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This letter considers the problem of estimating the state of a scalar dy-
namical system over a wireless channel that is lossy, capacity, and power
limited. The limited power assumption, which is valid for most real
problems, links the number of quantisation bits and packet error rate.
As the number of quantisation bits increases, the quantisation noise de-
creases but the packet loss rate increases. It is shown that the estima-
tion error variance (EEV) is minimised for a range of quantisation bits.
Further, it is shown that operating beyond the optimal range sharply in-
creases the EEV. Simulation results corroborating the analytical results
are also presented.

Introduction: Control and estimation of cyber physical systems (CPS)
involve wireless communication as it is flexible, cheap, and easy to
use. Wireless systems are capacity and power limited and hence lossy.
Data transmitted through a wireless system may suffer from quantisation
noise and packet loss. So, many researchers have tried to solve problems
associated with CPS. These include optimal linear quadratic Gaussian
(LQG) control subject to quantisation noise and packet loss [1], LQG
control subject to the packet delay [2], Kalman filtering (KF) in wireless
sensor networks [3], and KF with quantised measurements (quantised
KF) [4, 5]. The remote KF with 1-bit quantisation has been introduced
in [6] and then extended to remote Kalman filtering for multi-bits in
[7]. For remote linear estimation, the optimal linear encoder for uniform
quantiser was devised in [8], and simultaneous design of the encoder
and the quantiser was presented in [9]. KF with transmit power con-
straint have been addressed in [10–15]. However, these works consider
the quantisation noise and packet loss rate as independent.

In this letter, we propose remote estimation of a linear scalar CPS;
in a capacity and power-limited, lossy channel. In this model, the en-
coded data are quantised (b bits/sample), encoded using a modulation
and coding scheme (MCS), and transferred from the transmitter to the
receiver over a lossy wireless channel. This transfer is typically mod-
elled by an independent Bernoulli packet loss process when the channel
is capacity limited [16, 17]. This modelling decouples the quantisation
noise and packet error rate and is justified because any degradation in
packet loss rate due to increased data rate can be compensated by an in-
crease in power. A capacity-limited and power-limited channel does not
offer this luxury, and an increase in data rate due to more quantisation
bits increases the packet loss rate (PLR). We show that in such a chan-
nel, there is a range of quantised bits in which the EEV is minimised.
We characterise this optimal number of quantised bits and study them
in various simulation environments. It is observed that the EEV sharply
increases when operating outside the optimal range.

System model: We consider a scalar discrete-time linear state dynamical
system, given by

xk+1 = a xk + wk , (1)

where xk is the system state and wk is the system state noise at time
instant k. The measurement of the system at time k, is given by

yk = c xk + vk , (2)

where yk and vk are the system observation and the measurement noise
at time instant k. Variables a and c are the scalar system and the scalar
measurement coefficients, respectively. For a stable system |a| < 1 and
we assume that the measurement is scaled so that c = 1.

An encoder f (·) encodes the data to uk which is quantised to q(uk ).
This quantised signal q(uk ) is transmitted using a modulation and coding
scheme (MCS) that encodes the data at a rate R, provides a coding gain

Fig. 1 A schematic model of the remote estimation system

C and transmits a signal, sk from a constellation χ, |χ | = 2bc , where
bc = b/R. The received data suffers from packet loss at time instant k
denoted as (γk ∈ {0, 1}), as shown in Figure 1. The extended system
model together with the encoder and quantiser at the receiver side can
be represented as

xk+1 = axk + wk, uk = f
(
yk, zk−1

)
, zk = γkq (uk ) = γk (uk + nk )

(3)

where the sequences Yk = {yl}l=k
l=0, Zk−1 = {zl}l=k−1

l=0 , and where nk ∼
N (0, σ 2

nk
) is the quantisation noise, which following [9, 10, 17] is as-

sumed to be white Gaussian. The probability of packet loss γk depends
on the MCS scheme chosen and in-particular depends on the signal to
noise ratio per bit, ρb, and the number of coded bits per sample bc = b/R
as shown in Figure 1. We assume that acknowledgement signals are ex-
changed, so that the packet loss sequence {γt}t=k−1

t=0 is perfectly known at
the transmitter and it can perfectly reconstruct Zk−1.

Also, the modelling is very general when f (·) = y, then the system
models quantisation of the observation vector. When f (·) = x̂tx

k|k , the
transmitted message is an estimate of the state at the transmitter and
when f (·) = x̂tx

k|k − x̂tx
k|k−1 where x̂rx

k|k−1 = E{xk | Zk−1} is the prediction
at the receiver and E[·] is the expectation operator. In what follows we
assume the optimal encoding strategy of transmitting the innovation [7]
for a uniform quantiser. The remote estimation is done for the extended
system model to obtain x̂rx

k|k , and is given by

x̂rx
k|k = Eγ

[
xk | Zk

]
. (4)

The remote estimate of the state is done to minimise the EEV at the
receiver, defined as

prx
k|k = Eγ

[∣∣xk − x̂rx
k|k

∣∣2
]
. (5)

For the optimal coded system uk = x̂tx
k|k − x̂rx

k|k−1, and the receiver error
variance is given by [16]

prx
t+1|t = a2 prx

t|t−1 + σ 2
w − (1 − ε)

a2�

1 + �

(
prx

t|t−1 − ptx
t|t

)
(6)

where ptx
t|t is the EEV at the transmitter, � denotes the signal to quanti-

sation noise ratio (SQNR) and ε = P(γk = 0) is the packet loss rate. Let
ptx

∞ = limt→∞ ptx
t|t . Then the steady state EEV is given by [17]

pCF (bc) = lim
t→∞ prx

t+1|t = σ 2
w + (1 − ε) a2�

�+1 ptx
∞

1 − a2 1+ε�
1+�

. (7)

Problem formulation: In most analysis of Kalman filter in capacity-
limited channels, the packet loss rate, ε = P(γk = 0), is assumed to
be independent of the number of quantisation bits, b. This is particu-
larly true when there is no power constraint. Moreover, as the number of
quantisation bits increase the power can be increased to get a desired ε.
However, in practical systems, and in particular for power-limited sys-
tems, this is not possible. In such systems an increase in the number
of quantisation bits results in a higher throughput and requires the use
of a higher modulation scheme without a proportional increase in the
SNR. This results in an increased bit error rate (BER) and hence an in-
creased packet loss rate, ε. This suggests a trade-off that as the number
of quantisation bits increase the quantisation noise decreases but results
in an increased packet loss rate. In addition, even for capacity-limited
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Table 1. Approximate bit error rates for coherent modulations

Modulation Pb(ρb)

MPAM: Pb ≈ 2(M − 1)

M log2 M
Q

(√
6ρb log2 M

(M2 − 1)

)

MPSK: Pb ≈ 2

log2 M
Q

(√
2ρb log2 M sin

( π

M

))

Rect. MQAM: Pb ≈ 2(
√

M − 1)√
M log2 M

Q

(√
3ρb log2 M

(M − 1)

)

Nonrect. MQAM: Pb ≈ 4

log2 M
Q

(√
3ρb log2 M

(M − 1)

)

Fig. 2 Variation of EEV as a function of bc for a fixed SNR of 25 dB

channels, for fair comparison of systems, same transmit power should
be used.

To formulate the problem mathematically, the SQNR is typically
modelled as � = DR22bc , where DR depends on the dynamic range of
the quantiser. Without loss of generality, we assume DR = 1. If a packet
contains N bits and Pb denotes the BER, then the PLR is given by

P(γk = 0) = ε(bc ) = 1 − (1 − Pb(bc ))N . (8)

Table 1 lists the approximate BERs, Pb, as function of M = 2bc for
various popular signal constellations [11]. Let ρO be a fixed SNR per
bit, then the optimisation problem is obtained by substituting ε(bc) from
Equation (8), Table 1 and the SQNR �(bc ) to obtain

min
bc

pCF(bc ) =
σ 2

w + (1 − ε(bc)) a2�(bc )
�(bc )+1 ptx

∞
1 − a2 1+ε(bc )�(bc )

1+�(bc )

s.t ρb ≤ ρO.

(9)

We next analyse the steady state EEV to obtain some insights. Note that
if (1 − a2)ptx

∞ < σ 2
w then pCF(bc ) can be shown to be an increasing func-

tion of ε(bc). Thus we get a lower bound, EEVL(bc), on pCF(bc) by sub-
stituting ε = 0 in Equation (9). We have,

EEVL(bc ) = σ 2
w + a2�

�+1 ptx
∞

1 − a2 1
1+�

. (10)

Moreover under the same condition (1 − a2)ptx
∞ < σ 2

w, EEVL(bc ) is a
decreasing function of �. Thus letting � → ∞, we have the universal
lower bound as

EEVL = lim
bc→∞

EEVL(bc ) = σ 2
w + a2 ptx

∞. (11)

For the upper bound we let ε = 1. We have,

EEVU = lim
ε→1

pCF(ε) = pCF(1) = σ 2
w

1 − a2
. (12)

Figure 2 plots the variations of EEV as bc increases for a fixed SNR per
bit of 25 dB for square QAM. Observe from the figure that the EEV
first decreases and then saturates at a low value, EEVL(bc) as given by
Equations (10) and (11) before sharply increasing and then saturating at
a higher value, as given by Equation (12). Clearly, there is a range of bc’s
for which EEV is minimised. In what follows we intend to characterise
this range. We have

Algorithm 1 Find the optimal bc’s satisfying Theorem 1.

Require: Inputs ρO, bL
c , σ 2

w, σ 2
v , a and Modulation Type (MQAM/MPSK)

1: Initialise b∗
c ← {}, bc ← 1, ε(0) ← 1, ρb ← ρO.

2: Given bc, compute the packet error probabilities ε(bc − 1), ε(bc )) and
ε(bc + 1) using Equation (8) and Table 1

3: If both Equations (13) and (14) are satisfied, then b∗
c ← bc

⋃
b∗

c .

3a: If, Equation (13) is satisfied with ’equality’ bc ← bc + 1 go to Step 2.

Else STOP.

3b: Else, If bc == bL
c , STOP.

Else bc ← bc + 1, and go to Step 2.

Fig. 3 (a) Variation of EEV as a function of bc for a fixed SNR, as SNR
varies from 0–30 dB for different values of σ 2

w, σ 2
v , a and N for MQAM signal

constellation in AWGN; (b)Variation of EEV as a function of bc for a fixed
SNR, as SNR varies from 0–30 dB for different values of σ 2

w, σ 2
v , a and N for

MPSK signal constellation in AWGN

Theorem 1. The optimum values of bc that minimise the steady-state
MSE are the only bc ’s that must satisfy the following simultaneously;

−3ε(bc + 1)σ 2
w + C1 [4ε(bc + 1)(� + 1) − 
 ] ≥ 0, (13)

−3ε(bc − 1)σ 2
w + C1 [4ε(bc − 1)(� + 1) − 
 ] ≥ 0, (14)

where C1 = (σ 2
w + (a2 − 1)ptx

∞),
 = ε(bc)(1 + 4�) + 3 .

Proof. The solution of the optimisation problem is obtained by solv-
ing the following two difference equations.

pCF (bc + 1) − pCF (bc) ≥ 0 (15)

pCF (bc − 1) − pCF (bc) ≥ 0. (16)

Note that �(bc + 1) = 4�(bc ). Employing Equation (9) to evaluate
Equations (15) and (16), and after simplification, we have Equations (13)
and (14) respectively. �

Remark 1. Note that a closed-form expression for the optimal values
of bc using Equations (13) and (14) is intractable. An iterative algorithm
for obtaining the optimal values is presented in Algorithm 1; wherein ptx

∞
can be calculated from the inputs and bL

c is a preset value to stop the algo-
rithm. Observe that when EEVL = EEVU all values are optimal. When
EEVL �= EEVU, note that limbc→0 Pb(bc) > 1 for all the constellations in
Table 1. So, ε(0) = 1 and pCF(0) = EEVU. Also, as pCF(∞) = EEVU,
it follows that an optimal bc will always exist.

Simulations and numerical results: Numerical simulation were per-
formed to evaluate the EEV performance of the proposed system for
MQAM and MPSK for both AWGN and Rayleigh Fading Channels for
various values of σw, σv, N , and a. The model is simulated for 10,000
time instances and the time averaged EEV is plotted. R and C are set to
1 for simplicity. The effect of code rate R can be easily inferred by ap-
propriately scaling with R. A coding gain of C > 1 results in increased
cardinality of the optimal values of bc. The numerical results are plotted
with continuous line and the simulation results are marked by the blue
‘*’ in Figure 2. Observe that the time averaged EEV is almost identi-
cal to numerical analysis results. The output of the Algorithm 1 can be
inferred from the analytical plots and has been omitted.

Observe from Figure 3a that (i) the upper and lower limits vary with
different values of σw, σv, and a which is as expected from (11) and (12);
(ii) transition to EEVU from EEVL depends on N , with faster transitions
as N increases; (iii) when ρb is greater than or equal to 10 dB, the optimal
bc’s lower limit is constant. This can be justified by the observation that
the lower limit of bc depends on the quantisation noise when the SNR
per bit is greater than a threshold; iv) when ρb is lower than a threshold,
then the EEV curve is flat as the BER is poor even for low bcs and corre-
sponds to (1 − a2)ptx

∞ > σ 2
w; This lower threshold on ρb can be obtained
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Fig. 4 Variation of EEV as a function of bc for a fixed SNR, as SNR varies
from 20–60 dB for MQAM signal constellation in Rayleigh fading channels

by observing that the ε(bc) → 1 for the EEV to saturate at EEVU. As in
[13], summarising the values in Table 1 as Pb(ρb) ≈ αMQ(

√
ρbβM) and

using (8), we have αMQ(
√

ρι
bβM) = 1 − ι1/N , where ι < 1 is a positive

variable. The threshold on SNR per bit is then given by

ρι
b ≈ 1

βM

(
Q−1

(
1 − ι1/N

αM

))2

. (17)

For MQAM, substituting ι = 0.1, bc = 1, and N = 1000 in (17), we
have ρ0.1

b =4.28 dB. This suggests that more than 4.28 dB SNR per bit is
required for the EEV optimisation to be feasible. This result corresponds
well with Figure 3a where the curves for ρb < ρ0.1

b are a straight line at
EEVU. Likewise with ι = 0.99, ρ0.99

b = 7.9 dB which roughly gives the
SNR per pit when the EEV curves reach EEVL. v) the upper limit of the
optimal bc depends on the SNR per bit. As the SNR per bit increases
the upper limit of optimal bc’s increases. This can be justified by the bet-
ter BER as the SNR per bit increases so that the packet loss rate saturates
for larger bc’s.

Figure 3b plots the variation of EEV with bc for MPSK modulation.
Observe that in addition to the inferences derived from Figures 3a and 2,
the optimal range of bc reduces while the lower limit remains constant.
The reduced range is because of larger BER of MPSK as compared to
MQAM which results in saturation to MSEU for smaller bc’s. The SNR
per bit threshold ρ0.1

b for MPSK, with ι = 0.1, bc = 1, and N = 1000
is 7.23 dB and ρ0.99

b = 10.2 dB which again corresponds well with
Figure 3b.

Figure 4 plots the variation of EEV with bc for MQAM modula-
tion over Rayleigh fading channel. Clearly, the observations made from
plots in Figure 3a,b, hold but for higher SNRs. This can be explained
by further degradation of average BER performance, P̄b as a function
of average SNR per bit, ρ̄b over Rayleigh fading channels, given by

[16] P̄b(ρ̄b) ≈ αM
2 [1 −

√
0.5βM ρ̄b

1+0.5βM ρ̄b
]. There is a corresponding shift in the

lower threshold on average SNR per bit which is given by

ρ̄ι
b ≈ 2

βM

{
αM − 2

(
1 − ι1/N

)}2

α2
M − {

αM − 2(1 − ι1/N )
}2 . (18)

For MQAM, with ι = 0.1, bc = 1, and N = 10, 000, ρ0.1
b = 26.27 dB

and ρ0.99
b = 49.87 dB which corresponds well with Figure 4. Ob-

serve from all the figures that when the SNR per bit is large enough
(> ρ0.99

b ) then the lower limit of optimal bc’s starts at 3 bits. Further,
for such SNR’s the upper limit obtained by using the Chernoff bound is
very loose.

Discussion and conclusions: We have considered estimation over a
lossy, capacity, and power limited channel in this letter. We have shown
that there is an optimal range of quantisation bits that minimises the
EEV. We have further shown that the upper and lower limits depend on
the quantisation noise and BER, respectively. We have shown that these
observations are equally valid for Rayleigh fading channels with higher
SNRs. The SNR per bit values for which optimisation is feasible have
also been provided. The results are similar for other encoder functions,
f (·), and have been omitted. For WiFi and LTE, it has been shown that
exponential curves model well the packet loss curves in AWGN and in-
verse SNR curves for Rayleigh channels [10]. As such, the results of this
letter will also apply to these systems. Additionally, there is a possibility

of various SNR levels in practical systems, which suggests a different
adaptive approach to choosing the MCS for optimising the EEV. Future
research directions include vector systems, power control, and coding
[18].
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