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Abstract— Visualization of hyperspectral images that combines
the data from multiple sensors is a major challenge due to
huge data set. An efficient image fusion could be a primary
key step for this task. To make the approach computationally
efficient and to accommodate a large number of image bands,
we propose a hierarchical fusion based on vector quantization
and bilateral filtering. The consecutive image bands in the
hyperspectral data cube exhibit a high degree of feature
similarity among them due to the contiguous and narrow nature
of the hyperspectral sensors. Exploiting this redundancy in the
data, we fuse neighboring images at every level of hierarchy. As
at the first level, the redundancy between the images is very
high we use a powerful compression tool, vector quantization,
to fuse each group. From second level onwards, each group is
fused using bilateral filtering. While vector quantization removes
redundancy, bilateral filter retains even the minor details that
exist in individual image. The hierarchical fusion scheme helps
in accommodating a large number of hyperspectral image
bands. It also facilitates the midband visualization of a subset
of the hyperspectral image cube. Quantitative performance
analysis shows the effectiveness of the proposed method.

Keywords: Hierarchical fusion, hyperspectral imaging, image
fusion, vector quantization, visualization.

I. INTRODUCTION

Hyperspectral imagery produces images of a single scene
taken at different narrow bands. These data are not exploitable
in their original form, the different pieces of information con-
tained in it have to be put together to be easily understandable.
Hyperspectral sets of pictures show some specificities. They
have a very high spectral resolution as the images are taken
in very narrow bands. So the set of pictures has a very high
redundancy due to the continuous bands registration of the
sensors. The number of pictures describing a single scene is
likewise bigger and lead to higher computational costs.

Some techniques used to answer this visualization problem
analyze the set of pictures in order to select only several
bands [1], or analyze the full set of pictures [2]. Recently,
a visualization technique using bilateral filtering has been
suggested in [3]. Authors claim that their method outperforms
the previous work in literature. They performed a hierarchical
fusion to answer to the high number of bands and reduce the
computational time. The use of a bilateral filter preserves the
edge while the finest features are removed.

Hyperspectral imagery produces images of the same area
on the earth, taken at hundreds of continuous narrow-bands,
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covering the visible and the infrared wavelength spectra. These
data are not exploitable in its original form; the different
pieces of information contained in it have to be put together
to be easily understandable. The hyperspectral data can be
applied to studies in the field of remote sensing, environmental
science, monitoring of environment hazards, geological sur-
veying, agriculture, oceanology, volcanology and surveillance
due to their distinct advantages in object characterization
and identification. Hyperspectral images have a very high
spectral resolution along with very high redundancy due to the
contiguous narrow spectral bands of the sensors. The number
of images describing a single scene is likewise bigger (usually
200 or more) and lead to higher computational costs and huge
storage requirements.

II. RELATED WORK

An efficient data fusion that can integrate data from mul-
tiple sensors, can be the solution to the hyperspectral image
visualization. The research in the remote sensing image fusion
can be broadly classified into two categories: multispectral
(MS) and panchromatic (pan) image fusion and, multiband
image fusion [3]. The pan-sharpening algorithms involve the
extraction of high-resolution spatial data from pan images
and merging them with MS images for sharpening. Various
methods for achieving this task, known as pan-sharpening have
been reported which include component substitution frame-
work [4], intensity-hue-saturation (IHS) transformation [5],
specific image formation model [6], etc. Methods based on
multiresolution decomposition of spectral bands like wavelet
packet transform based fusion [7] and contourlet transform
based fusion [8] have also been suggested for pan-sharpening.
A comparative analysis of image fusion methods is given in [9]
and [10].

These techniques of musltispectral (M .S) and panchromatic
(pan) image fusion where the M .S images with higher spectral
resolution but lower spatial resolution are fused with the pan
images of higher spatial but lower spectral resolution, are not
suitable for hyperspectral image fusion [3] as here images are
of the same spatial resolution. In [2], authors proposed a low
complexity approach to generate a color display using three
suitable image bands determined by 1-bit transform method.
Jacobson et al. [1] introduced linear projection onto fixed basis
functions, to reduce the dimensionality. But these methods
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utilize only a few bands for visualization after analyzing the
entire data sets. Exploiting all the bands, in [3], authors have
proposed a visualization technique using bilateral filtering
and a hierarchical fusion. They grouped contiguous bands
uniformly with fixed group size at each level of hierarchy
and then fused each group using bilateral filter. The use of a
bilateral filter preserves the edges while the hierarchical fusion
reduces the computational time. The method performs better
compared to all other existing schemes [1], [2].

III. HIERARCHICAL FUSION

A typical hyperspectral image data set in remote sensing
contains a few hundred images to be fused into a single image
(for grayscale) or three images (for RGB). Fusing all these
given images together results in assigning very small fractional
weights to the locations in each of the image bands. Moreover,
some of these weights are comparable to the truncation errors,
which is likely to wash out some of the minor details during
fusion. Furthermore, all the images across all the bands,
are needed for the computation of such fractional weights.
Therefore, such fusion requires the entire hyperspectral cube
to be read into memory. Considering the huge size of a
hyperspectral image cube, the memory requirement goes over
a few hundreds of megabytes.

In this paper, we advocate the use of hierarchical fusion
with the help of vector quantization to overcome these issues.
For the hyperspectral image cube of dimensions (X x Y x
N), containing N image bands, we apply the proposed vector
quantization (V' ()) based fusion across a contiguous subset of
dimensions (X xY x P) to generate B = N/ P different fused
images at the first stage of hierarchy as shown in Fig. 1. VQ
helps in removing redundancies while retaining the features.
In the subsequent levels of hierarchy, contiguous images are
grouped together in a smaller subset and fused using ’bilateral
filtering’ described in section IV-A.

We perform uniform grouping followed by fusion till say J
levels of hierarchy, to get a single fused image. By generating
three fused images at the second last stage and assigning
them to appropriate color channels, we can obtain the RGB
representation of the fused hyperspectral image cube for the
tristimulus visualization. This technique requires only P (or
less) number of contiguous image bands for the fusion at a
given stage. So the memory requirement significantly reduces
as only P (or less) images out of NV are read into memory at a
time, which are typically less than 10% of the original number
of image bands. The resultant fused images at the intermediate
stages facilitate the visualization and analysis of the midband
reflectance response of the scene.

IV. THE PROPOSED FUSION USING VECTOR
QUANTIZATION BASED ON LINDEBUZOGRAY ALGORITHM
(LBG)

Vector quantization is a very powerful tool for image
compression. The huge amount of data present in hyperspectral
images remains a challenge in fusing these images. The high
redundancy present in the hypercpectral data can be utilized

to get a sparse representation using V(). This section explains
the approach of using LindeBuzoGray algorithm (LBG) [11]
based V'@ for image fusion.

Vector quantization is employed in Stage 1 of the proposed
hierarchical fusion shown in Fig. 1. At the first stage of
hierarchy, the images I; to Ix from N contiguous bands are
organized into G'roupl to GroupB, using uniform grouping.
So each group has P = N/B images each of size X x Y.
Each group is individually fused using V'@ at the first stage
of fusion.

As the first step of fusion, each image Ij is divided into
sub-blocks of size m x m giving rise to (X x Y')/m? image
blocks. Thus in a given group, there are IV, = (X x Y x
P)/(m?) image sub- blocks. Convert these image vectors to
1-dimensional vectors each of size 1 x m? and generate a
cluster (matrix) S of size IV, x m?2. Then the first code-vector
(CV (D) of the code-book size 1, can be computed by finding
the columnwise average of the entire cluster as follows:

1v,
. 1 .
oV (j) = v > S(,4) (1
=1

1<j<m?

To double the code-book size, the code-vector (C'V(1:1))
is then split into two code-vectors by adding and subtracting
a tolerance e. In general, a code-vector can be represented
as CV,"? where p represents the size of the code-book, ¢
represents the code-vector’s index within the code-book and r
represents the iteration number.

VP (G) = cvaAD () + e )

CV*2 () = OV () — e 3)

Now the original cluster S is divided into two clusters
namely S1 and S2 based on the distortion with respect to the
code-vectors. The distortion DgZ’l) and D§2’2) with respect

to the code-vectors CV1(2’1) and C’Vl(z’g) respectively can be
computed as follows:

1 . ;
DEV(E) = — 3 (CVEDG) ~ Sk i) @
j=1
1 TYL2 . .
D2 (k) = — 3 (CVED(j) = S(k.j))? ®)
j=1
1<k<IV,

Comparing the values DgZ’l)(k‘) and Dgz,z)(k) the image
vectors of the cluster S is grouped into two sub-clusters S1
and S2 such that S1|JS2 =S and S1( 52 = &.

If D*Y(k) < D2 (k); S(k,:) c S1
Eise S(k,:)cC S2 (6)

We now enhance the quality of the code-book by updating
existing code-vectors through calculating the mean of the
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Fig. 1. Proposed scheme of the hierarchical (3 stage) fusion for the hyperspectral image cube.
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image-vectors in each sub-cluster S1 and S2 as per Equa-
tion 1. The code-vectors CVl(Q’l) and C’V1(2’2) are updated
to new code-vectors, say,CV2(2’1) and CVQ(Q’Q). The corre-
sponding distortions ng and ng) are calculated for the
complete image vector set S to get updated sub-clusters S1
and S2. The updation has to be repeated until the vector sum
of the distortion in the (r+1)°¢ level is significantly less than
the distortion in the (r)h level, ie. until D, 1q) << D).
At the end of last update, we get our final code-book of size
2.

This complete cycle can be repeated to double the code-
book size further. To begin with the next cycle, the final code-
vectors obtained at the end of the previous cycle, (e.g. C'V (31
and CV %2 at the end of first cycle), are split on the same
line as in 2. Thus number of code-vectors generated doubles
in each cycle.

Let us assume that there are n code-vectors, each of size
1 x m?2, in the code-book (size n x m?). We have to fuse P
images to a single image using this code-book. Let I; represent
the i*" image in a group and g} represent the j* sub-block
(size m x m) of the k" image. We rearrange image I; to fl in
a matrix of size (X X Y/mQ, m?). So each m X m sub-block is
rearranged as a row matrix (size 1 x m?) in I; and compared
with all the n code-vectors with respect to M SE as follows.

CVi - ghy?

wherel <i<n
1<j< (X xY)/m?
1<k<P

(7

The MSE values of all the P images for a given sub-
block position with all the code-vectors are then added. The
code-vector C'V? that gives the minimum sum of M SFE values
is selected as the it sub-block of the fused image Iy as
described by Equation 8. This is repeated for all the sub-blocks

to get the fused image for a group.

P P
IfY MSE(m,j,k) < Y MSE(,jk) ®)
k=1 Vizk=1
thenly' = CV™ )
vy

Thus at the end of first stage fusion, there are B fused
images (/1,1 to Iy, p) which are the input images for second
level of hierarchy.

A. Fusion using Bilateral Filtering

In [3], authors propose to use bilateral filtering at every level
of hierarchy for effective fusion of hyperspectral images. In
the proposed method, bilateral filtering is used only from the
second hierarchical level following the redundancy removal in
the first stage through V Q.

Let I be the image to be processed using a bilateral filter.
Let G,, be the Gaussian spatial kernel, which is similar to
traditional Gaussian filter. The value of og decides the spatial
extent of the kernel or the neighborhood under consideration.
Let G, ,be the Gaussian range kernel, where o decides the
“amplitude” of the edge and its corresponding weight. The new
value of pixel (z,y) of image I is obtained from pixels (, y)
in the neighborhood of the corresponding pixel as shown in
the following:

1 -
IBF(r,y):mZZGUS(I*%y*@ (10)
) = "

XGUS(I(x7y) - 1(57@)1(5,@

Let I(z,y, A1) to I(z,y,An) be the subset of a hyper-
spectral image cube, containing /N images from consecutive
wavelength bands A\ to Ay. We calculate the weight at each
pixel (z,y) for each image, wy to wy, using the bilateral filter
as follows:

I.Z', »)\i — IBF x, 7)\i + K
o) — TN = IBFG ) |

N . . (11)
Zi:l(‘ I(‘rvyvAl) —IBF(Q?,y, )‘Z) | +K)

where Ipp is the corresponding bilateral filtered image.
A positive real number K allows flexibility in the fusion
process by increasing or decreasing the effect of actual weight
components and prevents numerical instability at homogenous
regions. The fused image of the hyperspectral cube subset I
is given by

M
Ip(z,y) =Y wi(z,y)I(z,y,\i). (12)
=1

V. HYPERSPECTRAL DATASET

To test our grouping techniques algorithm, we have used hy-
perspectral urban data provided by the Hyperion imaging sen-
sor used in the EO-1 spacecraft for Earth observation(obtained
from the US Geological Survey, http://eol.usgs.gov) [12].
The data consists of 242 bands (0.4-2.5 pm) with 30-m
spatial resolution. We have used the terrain-corrected data set
(designated as Level G1), which is provided as 16-bit radiance
values. The selected data set depicts the urban region of Palo
Alto, CA (latitude: 37.4761° N, longitude: 122.1341° W). The
dimension of the Hyperion data cube is (256 x 512 x 242).

The other set is the Cuprite (cup95). It comes from the
AV IRIS sensor (Airborne Visible/Infrared Imaging Spec-
trometer) and was provided by the National Aeronautics and
Space Administration/Jet Propulsion Laboratory (This data
is downloaded from http://aviris.jpl.nasa.gov). It counts 50
pictures of size 400 x 350 pixels taken in the same bands
between 0.4 — 2.5um.

These two sets have been chosen due to their different char-
acteristics: cup95 counts fewer pictures with high similarity.
Hyperion counts more images which are distinctly different
from each other in some areas.
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(a) (b)

Fig. 2. The 1°% and the 815 image of the urban image cube (Palo Alto)
from Hyperion dataset

(b)

Fig. 3.
from AVIRIS dataset

The 15 and the 48" image of the Cuprite image cube (cup95)

The contents of these data sets are also distinct. While
Hyperion data set highlights urban and vegetation fea-
tures, C'uprite emphasizes on geological features. We have
tested on two more data sets provided by AVIRIS, namely
Mof fett02 and Mof fett03, but have not reported their
results here due to limited space.

VI. QUANTITATIVE MEASURES OF FUSION PERFORMANCE

Objective evaluation of fusion quality for the multiband
image fusion in the absence of ground truth still does not have
a universally accepted solution. The performance parameters
for MS and pan image fusion have been reported in the
literature [13]- [15], but these cannot be applied to the fusion
schemes where reference image is not available. We present

the performance evaluation of the proposed scheme on the
basis of statistical assessment parameters given in [3], [6]
and [16]. The entropy (H) of an image I can be considered
as an index to evaluate the information content in the image
and can be computed as follows.

H == pi(i)in(ps(i)) (13)

where p; is the probability density of the intensity level
7 in the image. The average gradient G of an image is the
measure of image sharpness in terms of gradient values. It
can be computed as follows for an image I of size NN.

2w 2y Ve — Let19)? + Uy — Layt1)?)
N

é:

(14
This parameter has also been reported as the definition of an
image in [16]. Besides these parameters, we also compute the
standard deviation (SD or o) which reflects the spread in the
data and the average gray intensity value of the image (Mean
or ). Theoretically, for all these parameters, a higher value
means better fusion quality. However, in presence of noise,
image entropy as well as average gradient can be higher though
the visual quality is poorer. So visual inspection is a must in
such cases.

VII. RESULTS AND ANALYSIS

We compare our results quantitatively in Table I with the
most recently published method [3] based on hierarchical
fusion using the bilateral filter. This method [3] has been
proved to be superior to all other existing techniques like the
three-band representation [1], the use of piecewise linear func-
tions [1], the technique of the color matching functions [1],
and the 1BT-based method [2]. Fig. 4 helps in the visual
comparison of the fusion quality of the techniques.

The visualization results for the proposed approach and the
reference approach [3] are shown in finer detail in Fig. 4 for
Hyperion dataset and in Fig. 5 for the C'uprite hyperspectral
image cube to visually inspect and compare the quality and
sharpness of the fused images using the proposed method and
the reference method. In these, Fig. (a) and (b) is result of
hierarchy 15-3-1 i.e. 15 groups at the first stage and 3 groups
at the second stage, which were fused to get the final fused
image. Whereas, Fig. (c) is result of hierarchy 9-3-1. Different
hierarchy combination with different number of stages can be
tried and that can give different visualization results.

Fig. 6 and 7, show the fused images at intermediate level of
hierarchy. Fig. 8 and 9 show colored fused image which can
be obtained by having three groups at the second last stage
generating three fused images, which can be used as R-G-B
bands to display a colored fused image.

It is evident from these results that the fused images using
the proposed method, are able to retain the textural details in
the constituent bands very well. This is specifically so in the
urban areas where the need to preserve the spatial details is
very crucial. It can be seen that the result of the proposed
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method not only provides sharp features but also preserves
the finer details with accuracy. It also gives better contrast
improving the visualization. Furthermore, the ringing artifacts
and blurring of textures that appear in the fused images using
wavelet-based approaches [10] are totally absent in the results
of the proposed method.

(a) (b) (©)

Fig. 4. Visual comparison of the performance of various image fusion
approaches fusing the urban hyperspectral image cube (Palo Alto). Results
of fusion using (a) Bilateral filtering [3] with 15 groups at first stage and
3 groups at the second stage (b) the proposed method with 15 groups at first
stage and 3 groups at the second stage (c) the proposed method with 9 groups
at first stage and 3 groups at the second stage

()

Fig. 5. Visual comparison of the performance of various image fusion
approaches fusing the C'uprite image cube. Results of fusion using (a)
Bilateral filtering [3] with 15 groups at first stage and 3 groups at the
second stage (b) the proposed method with 15 groups at first stage and 3
groups at the second stage (c) the proposed method with 9 groups at first
stage and 3 groups at the second stage

VIII. CONCLUSIONS

In this paper we have proposed a new approach for hi-
erarchical fusion for efficient visualization of hyperspectral
images. We use vector quantization for the first stage of fusion
and bilateral filtering for the consequent stages. As redundancy
is inherent to the hyperspectral data, vector quantization is
helpful in reducing the same effectively. Once the redundancy
is reduced, the bilateral filter based fusion retains all the
minor details that exist in individual bands without introducing
any blurring or ringing effect. As we are utilizing all the
available bands for fusion, the loss of information is reduced

(d)

Fig. 6. Results of the second-stage fusion of the urban image cube (Palo Alto)
from Hyperion data and the final fused image. These images are linearly
scaled to the range [0, 255] for display purposes. (a) Fusion over bands 1-74
(b) Fusion over bands 75-154 (c) Fusion over bands 155-242 (d) Final fused
image.
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TABLE I
QUANTITATIVE PERFORMANCE EVALUATION

Fusion Method Mean SD Entropy Avg Gradient
m o H G
Urban | Cuprite || Urban [ Cuprite || Urban | Cuprite [| Urban | Cuprite
Bilateral 15 — 3 — 1 [3] 58.25 104.15 18.53 13.78 6.04 5.598 7.97 5.48
Proposed 15 —3 — 1 150.88 164.82 45.16 19.8 7.18 6.06 11.98 5.537
Proposed 9 —3 —1 150.26 185.06 47.26 20.08 7.21 6.23 12.77 6.09

= e

5 Q\ i

sl

Fig. 7.

Results of the second-stage fusion of the C'uprite image cube
(cup95) from AV IRIS dataset and the final fused image. These images are
linearly scaled to the range [0, 255] for display purposes. (a) Fusion over
bands 1-16 (b) Fusion over bands 17-32 (c) Fusion over bands 33-50 (d)
Final fused image.

(a)

Fig. 8. Visual comparison of the performance of various image fusion
approaches fusing the urban hyperspectral image cube (Palo Alto). Results
of fusion using (a) Bilateral [3] with hierarchy 15-3-1 i.e. 15 groups at first
stage and 3 groups at the second stage (b) the proposed method with hierarchy
15-3-1 (c) the proposed method with hierarchy 9-3-1 after the tristimulus
display of fused images shown in Fig. 6(a)(c).

Fig. 9. Visual comparison of the performance of various image fusion
approaches fusing the Cuprite image cube. Results of fusion using (a)
Bilateral filtering [3] with hierarchy 15-3-1 i.e. 15 groups at first stage
and 3 groups at the second stage (b) the proposed method with hierarchy 15-
3-1 (c) the proposed method with hierarchy 9-3-1 after the tristimulus display
of fused images shown in Fig. 7(a)(c).

significantly compared to the methods that use only three
selected bands for visualization.

The performance of the proposed method have been com-
pared with the best performing recent technique [3]. The
proposed method outperforms the existing method visually
as well as objectively in all the quantitative parameters. The
major achievement is the significant improvement in standard
deviation and average gradient values which makes the fused
image sharper. The improved entropy indicates richer infor-
mation content which is also evident from visual analysis.
From the quantitative and visual analysis, it is clear that the
proposed method displays the information content successfully
in a colored image or gray image.
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