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Abstract—In recent years, researchers have focused on reducing the model size and number of computations (measured as “multiply-

accumulate” or MAC operations) of DNNs. The energy consumption of a DNN depends on both the number of MAC operations and the

energy efficiency of each MAC operation. The former can be estimated at design time; however, the latter depends on the intricate data

reuse patterns and underlying hardware architecture. Hence, estimating it at design time is challenging. This article shows that the

conventional approach to estimate the data reuse, viz. arithmetic intensity, does not always correctly estimate the degree of data reuse

in DNNs since it gives equal importance to all the data types. We propose a novel model, termed “data type aware weighted arithmetic

intensity” (DI), which accounts for the unequal importance of different data types in DNNs. We evaluate our model on 25 state-of-the-

art DNNs on two GPUs. We show that our model accurately models data-reuse for all possible data reuse patterns for different types of

convolution and different types of layers. We show that our model is a better indicator of the energy efficiency of DNNs. We also show

its generality using the central limit theorem.

Index Terms—Deep neural networks (DNNs), energy-efficiency, arithmetic intensity, roofline model

Ç

1 INTRODUCTION

DNNS are now being used in a wide range of cognitive
applications. After the success of AlexNet [1], the

research in DNNs has focused on achieving higher accuracy
even at the cost of large DNN size and computational com-
plexity. The focus on accuracy has led to over-parameterized
DNNs, e.g., VGG-16 [2], Inception-v4 [3], ResNet152-v2 [4]
etc. By contrast, recent networks such as SqueezeNet [5],
MobileNet-V1 [6], MobileNet-V2 [7], ShuffleNets [8], etc.
focus on making the DNN compact by reducing the number
of parameters, orMACs or both. However, reducing the num-
ber of MACs does not necessarily make DNNs energy effi-
cient because energy is dominated by data movement rather
than computation [9]. The data movement primarily depends
on the degree of data reuse present in theworkloads.

To enable the deployment of DNNmodels in a wide range
of applications such as autonomous driving and drones, the
energy consumption of DNN inference must be within a pre-
scribed envelope. Hence, DNNs need to be carefully exam-
ined based on the number of computations (i.e., MACs) and
the energy efficiency of MAC operations. Unfortunately, the
latter metric has mainly been overlooked in DNN design
because a study of energy efficiency requires precise knowl-
edge of the degree of data reuse and parallelism present in the
DNNs, and how the underlying hardware platform exploits

this parallelism. Further, the implications of reducing the
number of parameters and MACs on the energy efficiency of
DNN is not well-understood.

Traditionally, arithmetic intensity [10] is used to model the
degree of data reuse. It is also used in the “roofline model”
[11] for predicting whether a workload is compute-bound or
memory-bound. Therefore, it represents the degree of data reuse
available in workloads and hence bandwidth pressure. Lower
arithmetic intensity implies a lower degree of data reuse and
high bandwidthpressure and vice versa. The arithmetic inten-
sity considers the memory footprint and the number of arith-
metic operations and shows the degree of data reuse available
in a workload. In other words, arithmetic intensity shows
howefficiently arithmetic operation can reuse the data fetched
from different levels in the memory hierarchy. However, the
memory footprint does not always reflect the actual number
of off-chip accesses, which largely depends on the data reuse
available in workload and how well the underlying platform
exploits the data reuse available in the workload. Arithmetic
intensity can represent power/energy efficiency only when
all the data types have the same access behavior. For example,
Choi et al. [12] and Ghane et al. [13] use arithmetic intensity to
model the power/energy efficiency.

DNNs have different types of data such as filter weights,
input and output activations, partial sums, which have dif-
ferent reuse patterns [14] and hence, reuse importance. Also,
the layers in DNNs have distinct computation and reuse pat-
terns with different bandwidth requirements. For example,
convolution (Conv) layers have a high degree of reuse, and
they are compute-bound, whereas fully connected (FC)
layers have low-reuse and a high number of parameters, and
hence, they are memory-bound [15]. Moreover, the same
layerwith different types of convolution possesses a different
degree of data reuse (refer Section 2 for more details). Fur-
ther, due to the different DNN topologies such as branching,
skip connections, and dense connections [16], the number of
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concurrent activations varies during the runtime [17] which
in turn, affects the reuse behavior of DNNs. Given these fac-
tors, it is interesting to investigate whether arithmetic intensity
can be used as a representative of energy efficiency in DNNmodels,
or, is there a need for amore accuratemetric.

In Fig. 1, cumulative arithmetic intensity (AIc) and median
value of layer-wise arithmetic intensity (AImedian) of DNNs
are shown (these metrics are explained in Section 4). VGG-16
[2] and NiN [18] have almost equal AIc but NiN has signifi-
cantly higher energy efficiency (measured on both GPU P100
and P4000) thanVGG-16, evenwhenVGG-16 has quite higher
AImedian. Also, AlexNet has lowerAIc andAImedian thanVGG-
16 but has higher energy efficiency thanVGG-16. It shows that
both layer-wise arithmetic intensity and cumulative arithme-
tic intensity are not good indicators of energy efficiency of
DNNs and hence, there is a need for better model/metric to estimate
the data reuse inDNNs to understand their energy efficiency.

Our main contributions can be summarized as follows.

1) We first explore the intricacies of data reuse patterns
(Section 2) and energy-efficiency of various DNNs
(Section 3). We also perform a detailed analysis of
layer-wise data reuse patterns in DNNs (Section 4).
We include all the possible variations of data reuse
patterns arising from (a) different types of convolu-
tions such as standard, group, pointwise, depthwise,
etc., (b) different types of layers such as Conv, FC,
and others, and (c) different design heuristics such
as feed-forward/skip connections. Our comprehen-
sive experiment and analysis show that data reuse
estimated by arithmetic intensity is not tightly-coupled
with the energy efficiency of MAC operations in DNNs.

2) We experimentally measure the energy consumption
and energy efficiency of DNNs on two GPUs, P100
and P4000, and one CPU.We show that activation reuse
has a higher impact on energy efficiency thanweight reuse.

3) We propose a novel metric, termed “data type aware
weighted arithmetic intensity” (DI), which takes
data types into cognizance and accounts for the
unequal importance of different data types in DNNs.
Our proposed metric (DI) more accurately quantifies
the intrinsic relationship between data reuse and
energy efficiency of MAC operations (Section 5).

4) We validate our model on 25 state-of-the-art DNNs,
including both highly-accurate DNNs and compact
DNNs, which have between 221 to 15,470 million
weights and between 0.54 to 138 million MACs.

5) We also use the “central limit theorem” to prove the
generality of our proposed model (Section 6).

2 BACKGROUND AND MOTIVATION

Table 1 lists the symbols used. For simplicity and ease of
comparison, we assume that a) height and width of filter
are same, b) height and width of output feature map
(ofmap) are same, and c) spatial size of input feature map
(ifmap) and ofmap are equal.

2.1 Data Reuse Patterns in DNNs

Types of Convolution. Broadly, there are four types of convo-
lutions. They are discussed below and their properties are
summarized in Table 2. Here, weight (learnable filter coeffi-
cients) reuse and activation (ifmaps and ofmaps) reuse are
estimated as Mc/W and Mc/A, respectively. We use arith-
metic intensity defined as Mc

WþA , as a metric to evaluate the
bandwidth requirement of MACs [10].

Fig. 1. Neither AImedian nor AIc is a representative of data reuse in
DNNs.

TABLE 1
Symbols (Fmap = Feature Map, Ops = Operations)

Quantity (symbol) Unit Quantity (symbol) Unit

Energy per pixel (EPP) Joule Energy efficiency MACs/Joule
Average power (Pavg) watt Inference time (It) Millisecond
# Weights (W ) Millions Throughput MACs/sec
# MACs (Mc) Millions # Activations (A) Millions
Fmap height (So) - Fmap width (So) -
Filter height (Sk) - Filter width (Sk) -
# filter-channels (M) - # filters (N) -
Compute to memory ratio (CMR) OPs/sec/Byte Group Size (G) -
Cumulative arithmetic intensity (AIc) MACs/Byte Disparity factor (df ) -
Pearson Product Moment correlation coefficient (rp) - Spearman’s Rank correlation coefficient (rs) -

TABLE 2
Data Reuse Characteristics of Convolution

Convolution Arithmetic intensity Mc
W

Mc
A

Standard
M�N�S2

k
�S2o

M�N�S2
k
þðMþNÞ�S2o

S2
o

�
M�N
MþN

�� S2
k

Pointwise
M�N�S2o

M�NþðMþNÞ�S2o
S2
o

�
M�N
MþN

�
Group

M�N�S2
k
�S2o

M�N�S2
k
þg�ðMþNÞ�S2o

S2
o

�
M�N
MþN

�� S2
k
g

Depthwise
M�S2

k
�S2o

M�S2
k
þðMþMÞ�S2o

S2
o

�
M

MþM

�� S2
k
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1. Standard (Spatial) Convolution: In standard convolution,
filtering (i.e., feature extraction) and combining (i.e.,
feature aggregation) are performed together. The total
number of filter weights and activations (combined
ifmaps and ofmaps) involved in standard convolution
is M �N � S2

k and ðM þNÞ � S2
o , respectively. The

total number of MAC operations in standard convolu-
tion isM �N � S2

k � S2
o . Because of combined feature

extraction and aggregation, standard convolution
incurs high computational complexity.

2. Pointwise Convolution (PWConv): In PWConv, the
smaller receptive size of filter reduces the number of
MACs as well as the number of filter weights
involved, which areM �N � S2

o andM �N , respec-
tively. The number of activations is the same as that
in standard convolution. Pointwise convolution has
been used in NiN [18], inception modules in [3], [19],
[20] and in SqueezeNet [5].

3. Group Convolution: In group convolution, each group
of 2-D filters convolve with only one group (G num-
ber) of input feature maps. Compared to standard
convolution, in group convolution, the number of
MACs and filter weights are reduced by a factor of g
(g=N

G). The number of activations remains same as
that in standard convolution. Group convolution has
been used in AlexNet [1] (g ¼ 2), ResNext (g = 32)
[21] and 1.0-G-SqNxt-23 (g = 2) [22].

4. Depthwise Convolution: Depthwise convolution
(DWConv) performs only feature extraction where,
one filter convolves with only one input feature map,
i.e., one channel of input. Compared to standard con-
volution, it reduces the number of MACs and num-
ber of weights by a factor of N (Table 2). Total
number of activations involved in DWConv is 2�
M � S2

o . Depthwise convolution has been used in
MobileNet-V1 [6], MobileNet-V2 [7], and Xception-
Net [23]. Note that, DWConv is an extreme case of
group convolution where G = 1, i.e., g =N =M.

Others Layers. The non-Conv layers such as pooling,
ReLU, BatchNorm have a negligible number of learnable
parameters, and there is no MAC operation involved. How-
ever, there are other operations, such as element-wise

addition, comparison, and division. These layers have a low
arithmetic intensity and high bandwidth requirement. FC
layers have a very high number of parameters (weights),
and fewer activations, making them memory bound. Hence,
in FC layer, both the arithmetic intensity and weight reuse
are approximately equal to 1 (asMc � W and A � W ).

2.2 Motivation

Different types of convolutions have been applied to accom-
plish different design goals and achieve a trade-off between
performance and computation/bandwidth overhead. Apart
from this, various design heuristics have been used, such as
residual connections [4], [24] to facilitate backpropagation in
deeper networks, dense connections [25] to enable feature
reuse, etc. These design heuristics lead to different computa-
tional complexity and degrees of data reuse. Even in standard
convolution, the degree of data reuse depends onmultiple fac-
tors such as filter’s dimensions, convolution stride, and dimen-
sions of ifmaps. For the comparison of data reuse and
computational complexity in different types of convolution,
we assume specific values of variables and show the values of
metrics normalized to that for standard convolution in Table 3.

Evidently, the relative number of MACs decreases from
standard convolution toDWConv, but the arithmetic intensity
also reduces, which increases bandwidth requirement. It is
well-known that energy is dominated by data movement
rather than computation [9]. Hence, a decrease in the number of
MACs can be dwarfed by the increase in memory accesses, increas-
ing the overall energy consumption. These observations motivate
us to investigate a model that can better incorporate the
dynamics of data reuse in DNNs and is a better indicator of
the energy efficiency ofMACs inDNNs.

2.3 Experimental Setup and Metrics

We perform our experiments using Caffe [26] on two GPUs,
viz., Tesla P100 and Quadro P4000 which have significantly
different compute andmemory resources, as shown inTable 4.
Former is a data-center scale GPU while latter is a desktop
GPU.We also validate ourmodel on CPU in Section 7.

Power and Inference Time Readings.GPUs havemassive com-
pute and memory resources (Table 4); hence, smaller batch
sizes can result in resource underutilization, which can lead
to an unfair comparison of energy consumption in DNNs
with different model size and memory-footprint. In general,
larger models have better resource utilization than compact
models at smallerB. Hence, for better utilization of GPU com-
pute resources and to enable fair comparison, we take input
batch size of four (as used in [8]). For power and inference
time measurement, we use nvidia-smi utility, which is a
high-level utility. The sampling rate of nvidia-smi utility
depends on the sampling rate of inbuilt power sensors in
high-end GPUs, which is quite low [27]. For instance, the

TABLE 3
Metrics Values Normalized to Standard Convolution (Assuming
N =M = 256, Feature Map Size (So � So) = 28� 28, Filter Size

(Sk � Sk) = 3� 3 and Group Size (g) = 4)

Convolution Arithmeticintensity Mc
Mc
W

Mc
A

Standard 1.00 1.000 1 1.000
Pointwise 0.24 0.111 1 0.111
Group 0.45 0.250 1 0.250
Depthwise 0.01 0.004 1 0.004

TABLE 4
Configuration of GPUs Used in Our Experiments

GPU # core L2 size Peak bandwidth Peak Throughput CMR

P4000 1792 2 MB 243 GB/s 5.2 TFLOPS 21.4 FLOPs/Byte
P100 3584 4 MB 549 GB/s 9.3 TFLOPS 16.94 FLOPs/Byte
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sampling rate on P100 GPU is � 50Hz (119 samples in 2.36
second), and on P4000 GPU, it is� 1Hz (119 samples in 118.23
sec). Therefore, as suggested in [28], we run the DNN compu-
tations for a longer time to see the changes in power reading.
In particular, we run 500 iterations for DNNs with very low
inference time (AlexNet, NiN, SqueezeNet variants) and 200
iterations for the rest of DNNs shown in Table 7.

For power and inference time readings, we used a similar
methodology as used in [29]. The idle power consumption
on P100 and P4000 GPUs are 31 Watts and 5 Watts respec-
tively. We sample the power readings at every 100ms, and
once the power consumption becomes stable, we take aver-
age power reading as the power consumption of DNN com-
putation. Similarly, we use the average forward pass time
(over 200/500 iterations) reported in the Caffe deep learning
framework as the inference time of DNN. Further, to miti-
gate the effect of noise and increase the robustness of power
and inference time readings, we repeat the steps mentioned
above three times and take an average over these iterations.
Similarly, we use pcm-power utility provided by Intel to
measure the power on CPU (Section 7).

Energy Metrics. “Energy per pixel (EPP)” (Eq. (1)) meas-
ures the energy consumed in processing of one input pixel
over entire DNN, whereas “energy efficiency” (Eq. (2))
shows the number of MAC operations performed per unit
of energy. We have used EPP to remove the bias due to dif-
ferences in input image size used by different DNNs. For
example, InceptionV3, InceptionV4, and XceptionNet work
with input image size 299� 299 while most of DNNs work
with input size 224� 224 (Table 7).

Energy per pixel (EPP) ¼ Pavg � It
#Pixels in input frame

(1)

Energy Efficiency ¼ (batch size)� (# MACs)

Pavg � It
: (2)

Correlation Coefficients.Weuse the Pearson product-moment
correlation coefficient (PPMCC) along with Spearman’s rank
correlation coefficient (SRCC) to examine the relationship

between two variables. PPMCCmeasures the strength of a lin-
ear relationship between twovariables using the absolute value
of data. By contrast, SRCC a nonparametric test that evaluates
themonotonicity between two variables using the rank of data,
without any presumption about the data distribution [30], [31].
A value close to +1/-1 for both PPMCC (rp) and SRCC (rs) indi-
cates strong positive/negative correlation whereas a value 0
indicates no correlation between two variables.

Importance of SRCC. When we use PPMCC in conjunction
with SRCC, we get more insights about the relationship
between two variables. For example, since SRCC uses the rank
of data instead of absolute values, the effect of outliers is quite
meager as compared to that on PPMCC. Therefore,when there
is a significant difference between PPMCC and SRCC, either
the sample size is insufficient or there exists a group of data
points for which a linear/monotonic relationship does not
exist. In this paper, we perform experiments on a sufficiently
large sample size of 25 DNNs (Section 6), and the results with
PPMCC and SRCC help find the outliers. Furthermore, the
comparative study between PPMCC and SRCC helps analyze
the batch size sensitivity of our proposedmodel.

Concurrent Activations. This includes all the data that
needed for the execution of an operation such as convolution
[17]. For example, in forward pass, concurrent activation for
a convolution operation consist of ifmaps and ofmaps of the
current layer, and outputs of previous layers if feed-forward
(residual or skip) connections are present in the network.
The size ofmaximum concurrent activation depends on types
of operation, e.g., different types of convolution (Table 2),
ReLU operation, weight update in back-propagation, etc.,
and the network topology (linear/non-linear architecture
[32]). Hence, through the inter-layer dependency, which can
be obtained from the network’s computational graph and the
execution order, the size of maximum concurrent data can be
estimated.

3 ENERGY-EFFICIENCY OF DNNS

Fig. 2a shows EPP and MAC operations, whereas Fig. 2b
shows energy efficiency of DNNs. EPP and energy efficiency

Fig. 2. (a) Energy consumption (EPP) and (b) energy efficiency for 25 DNNs, measured on P4000 and P100 GPUs, illustrated in descending order of
number of MACs operations in DNNs. (SqNxt=SqueezeNext).
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values are measured experimentally on P4000 and P100
GPUs. To make the comparison easier, on X-axis, DNNs are
arranged in decreasing order ofMACoperations.

Variation Due to Depthwise Separable Convolution. The
energy efficiency of MobileNet variants (i.e., MobileNet-V1
and MobileNet-V2) and XceptionNet is significantly lower
than that of neighboring DNNs with a higher number of
MACs. Hence, their energy per pixel is significantly higher
than the neighboring DNNs with a higher number of
MACs. In MobileNet variants and XceptionNet, depthwise
separable convolution (DWConv, followed by PWConv)
has been used to reduce the number of MACs. Both the
DWConv and PWConv have a significantly lower degree of
data reuse (Table 2), which results in costlier memory access
and makes MACs energy inefficient.

Variations Due to Feed-Forward/Skip Connections. Even
though the number of MACs in MobileNet-V2 is lower than
that in MobileNet-V1 and both these networks perform
depthwise separable convolution (DWSConv), EPP of the
former is significantly higher than that of the latter. This is
because MobileNet-V2 has feed-forward connections that
increase the concurrent activations and further reduce the
already-low data reusability of DWSConv. This translates to
low energy efficiency and high EPP of MobileNet-V2. Simi-
larly, the feed-forward connections in XceptionNet exacer-
bate the low activation reusability in DWSConv and lower
the energy efficiency. Also, XceptionNet has a relatively
higher number of MACs, which, in conjunction with low
data reusability arising from DWSConv and feed-forward

connections, results in the highest EPP among 25 DNNs. In
DenseNet models presence of skip connections result in a
concatenation of fmaps from previous layers [16] and
increases the number of activations at runtime. Since the
number of activations primarily drives the memory-foot-
print [33], skip connections results in higher memory-foot-
print, which in turn increases memory access hence reduces
energy efficiency. For the same reason, DenseNet variants
also have quite low energy efficiency than their neighboring
DNNs, which leads to higher EPP compared to neighboring
DNNs with relatively higher MACs.

Variation Due to Low Activation Reuse.Compared to Squee-
zeNet-V1.1, the variants of SqueezeNext (1.0-G-SqNxt-23,
1.0-SqNxt-23, and 1.0-SqNxt-23v5) have a lower number of
MAC operations; however, the EPP of SqueezeNext variants
is much higher than that of SqueezeNet-V1.1. The activation
reuse in SqueezeNext variants is substantially low compared
to that in SqueezeNet-V1.1, and hence, the latter’s energy
efficiency is substantially higher than the variants of
SqueezeNext.

In summary, energy per pixel of a DNN depends on the
total number of MAC operations and the energy consumed
by each MAC operation. Former can easily be estimated at
the design time, but estimating the latter is difficult due to
varying degrees of data reuse in different layers of DNNs.

4 CONVENTIONAL APPROACHES

We discuss two possible approaches for estimating the data
reuse in DNNs and also show their limitations. These
approaches are (1) layer-wise arithmetic intensity (Section 4.1)
and (2) cumulative arithmetic intensity (AIc) (Section 4.2).

4.1 Layer-Wise Arithmetic Intensity

Fig. 3 shows the arithmetic intensity of a layer (Conv and FC)
defined as the ratio of “number of MACs performed in that
layer” to “the sum of the total number of weights and activa-
tions in that layer”. We divide DNNs in two categories based
on their degree of data reuse: those with higher data reuse,
e.g., AlexNet, VGG-16, NiN, and SqueezeNetV1.0 (Fig. 3a)
and those with lower data reuse, e.g., MobileNet-V1 and
MobileNet-V2 (Fig. 3b). From Fig. 3a, we observe that arith-
metic intensity of nearly all layers of VGG-16 and NiN are
higher and lower (respectively) than that of other DNNs. Sim-
ilarly, from Fig. 3b, the layer-wise arithmetic intensity in
MobileNet-V2 is comparable or higher than that of the Mobi-
leNet-V1.

Table 5 shows the median and variance of the arithmetic
intensity of layers in these DNNs. The median value of
layer-wise arithmetic intensity in VGG-16 is significantly
higher than the median value of layer-wise arithmetic inten-
sity in other DNNs with higher data reuse. Also, NiN has
the lowest median among the DNNs with higher data reuse.

Fig. 3. Layer-wise arithmetic intensity in DNNs with high data reuse (top)
and DNNs with low data reuse (bottom).

TABLE 5
Median and Variance of Layer-Wise Arithmetic Intensities in DNNs (SqNet=SqueezeNetV1.0)

Metric AlexNet VGG-16 NiN SqNet MobileNet-V1 MobileNet-V2

Median 154 560 117 134 18 32
Variance 2.69E+04 2.09E+05 2.24E+04 8.30E+03 3.70E+03 4.52E+03
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Intuitively, the energy efficiency of VGG-16 should be
higher compared to other DNNs with high data reuse, and
also, the energy efficiency of NiN should be lowest in the
same group. Surprisingly, on both P4000 and P100 GPUs,
the energy efficiency of NiN is highest, and that of the VGG-16 is
lowest among the DNNs with higher data reuse.

Similarly, MobileNet-V2 has lower energy efficiency than
MobileNet-V1, which is counter-intuitive. By observing the
variance of the layer-wise arithmetic intensity of DNNs in
Table 5, onemay argue that since the variance values of VGG-
16 andMobileNet-V2 are higher than the other DNNs in their
respective groups, hence their energy efficiency is lowest,
despite having higher median. This argument is flawed
because it cannot explain why NiN has higher energy effi-
ciency than SqueezeNetV1.0, even when NiN has a signifi-
cantly higher variance than SqueezeNetV1.0. The above
discussion proves that “layer-wise arithmetic intensity” is not a
good indicator of energy efficiency of DNNs with both high and
low data reuse. Besides this, finding layer-wise arithmetic
intensity in DNNs such as Inception-V3, Inception-V4, and
Inception-ResNet-v2, is tedious because these networks have
thousands of Conv layers and many layers have several
branches leading to irregular computation and reuse patterns.

4.2 Cumulative Arithmetic Intensity

For each DNN, a single metric, viz., arithmetic intensity
(AIc ¼ Mc

WþA) is defined as the ratio of “total number of MAC
operations performed by network in one forward pass” to
“the sum of total number of weights and activations that
network has”. We have plotted the roofline models with
AIc for 25 DNNs (Table 7) on two GPUs P4000 (Fig. 5a) and
P100 (Fig. 5b). We also measure the energy efficiency of 25
DNNs on P4000 and P100 and plot in Figs. 5e and 5f,
respectively.

In the roofline models (with AIc) on both GPUs (Figs. 5a
and 5b), MobileNet-V1, DenseNet and XceptionNet are pre-
dicted as compute-bound whereas AlexNet is predicted as
bandwidth-bound. It is well known that due to the costlier
off-chip accesses, bandwidth-bound operations are energy
inefficient compared to compute-bound operations. Despite
this, AlexNet has substantially higher energy efficiency
than MobileNet-V1, DenseNet, and XceptionNet on both
the GPUs (refer Figs. 5e and 5f). Also, XceptionNet and Den-
seNet are predicted as compute-bound, but their energy
efficiency is lower than that of the AlexNet. In summary,
data reuse predicted by AIc is not correlated with the energy effi-
ciency of DNNs.

To understand the reason behind limitations of AIc, we
study the architecture of XceptionNet and DenseNet. We
found that DenseNet has many skip connections which
results in concatenation of fmaps from previous layers. This
concatenation of fmaps increases the number of concurrent
activations [16], [17] and decreases the effective data reuse.
Similarly, XceptionNet uses DWSconv which has very low
data reuse (Table 3). It also has skip connections which
increase the concurrent activation data and further reduce
the data reuse. AIc (¼ Mc=W

1þA=W ¼ Mc=A
1þW=A) gives equal impor-

tance to weight reuse (Mc/W ) and activation reuse (Mc/A)
and hence, it is unable to capture the runtime change in
data reuse.

5 PROPOSED MODEL

In this section, we first discuss the need to give unequal
importance to the reuse of different data types, specifically
weights and activations (Section 5.1). We then propose a
model that more accurately incorporates the dynamics of
data reuse in DNNs (Section 5.2). We highlight the effective-
ness of our model (Section 5.4) and compare it with AIc to
get more insights and explain why AIc fails to predict the
nature (memory-bound/compute-bound) of some DNNs.

5.1 Reuse of Different Data Types has Unequal
Importance

As we know, the number of weights (W ) in a DNN does not
change at runtime. However, the number of concurrent acti-
vations can change at run time and grows in proportion to
the number of feed-forward connections (as explained in
Section 2.3). DNNs such as DenseNet have a relatively
higher number of skip connections, which leads to a sub-
stantial increase in concurrent activations. Further, as shown
in Table 7, the ratio of the total number of activations to the
total number of weights, i.e., A

W varies significantly across
different DNNs, ranging from 0.03 in AlexNet to 32.80 in
1.0-G-SqNxt. This imbalance between W and A creates an
imbalance between Mc

W and Mc
A , for example, compact DNNs

such as MobileNet and SqueezeNext have very low Mc
A

(Table 7). To account for the imbalance between the weight
and activation reuse and also to model the runtime change
in effective data reuse, our model decouples the weight and
activation reuse.

Does a metric that decouples weight and activation reuse inherit
the properties of arithmetic intensity? As shown in Table 2, the
arithmetic intensity of commonly used convolution types are
different. On decoupling the data reuse in terms of weight
and activation reuse, we find that in all convolution types, the
weight reuse is the same (i.e., S2

o ), whereas activation reuse is
different. This is quite interesting because it shows that the varia-
tion in activation reuse governs the variation in arithmetic intensity
for different convolution types. Since lower arithmetic intensity
leads to higher bandwidth pressure, lower activation reuse
leads to a higher number of memory accesses, making DNN
energy inefficient. Based on these insights, activation reuse
should be given more importance than weight reuse for com-
puting the overall data reuse. As shown in Table 3, the activa-
tion reuse decreases from standard convolution to DWConv
in the same order in which the relative value of arithmetic
intensity is decreasing (but with different magnitudes). This
confirms that a metric that decouples weight and activation reuse
inherits the properties of arithmetic intensity.

5.2 Decoupling the Weight and Activation Reuse

We now decouple weight, and activation reuse from the for-
mulation of AIc and establish a relation between arithmetic
intensity (AIc) and weight and activation reuse. Since arith-
metic mean is never less than harmonic mean, we have

W þA

2
5

2�W �A

W þA
) 2�Mc

W þA
4

Mc � ðW þAÞ
2�W �A

) Mc

W þA
4

1

4
�
�
Mc

A
þMc

W

�
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) AIc4
1

4
� ½ActivationReuseþWeightReuse�: (3)

To give unequal importance, we introduce a data reuse
coefficient (a) in Eq. (3), where 0 � a � 1. Different values of
a would give different weightage to both types of reuse.
After introducing a in Eq. (3), we refer resultant metric as
“data type aware weighted arithmetic intensity” (DI).

DI ¼ ½a�ActivationReuseþ ð1� aÞ �WeightReuse�
4

:

(4)

To find the value of a such that DI would become a more
accurate indicator of energy efficiency, we find the Pearson
correlation coefficient (rp) between DI and energy efficiency
for a values between 0 to 1 with a step size of 0.05 (Fig. 4). We
experimentally measure the energy efficiency of 25 state-of-
the-art DNNs on both the GPUs P4000 and P100. Figs. 4 and 6
show the results.We observe that on bothGPUs,with increas-
ing value of a, the correlation (rp) continues to increase till it
reaches a plateau at a � 0:80 (Fig. 4). However, the correlation
(rs) does not saturate at a=0.8 and keeps increasing even with
the higher values of a (Fig. 6). This difference between the sat-
uration points indicates that there exist few DNNs for which
the linear relationship between the weighted arithmetic inten-
sity and energy-efficiency does not hold at higher a. Hence,
we take a ¼ 0:80 and substitute this value in Eq. (4) that gives
the final expression forDI. Note that the trends in the increase
in both the rp and rs with the higher values of a are consistent
on both GPUs, which have significantly different compute
power and CMR (Table 4). Thus, the proposed metricDI is plat-
form-agnostic. Also, at a=0.8 the absolute value of rp is higher
than that of the rs. Hence, even if there are outliers in the data
(which affect rp more than rs), the linear association between
DI and energy-efficiency exists for those outliers too.

5.3 Batch Size Sensitivity of Our Proposed Model

To study the effect of batch size on our proposed model (DI
with a = 0.80) we plot the rp (Fig. 4) and rs (Fig. 6) with

batch size one and four. The trend in variation of rp and rs
with a is similar across both B=1 and B=4. Also, there is
negligible change in absolute values of rp and rs at a=0.8.
Thus, even though changing B alters the energy/power
consumption of different DNNs differently (Table 7), the
relationship between weighted arithmetic intensity and
energy-efficiency of DNNs remains linear irrespective of B.

Increasing B increases the data level parallelism and
arithmetic intensity [34]. More precisely, it increases the
weight reuse; however, the activation reuse remains con-
stant with a change in B. The variation in data reuse in a
DNN is either due to different layer types (Conv, FC, non-
Conv) or layers’ dimensions. Therefore, when activation
reuse is very low due to the presence of a particular type of
convolution, then energy-efficiency seldom improves with a
higher B. For example, both DWConv and FC layers are
bandwidth-bound because the former has very low activa-
tion reuse (and higher weight reuse), whereas the latter has
low weight reuse (and higher activation reuse) [15]. How-
ever, FC layers become compute-intensive at higher B [34];
whereas energy-efficiency of the DWConv layer does not
improve with increasing B. Thus, if our proposed model
would have been sensitive to B, the importance of weight
reuse would have reduced further, and the saturation
points in Fig. 4 would have shifted towards the right (i.e., a
would exceed 0.8). In reality, saturation points remain the
same across both B=1 and B=4. Evidently, our model remains
valid for different values of B.

In Table 6, we compare DI with AIc using rp and rs. Evi-
dently, compared to AIc, DI has a stronger correlation (rp)
with energy efficiency as measured for 25 DNNs on both
P4000 and P100 GPUs. However, the difference between rs
for AIc and DI is quite small as compared to the difference
between rp for AIc andDI (Table 6). For example, the differ-
ence between rs is only 0.04, whereas that between rp is 0.26.
This further strengthens our claim that there is a group of
DNNs for which the conventional metric AIc does not have
a linear relationship with energy-efficiency, but DI does

Fig. 4. Variations in the PPMCC calculated between weighted arithmetic intensity at different values of a, and energy efficiency measured for 25
DNNs on P4000 GPU with B=1 (a), and B ¼ 4 (c). (b) and (d): these results on P100 GPU.
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have a linear relationship. Hence, DI is a better indicator of
the energy efficiency of DNNs. From Table 2, we conclude
that its the activation reuse which causes variation in arithmetic
intensity, not the weight reuse. In our model, we obtained a ¼
0:80, which indicates that activation reuse has a much
higher impact on DI than weight reuse. Evidently, our
model confirms the intuition (Section 5.1) and highlights the
importance of activation reuse.

5.4 Salient Features of Our Model

We first discuss how modeling of activation and weight
reuse captures all types of reuses across different layers in
DNNs. Based on the computation and data reuse patterns,
layers in DNNs can be broadly categorized as Conv, non-
Conv, and FC layers. In Conv layers, there is feature map
reuse, filter reuse, and filter weight reuse [14], whereas in
FC layers, except filter-weight reuse, all these types of
reuses are possible. In other words, all the possible data
reuse in both Conv and FC layers can be expressed as
weight and activation reuse. However, in non-Conv layers,
only ifmap and ofmap activations are processed, and their
reuse can be described as activation reuse.

As shown in Table 2, the degree of data reuse in different
types of convolutions is different due to the activation reuse,
whereas weight reuse remains constant across all types of
convolutions. Hence, energy efficiency of MACs for differ-
ent types of convolutions can be expressed in terms of acti-
vation reuse. Since non-Conv layers do not have learn-able
parameters and process only feature maps, their energy
metrics are governed by activation reuse. However, in FC
layers, Mc � W and A � W , thus, arithmetic intensity and
weight reuse are approximately equal to 1. Hence, the
energy efficiency of MACs in FC layers is governed by
weight reuse.

In summary, except FC layer, all the layers’ energy effi-
ciency can be expressed in terms of activation reuse. The
higher value of a implies higher importance of activation
reuse. Hence, FC layers have a lower impact on the energy
efficiency of DNNs. In fact, deeper networks such as Incep-
tion-V4, Inception-ResNet-V2 have hundreds of Conv and

non-Conv layers, but very few FC layers and some net-
works such as NiN have no FC layers at all.

We now discuss how our model addresses the shortcom-
ings of AIc. As discussed in Section 4.2, AIc predicts Alex-
Net as memory-bound and MobileNet-V1 as compute-
bound (shown in roofline models in Figs. 5a and 5b) but the
energy-efficiency of AlexNet is quite high and that of the
MobileNet-V1 is quite low (Figs. 5e and 5f). This is counter-
intuitive because operations (MACs) of memory-bound
workload are energy-inefficient due to the higher number
of memory-accesses. The reason for these irregularities are
better explained by our model. As shown in Table 7, Alex-
Net has very low Mc

W but significantly high Mc
A , whereas

MobileNet-V1 has high Mc
W but significantly low Mc

A . By vir-
tue of giving higher importance to Mc

A , our model is able to
accurately predict AlexNet as compute-bound and Mobile-
Net-V1 as memory-bound (Figs. 5c and 5d)

5.5 When and Why Does AIc Fail?

We define relative disparity (df ) between AIc andDI as

df ¼
 
AIc �DI

AIc

!
� 100 ¼ 75� 6:25�

�
A

W
þ 3�W

A

�
:

(5)

Equation (5) shows that, A
W has less impact on relative dis-

parity (df ) than
W
A . Since A

W is same as weight reuse to activa-
tion reuse ratio, Eq. (5) implies that weight reuse has less
impact on df . Table 7 shows weight reuse (Mc

W ), activation
reuse (Mc

A ), AIc and DI, activation to parameter ratio (AW) and
df value for 25 state-of-the-art DNNs. For gaining more
insights, we study three cases which are shown in Table 8.

As shown in Table 8, in case 1, activation reuse (Mc
A ) domi-

nates total data reuse (Mc
W + Mc

A ), but AIc is nearly equal to
weight reuse (Mc

W ). This leads to huge disparity between AIc
and DI. For example, AlexNet has 30� higher activation
reuse than weight reuse and hence, its relative disparity is
highest among all the 25 DNNs (Table 7). In case 3, weight
reuse dominates the total data reuse, however, disparity is
noticeable but not as large as in case 1 because weight reuse
has less impact compared to activation reuse (refer Eq. (4)).
In case 2, the df is lower and AIc would be able captures the
dynamics of data reuse in DNNs. In summary, when either
A � W , for example in variants of InceptionNet, ResNet
and ResNext (Table 7), or when A is significantly higher
thanW , for example MobileNet-V2 and variants of Squeeze-
Next (Table 7), AIc would be able to capture the data reuse
patterns in DNNs. However, AIc fails to estimate the data reuse
when the A

W ratio is very low (e.g., AlexNet) and also, when A
W

ratio is moderately high (e.g., MobileNet-V1).

6 GENERALITY AND USE CASES OF DI

6.1 Generality of Proposed Model

For the generality test, we use confidence intervals for the
population correlation coefficient (r), which measures the
linear correlation between two variables over the entire
population. Note that the sample (Pearson) correlation coef-
ficient (rp) is a measure of the correlation between the two
variables over a sample (f) taken randomly from the

TABLE 6
Correlation (rp and rs) of AIc andDI With Energy

Efficiency of 25 DNNs Measured on P4000
and P100 GPUs With B=1 and B=4
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population. We perform the following steps to compute the
confidence intervals for r at a given rp and f.

Step 1: “Central limit theorem” can be applied when the
data follow normal distribution or the sample size is large. In
our experiment, f is 25 which is large enough (refer Eq. (6)) to
apply “central limit theorem”. To get normal distribution, we
transform rp using “Fisher’s Z transform” as Zr ¼ 1

2 �
log e

� 1þrp
1�rP

�
[35]. Then, we calculate standard error (Se) which

is approximated as 1ffiffiffiffiffiffiffi
f�3

p [35].

Step 2: For 95 percent confidence, the upper limit (Urp ) and
lower limit (Lrp ) of confidence intervals are Urp = Zrp þ
ð1:96� SeÞ andLrp =Zrp � ð1:96� SeÞ respectively. Similarly,
for 99 percent confidence, Urp = Zrp þ ð2:58� SeÞ and Lrp =
Zr � ð2:58� SeÞ respectively [35]. Note that these confidence
intervals are corresponding toZrp .

Step 3: We compute inverse Fisher transform [35] to calcu-
late the upper (U) and lower (L) limit of confidence intervals

corresponding to rp, which areU = e2�UrP �1

e2�Urp þ1
andL = e2�Lrp �1

e2�Lrp þ1
.

Observations. Table 9 shows the confidence interval for
both 95 and 99 percent confidence. For a better approxima-
tion of r using rp, window size (D) for a confidence interval,
should be as narrow as possible. Smaller window size
implies a lesser deviation in r and ensures that the same
correlation would hold in other sets of samples taken from
a large population. For AIc on P4000 GPU, at 99 percent con-
fidence, L=0.31 and D=0.58. On P100 GPU, these values are
L = 0.27 and D=0.63. This shows that, AIc can have very
poor correlation with energy efficiency in some cases, e.g.,
for AlexNet, relative disparity (df ) is very high (Table 7). By
comparison, with DI at 99 percent confidence, L = 0.61 and

Fig. 5. Roofline model with (a) conventional metric (AIc), and (c) our proposed metric (DI) on x-axis; and (e) energy efficiency measured on P4000
GPU for 25 DNNs. (b), (d), (f): these results on P100 GPU. All measured values are with B=4.
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D = 0.34 on P4000 GPU, whereas L = 0.63 and D = 0.32 on
P100 GPU. Thus, it can be said with 99 percent confidence
that r lies between 0.61 to 0.95 on P4000 and between 0.63 to
0.95 on P100 GPU. Clearly, our model exhibits better positive
correlation with energy efficiency in any population of DNNs on
both GPUs.

Minimum f Required for Generality Test. Unlike D, window
size corresponding to Zrp , i.e., Dr = Urp - Lrp , is independent
of rp. We find minimum sample size (f) such that Drp41 at
95 percent confidence.

Drp41 ) 2� 1:96� 1ffiffiffiffiffiffiffiffiffiffiffi
f� 3

p 41 ) f518:37: (6)

The minimum number of DNNs required for the general-
ity test is 19. We take f as 25 for which Drp = 0.836.

6.2 Use Cases for Proposed Model

The design process of a DNN (e.g., pruning, quantization)
requires massive human efforts to fine-tune the design
hyper-parameters [36]. In DNN pruning techniques, decid-
ing the compression ratio for each layer is a daunting task,
especially for a deeper network such as ResNet-152 [24] and
Inception-V4 [20]. To save these human efforts, there is a
growing trend for automating the design of machine learn-
ing models, which is termed as AutoML. For example, He
et al. [36] automate the task of pruning using reinforcement

TABLE 7
Comparison of Data Reuse in Terms of Weight (Mc

W ) and Activation Reuse (Mc
A );

Conventional Metric (AIc) and Proposed Metric (DI) for 25 DNNs

Also, the disparity factor (df ), activation to parameter ratio (AW), along with average power (Pavg in watts) and inference time (It in milliseconds) measured for
B=1 and B=4 on P4000 and P100 GPUs.

Fig. 6. Variations in the SRCC calculated between weighted arithmetic intensity at different values of a, and energy efficiency measured for 25 DNNs
on P4000 GPU with B=1 (a), and B ¼ 4 (c). (b) and (d): these results on P100 GPU.
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learning. Similarly, Wang et al. [37] automate the process of
layer-wise quantization using reinforcement learning. Fur-
thermore, there is an increasing trend in automating the
design of compact and high-performance DNNs [38].

The works mentioned above on automating the design
process optimize the DNN architecture to reduce the num-
ber of MAC operations. Since these metrics are only a proxy
for energy consumption, optimizing them does not neces-
sarily optimize the energy efficiency of DNNs. To design
energy-efficient DNNs, a design-time metric that is a better
representative of energy-efficiency of DNNs is required.
Such a metric can be used in the objective function of
AutoML tasks. Since data movements primarily drive
energy consumption, data reuse can be used as the approxi-
mation for memory accesses ( 1

DI). Hence, instead of using
#MACs for the energy-efficient design of DNNs, the follow-
ing metric can be used in the objective functions in the
AutoML tasks.

Optimized metric / Mc �
� 1

DI

�k
s:t: k 2 ð0; 1Þ: (7)

Since the cost of memory access is orders of magnitude
higher than arithmetic operation, k is used to normalize the
memory cost with respect to computational cost in Eq. (7).
Consequently, the above optimized metric balances the
number of computations and the number of memory access
to optimize the network’s energy efficiency. Evidently, DI
will be a valuable tool for DNN designers.

7 VALIDITY OF PROPOSED MODEL

Our model estimates the data reuse available in DNNs with
the assumption that underlying platforms have sufficient
compute/memory resources to exploit the available data
reuse in DNNs. However, different hardware platforms are
optimized for contrasting design goals and have dissimilar
memory-hierarchy with a non-identical number of layers
and capacity. We now discuss whether our model applies
to general-purpose hardware such as GPU and CPU, or do

we need to re-calibrate the value of a on them? We also dis-
cuss the effect of memory-hierarchy on our model.

GPU. Both P100 and P4000 GPUs have substantially differ-
entmemory and compute capability, which is alsomanifested
by different CMR values (Table 4). Hence, the memory-access
pattern and their cost would vary significantly for both the
GPU. In Fig. 2a, it is shown that EPP values of DNNs are
higher on P4000 GPU compared to that on P100 GPU. Our
extensive experiments validate the proposed model and
hence do not require re-calibration of a for both the GPUs,
even though they have different compute and memory
resources. This indicates the applicability of our model to dif-
ferent GPUs regardless of their memory-hierarchy and CMR
values. However, onemay need to re-calibrate the a to useDI
as a representative of the energy efficiency of other DNN
models that are not used in our experiments.

CPU. CPUs have hardware managed cache hierarchy
along with sophisticated techniques for cache miss manage-
ment and cache coherence. Also, CPUs have a higher amount
of off-chip memory than GPUs, which can accommodate a
larger model with larger batch size. Furthermore, CPUs have
a much lower amount of parallelism than GPUs. We investi-
gate whether the above-mentioned differences affect our
model. We perform our experiments on “Intel(R) Xeon(R)
CPU E5-1650 v4 @ 3.60 GHz” which has 12 cores, 64 KB L1
cache, 256 KB L2 cache, 15 MB L3 cache, and 32 GB primary
memory. The correlation results are shown in Fig. 7. Similar to
the results on P100 and P4000 GPU, both rp and rs increase
with rising value ofa and rp saturates at 0.8. This substantiates
the higher importance of activation reuse for estimating the
available data reuse. Therefore, the correlation trends would
be similar (PPMCCfirst increases with a and later saturates at
higher a) even for the DNNs not used in our experiments.
However, the value of a may need to be re-calibrated for the
precise use of DI as a representative of the energy-efficiency
of other DNNmodels that are not used in our experiments, on
the CPU.

TABLE 9
Confidence Intervals for Population Correlation (r)

95% confidence 99% confidence

GPU Metric L U D L U D

P4000 AIc 0.42 0.86 0.44 0.31 0.89 0.58
DI (Ours) 0.68 0.93 0.25 0.61 0.95 0.34

P100 AIc 0.36 0.84 0.48 0.24 0.87 0.63
DI (Ours) 0.70 0.94 0.24 0.63 0.95 0.32

TABLE 8
Disparity Between AIc andDI for Different Cases

Case 1: A � W Case 2: A � W Case 3: A 	 W

Mc/A larger comparable smaller
Mc/W smaller comparable larger
AIc � Mc/W � 0:5�Mc/A � Mc/A
DI � 0:2�Mc/A � 0:25�Mc/A � 0:06�Mc/W
df � 75� 18:75� W

A � 50 � 75� 6:25� A
W

Fig. 7. PPMCC (a) and SRCC (b) calculated between weighted arithme-
tic intensity at different values of a, and energy efficiency measured for
25 DNNs on CPU with B=4.
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For a better comparison of our model with AI on CPU,
we select AlexNet and three SqueezeNext variants, which
have a very high disparity between A and W (Table 7). The
EPP, energy efficiency, AIc, and DI are shown in Fig. 8.
Also, the calculated rp and rs with AIc and DI are shown in
Table 10. The negative correlations (rp and rs) with AI show
the ineffectiveness of AI as a representative of energy-
efficiency on CPU, whereas, high positive correlations with
DI indicate DI as an appropriate representative of energy-
efficiency on CPU.

8 RELATED WORK

Yang et al. [14] proposed an energy estimation tool which
takes the layer’s dimensions and sparsity in DNN as inputs
and estimates the energy consumption of a DNN. They vali-
dated their energy model on a systolic array-based proces-
sor (Eyeriss [39]) with very few DNNs (AlexNet, VGG-16,
GoogLeNet, and SqueezeNet). Chen et al. [40] employed a
model named “Eyexam”, which takes design decisions of
both the DNN model and systolic accelerator as input and
predicts their effects on the performance. Kwon et al. [41]
proposed an analytical cost model named “MAESTRO”,
which takes DNN’s layer dimensions and the employed
dataflow as inputs and provides detailed performance anal-
ysis of DNNs on systolic accelerators. Cai et al. [42] build a
model that predicts the latency for latency-aware DNN
design using an architecture search. Li et al. [43] performed
a detailed study on the energy-efficiency of DNNs on CPU
and GPU and provides insights for the energy-aware design
of DNNs. The works mentioned above demonstrate their
effectiveness for very few DNNs, far from comprehensive,
on a limited set of hardware platforms. They do not include
state-of-the-art design methodologies, such as dense con-
nections in DenseNets, where the number of activations
varies at runtime. Hence, their models’ applicability is quite
limited and cannot be generalized over a wide range of
DNNs. Nevertheless, Binaco et al. [44] have done extensive
experimentation and presented the detailed comparison of
the inference time of the SOTA DNNs on a multitude of

GPUs. However, due to the missing energy comparison and
the lack of an appropriate metric and/or mathematical
model that can predict the inference time and/or energy
efficiency of DNNs at the design time, the insights for data
reuse in the representative DNNs is missing.

9 CONCLUSION AND FUTURE WORK

We show that the conventional metric (AI) does not always
accurately estimate the degree of data reuse in DNNs. We
propose a novel model that decouples the weight and acti-
vation reuse and accounts for their unequal importance. We
show that our model applies to a diverse set of DNNs and
is a better representative of energy efficiency in DNNs. In
future work, we will evaluate our model on other accelera-
tors to show its applicability over a broad range of hard-
ware platforms.
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