the recurrence Nm = xmNm−1+Nm−3 for all m ≥ 3, which is precisely
the recurrence defining the Narayana’s cows polynomials as described in Section 1. ◀

3.2 Padovan polynomial is VF-complete
In this section, we simulate algebraic formulas with tetradiagonal matrices of type (1, 0, ∗, 1)
instead. This time, the determinant of such matrices follow the same recurrence as that of
Padovan polynomial described in Section 1. This simulation along with Lemma 12 finishes
the proof of completeness of Padovan polynomial families for the class VF.

Again from Lemma 14 we know that the determinant (or, permanent) of (1, 2)-diagonal
matrices of type (1, 0, ∗, 1) is equivalent to the (1, 1) entry of an iterated matrix multiplication

where the base matrices are of the form:

0 ∗ 1
1 0 0
0 1 0

. Recall we denote base matrices of

the form

0 z 1
1 0 0
0 1 0

 by B(z). In the following we will only work with iterated matrix

multiplication over the base matrix B(∗) and use the equivalence given by Lemma 14 to
represent the matrix product as the determinant (or, permanent) of (1, 2)-diagonal matrix of
type (1, 0, ∗, 1).

▶ Lemma 18. Let p be a polynomial computed by a formula of depth d. Then, both B(p) and
B(−p) can be expressed as an iterated matrix multiplication of length at most 30 ·4d −29 over
the base matrices B(z), where z is either a field constant, a variable, or a negated variable.

The proof is analogous to the proof of Lemma 15. (See the full version [13].)
As a corollary to Lemmas 12 and 18, we obtain another characterization of formulas.

▶ Theorem 19. Let Mn denote the following (1, 2)-diagonal symbolic matrix of type (1, 0, ∗, 1)
of dimension n × n:

Mn =



0 x1 1

1
1

xn−1

1 0

.

Then the sequences of polynomials {det(Mn)}n≥2 and {per(Mn)}n≥2 are VF-complete
with respect to p-projections.

Proof. The containment in VF follows from Lemma 12. While the hardness follows by
translating the iterated product in Lemma 18 to a (1, 2)-diagonal symbolic matrix of type
(1, 0, ∗, 1) using Lemma 14. Note that to apply Lemma 14 one has to multiply the iterated
product on the right by B(0) (to move the polynomial to (1, 1) entry). However, this only
increases the length by 1. Finally using the depth reduction of formulas [7] completes the
proof. ◀

MFCS 2022



65:12 Rabbits Approximate, Cows Compute Exactly!

We are now all set to deduce the completeness of Padovan polynomial family for class VF.

▶ Theorem 20. Padovan polynomial family is VF-complete.

Proof. We observe that the determinants of the sequence of (1, 2)-diagonal symbolic matrices
of type (1, 0, ∗, 1) in Theorem 19 follow the recurrence Pn = xn−1Pn−2 + Pn−3, for all n ≥ 3,
if we negate all variables in the matrix, which is precisely the recurrence for the Padovan
polynomials as described in Section 1. ◀

4 Matrices of small bandwidth

Our main goal in this section is to prove that for all fixed k, the determinant of matrices
of bandwidth k can be computed by polynomial sized formulas. Along with the results in
Section 3, this gives a complete characterization of the algebraic complexity of the determin-
ant of constant bandwidth matrices (Theorem 24). Following the spirit of parameterized
algorithms, we consider the bandwidth k as a parameter, and show that we can construct
efficient syntactic multilinear ABPs (Theorem 22) and circuits (Theorem 26) for computing
the determinant where the undesirable blowup (exponential for size, polynomial for depth) is
limited to the parameter k.

Our parameterized constructions are derived from Grenet’s syntactic multilinear ABP
construction for the n × n permanent [12] and the generalized Laplace expansion that
constructs syntactic multilinear circuits for the n × n determinant and permanent. We state
the bounds given by those constructions below:

▶ Lemma 21. The determinant (or, permanent) of an n×n symbolic matrix can be computed
by a syntactic multilinear circuit of size O(n2n) and depth O(n). Moreover, it can be computed
by a syntactic multilinear ABP of length at most n + 2 and width at most

(
n

n/2
)
.

Notice that the ABP in Lemma 21 has width that is exponential in n. Our construction
for matrices of bandwidth k shows that this exponential blowup can be limited to k.

▶ Theorem 22. The determinant (permanent) of a (k, k)-diagonal symbolic matrix of
dimension n × n can be computed using a syntactic multilinear ABP of length n + 2 and
width

(2k
k

)
.

Proof. We begin with a high-level recall of Grenet’s construction [12]. In his construction, the
start node is in layer 0. All monomials computed at layer i correspond to some permutation
that maps rows [i] to some set of i columns. Further, a node in a particular layer keeps track
of the subset of columns in the monomials computed at that node. This means that in layer
n/2, it has to keep track of

(
n

n/2
)

distinct sets resulting in exponential (in n) width. The
edges between layers are specified such that these invariants are preserved.

We now build a layered ABP for small bandwidth matrices that is a modification of
Grenet’s construction.

For matrices of bandwidth k, we can make use of the fact that rows that are separated by
at least 2k rows have no common non-zero columns. Therefore, instead of keeping track of a
subset of all columns, we can keep track of a subset of only a few columns. More specifically,
any monomial computed at layer i (assume k ≤ i ≤ n − k for simplicity, the rest of the rows
are handled similarly) must pick i columns from [i + k] since all columns further to the right
are zero for these rows. Moreover, the columns [i − k] have to be picked by the first i rows
since these columns are zero from row i + 1. Therefore, rows up to i must pick exactly k

columns from the 2k sized set of columns [i − k + 1, i + k]. In layer i, we have exactly one



B. Komarath, A. Pandey, and N. Saurabh 65:13

node for each k sized subset of this 2k sized set. This ABP has n + 2 layers and each layer
has at most

(2k
k

)
nodes. This is precisely where we improve over Grenet’s construction when

specialized to matrices of bandwidth k. We refer to the full version [13] for details. ◀

By using standard conversion from ABP to formula, we obtain the following corollary.

▶ Corollary 23. For all fixed k, the determinant (or, permanent) of symbolic matrices of
bandwidth k can be computed using polynomial sized formulas.

Along with the results in Section 3, the above corollary gives a complete characterization
of the algebraic complexity of determinant (or, permanent) of constant bandwidth matrices.

▶ Theorem 24. For all constant k ≥ 2, the determinant (or, permanent) family of symbolic
matrices of bandwidth k is VF-complete.

▶ Remark 25. For completeness, we add that for k = 0 (symbolic diagonal matrices), the
determinant (or, permanent) family is complete for width-1 ABPs, and for k = 1, the
determinant (or, permanent) family is complete for width-2 ABPs.

The ABP given by Theorem 22 has depth n. On the other hand, converting it to a
formula makes the depth O(k log(n)) but the size nO(k). If we are interested in arithmetic
circuits, we can eliminate the dependence of k in the exponent of n while keeping the depth
logarithmic in n. Compared to Lemma 21, our construction, which is an adaption of the
generalized Laplace expansion to low bandwidth matrices, limits the exponential blowup in
size and the polynomial blowup in depth to the parameter k.

▶ Theorem 26. The determinant (or, permanent) of an n × n (k, k)-diagonal symbolic
matrix can be computed using a syntactic multilinear circuit of size O(exp(k)n) and depth
O(k log(n)).

We refer to the full version [13] for details.

References
1 OEIS Foundation Inc. (2022). Narayana’s Cows Sequence, Entry A000930 in the On-Line

Encyclopedia of Integer Sequences. https://oeis.org/A000930, 1964. Accessed: 2022-04-26.
2 OEIS Foundation Inc. (2022). Padovan Sequence, Entry A000931 in the On-Line Encyclopedia

of Integer Sequences. https://oeis.org/A000931, 1964. Accessed: 2022-04-26.
3 E. Allender, V. Arvind, and M. Mahajan. Arithmetic complexity, kleene closure, and formal

power series. Theory Comput. Syst., 36(4):303–328, 2003.
4 E. Allender and F. Wang. On the power of algebraic branching programs of width two. Comput.

Complex., 25(1):217–253, 2016.
5 M. Ben-Or and R. Cleve. Computing algebraic formulas using a constant number of registers.

SIAM J. Comput., 21(1):54–58, 1992.
6 S. J. Berkowitz. On computing the determinant in small parallel time using a small number of

processors. Information Processing Letters, 18(3):147–150, 1984.
7 R. P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM, 21(2):201–206,

1974.
8 K. Bringmann, C. Ikenmeyer, and J. Zuiddam. On algebraic branching programs of small

width. J. ACM, 65(5):32:1–32:29, 2018.
9 C. Conley and V. Ovsienko. Lagrangian Configurations and Symplectic Cross-Ratios. Math-

ematische Annalen, pages 1105–1145, 2018.
10 C. Conley and V. Ovsienko. Rotundus: Triangulations, Chebyshev Polynomials, and Pfaffians.

Math Intelligencer, 40:45–50, 2018.

MFCS 2022

https://oeis.org/A000930
https://oeis.org/A000931


65:14 Rabbits Approximate, Cows Compute Exactly!

11 L. Csanky. Fast parallel matrix inversion algorithms. SIAM Journal on Computing, 5(4):618–
623, 1976.

12 B. Grenet. An Upper Bound for the Permanent versus Determinant Problem. Manuscript,
2011.

13 B. Komarath, A. Pandey, and N. Saurabh. Rabbits approximate, cows compute exactly!
Manuscript, 2022. URL: https://nitinsau.github.io/pubs/cow-sequences.pdf.

14 X. Lin. On the Recurrence Properties of Narayana’s Cows Sequence. Symmetry, 13(1), 2021.
URL: https://www.mdpi.com/2073-8994/13/1/149.

15 M. Mahajan and V. Vinay. Determinant: Combinatorics, algorithms, and complexity. Electron.
Colloquium Comput. Complex., 4, 1997.

16 S. Morier-Genoud. Coxeter’s Frieze Patterns at the Crossroads of Algebra, Geometry and
Combinatorics. Bulletin of the London Mathematical Society, 47(6):895–938, 2015.

17 S. Morier-Genoud and V. Ovsienko. Farey Boat: Continued Fractions and Triangulations,
Modular Group and Polygon Dissections. Jahresber. Dtsch. Math. Ver., 121:91–136, 2019.

18 Narayana Pandita. Ganita Kaumudi, 1356. India.
19 I. Stewart. Tales of a neglected number. Scientific American, 274(6):102–103, 1996. URL:

http://www.jstor.org/stable/24989576.
20 L. G. Valiant. Completeness Classes in Algebra. In Proceedings of the Eleventh Annual ACM

Symposium on Theory of Computing, STOC ’79, pages 249–261, 1979.
21 Wikipedia contributors. Narayana Pandita (mathematician). https://en.wikipedia.org/w/

index.php?title=Narayana_Pandita_(mathematician)&oldid=1071293682, 2022. [Online;
accessed 26-April-2022].

22 Wikipedia contributors. Padovan Polynomials. https://en.wikipedia.org/w/index.php?
title=Padovan_polynomials&oldid=1080802324, 2022. [Online; accessed 27-April-2022].

23 Wikipedia contributors. Padovan Sequence. https://en.wikipedia.org/w/index.php?
title=Padovan_sequence&oldid=1078995920, 2022. [Online; accessed 27-April-2022].

https://nitinsau.github.io/pubs/cow-sequences.pdf
https://www.mdpi.com/2073-8994/13/1/149
http://www.jstor.org/stable/24989576
https://en.wikipedia.org/w/index.php?title=Narayana_Pandita_(mathematician)&oldid=1071293682
https://en.wikipedia.org/w/index.php?title=Narayana_Pandita_(mathematician)&oldid=1071293682
https://en.wikipedia.org/w/index.php?title=Padovan_polynomials&oldid=1080802324
https://en.wikipedia.org/w/index.php?title=Padovan_polynomials&oldid=1080802324
https://en.wikipedia.org/w/index.php?title=Padovan_sequence&oldid=1078995920
https://en.wikipedia.org/w/index.php?title=Padovan_sequence&oldid=1078995920

	1 Introduction
	1.1 Our findings
	1.2 Proof methods

	2 Preliminaries
	3 Determinant of (1,2)-diagonal matrix versus algebraic formulas
	3.1 Narayana's cows polynomial is VF-complete
	3.2 Padovan polynomial is VF-hard

	4 Matrices of small bandwidth

