
0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3124133, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1
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Abstract—In a real-world setting, object instances from new classes can be continuously encountered by object detectors. When
existing object detectors are applied to such scenarios, their performance on old classes deteriorates significantly. A few efforts have
been reported to address this limitation, all of which apply variants of knowledge distillation to avoid catastrophic forgetting. We note
that although distillation helps to retain previous learning, it obstructs fast adaptability to new tasks, which is a critical requirement for
incremental learning. In this pursuit, we propose a meta-learning approach that learns to reshape model gradients, such that
information across incremental tasks is optimally shared. This ensures a seamless information transfer via a meta-learned gradient
preconditioning that minimizes forgetting and maximizes knowledge transfer. In comparison to existing meta-learning methods, our
approach is task-agnostic, allows incremental addition of new-classes and scales to high-capacity models for object detection. We
evaluate our approach on a variety of incremental learning settings defined on PASCAL-VOC and MS COCO datasets, where our
approach performs favourably well against state-of-the-art methods.

Index Terms—Object Detection, Incremental Learning, Deep Neural Networks, Meta-learning, Gradient preconditioning.
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1 INTRODUCTION

Deep learning has brought about remarkable improvements
on numerous vision tasks, including object detection [1], [2],
[3]. Most existing detection models make an inherent as-
sumption that examples of all the object classes are available
during the training phase. In reality, new classes of interest
can be encountered on the go, due to the dynamic nature
of the real-world. This makes the existing methods brittle in
an incremental learning setting, wherein they tend to forget
old task information when trained on a new task [4].

In this work, we study the class-incremental object de-
tection problem, where new classes are sequentially intro-
duced to the detector. An intelligent learner must not forget
previously learned classes, while learning to detect new
object categories. To this end, knowledge distillation [5] has
been utilized as a de facto solution [6], [7], [8], [9]. While
learning a new set of classes, distillation based methods
ensure that the classification logits and the regression targets
of the previous classes, are not altered significantly from
the earlier state of the model. As a side effect, distillation
enforces intransigence in the training procedure, making it
hard to learn novel classes. An essential characteristic for
incremental object detectors is to have optimal plasticity,
which aids in quick adaptability to new classes without
losing grasp of previously acquired knowledge.

Learning to learn for quick adaptability forms the basis
of current meta-learning methods [10], [11], [12]. These
methods have generally been successful in few-shot learn-
ing settings. Directly adopting such methodologies to incre-
mental object detection is challenging due to the following
reasons: (a) A meta-learner is explicitly trained with a fixed
number of classes (N -way classification) and does not gen-
eralize to an incremental setting. (b) Each task in the meta-
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train and meta-test stages is carefully designed to avoid
task-overfitting [13]. This is prohibitive in an object detec-
tion setting as each image can possibly have multi-class in-
stances. (c) The meta-learners require knowledge about the
end-task for fine-tuning, while in the incremental setting a
test sample can belong to any of the classes observed so-far,
implicitly demanding task-agnostic inference. (d) Network
architectures meta-learned in a traditional setting are in the
order of a few convolutional layers. This comes in stark
contrast to an object detector which involves multiple sub-
networks for generating backbone features, object proposals
and final classification and localization outputs.

We propose a methodology that views incremental object
detection through the lens of meta-learning that can effec-
tively deal with the above challenges. Our meta-learning
procedure learns to modify the gradients such that quick
adaptation across multiple incremental learning tasks is
possible. This is efficiently realised by meta-learning a set
of gradient preconditioning matrices, interleaved between
layers of a standard object detector (Sec. 3.2). Further, we
formulate a meta-training objective to learn these gradient
preconditioning matrices (Sec. 3.3.2). In this way, our meta-
training procedure captures properties of all the incremen-
tally presented task distributions, effectively alleviating for-
getting and preparing the networks for quick adaptation.

The key contributions of our work are:

• We propose a gradient-based meta-learning approach
which learns to reshape gradients such that optimal up-
dates are achieved for both the old and new tasks, for
class-incremental object detection problem.

• We propose a novel loss formulation that counters the
intransigence enforced due to knowledge distillation, by
learning a generalizable set of gradient directions that
alleviates forgetting and improves adaptability.

• Our extensive evaluations on two benchmark datasets
against three competitive baseline methods shows the
utility of our meta-learning based methodology.
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(a) Learning T1 (b) Learning T2 (c) Incrementally learning T2
Fig. 1. (a) In Task 1 (T1), a standard object detector (Faster R-CNN [2]) is trained to detect the ‘bird’ class and it can accurately
detect ‘bird’ instances on a test image. (b) In Task 2 (T2), the same model is trained to detect ‘person’ class and it accurately
detects a ‘person’ instance. However, the detector forgets the ‘bird’ class (T1) which was not present during T2 training. (c)
Our meta-learning based incremental Faster R-CNN detector accurately detects most instances of both the classes.

2 RELATED WORK

Our proposed methodology lies at the intersection of incre-
mental learning and meta-learning. Hence, we review the
literature from both these paradigms here.
Incremental Learning: In comparison to the incremental
setting for image-classification [14], [15], [16], [17], class-
incremental object detection and class-incremental semantic
segmentation [18], [19] has been relatively less explored.
Most of the methods proposed so far [6], [7], [8], [9] use
knowledge distillation [5] to address catastrophic forgetting.
These methods mainly vary in the base object detector or
parts of the network that are distilled. Shmelkov et al. [6]
proposed an incremental version of Fast R-CNN [20], which
uses pre-computed Edge Box object proposal algorithm [21],
making the setting simpler than what we consider, where
the proposal network is also learned. While training for
a new task, the classification and regression outputs are
distilled from a copy of the model trained on the previous
task. Li et al. [7] and Chen et al. [9] proposed to distill the
intermediate features, along with the network outputs. Hao
et al. [8] expands the capacity of the proposal network along
with distillation. Despite all these efforts, the methods fail
to improve the benchmark [6] on the standard evaluation
criteria, which calls for thoughts on the effectiveness of the
distillation methods and the complexity of the task at hand.
More recently, Acharya et al. [22] proposed to used memory
replay to solve a newly formulated online object detection
setting, while Joseph et al. [23] explicitly characterised the
unknown objects, which was found to be effective in allevi-
ating forgetting. Peng et al. [24] improved the state-of-the-art
by using Faster R-CNN with the distillation methodology
from [6]. Zhang et al. [25] proposed to distill a consoli-
dated model from a base and incremental detector, using
unlabelled auxiliary data. In this work, we hypothesise that
the restraining effect of distillation may lead to hindrance
towards learning new tasks. Therefore to learn a better
incremental object detector, the distillation must be carefully
modulated with learning for generalizability to new-tasks.
To this end, meta-learning offers an attractive solution.
Meta Learning: Meta-learning algorithms can be broadly
classified into optimization based methods [10], [11], [26],
black-box adaptation methods [27], [28] and non-parametric
methods [12], [29]. Adapting these meta-learning methods,
which are successful in few-shot image classification setting,
to object detection is not straightforward for the reasons

enumerated in Sec. 1. Recently, meta-learning has been
applied to address k-shot object detection setting. Wang et al.
[30] learn a meta-model that predicts the weights of the RoI
Head, that is finally fine-tuned. Yan et al. [31] and Kang et
al. [32] learn to re-weight the RoI features and backbone
features of Faster R-CNN [2] and YOLO [3], respectively.
Unlike these methodologies, we adopt to use a gradient
based meta-learning technique to tackle incremental object
detection. Inspired by Flennerhag et al. [33], we propose to
meta-learn a gradient preconditioning matrix that encapsu-
lates information across multiple learning tasks. Through
extensive experiments, we show that the proposed approach
is effective in learning a detector that can be continually
adapted to handle new classes.

3 METHODOLOGY

The standard object detection frameworks [1], [3], [20], [34]
can be characterised as a function (FOD), that takes an
input image and transforms it into a set of bounding boxes
enclosing objects, each of which is classified into one of the
classes, known a priori. FOD is trained on large amounts
of annotated data corresponding to each class, using vari-
ants of stochastic gradient descent. A class-incremental ob-
ject detector relaxes the constraint that all the class data is
available beforehand. As and when new class information is
available, the detector should modify itself to be competent
on detecting the new classes along with the old classes by
combating itself against catastrophic forgetting [4], [35].

We formally define the problem in Sec. 3.1, introduce
how we meta-learn the gradient preconditioning matrix in
Sec. 3.2 and finally explain the specifics of our proposed
incremental object detector in Sec. 3.3.

3.1 Problem Formulation
Let C denotes the set of classes that are incrementally
introduced to the object detector. A task Tt, is defined as a
grouping of these classes, which are exposed to the detector
at time t: Tt ⊂ C, such that Ti ∩ Tj = Ø, for any i, j ≤ t.
Let Dt denote the images containing annotated objects of
classes in Tt. Each image can contain multiple objects of
different classes, however annotations are available only for
those object instances that belong to classes in Tt.

Let I ∈ Dt denotes an input image. An object detector
FOD(I), is a composition of functions: (FRoI Head◦FRPN ◦
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Fig. 2. The figure outlines the overall architectural components and an illustration of how gradient preconditioning controls learning
(top right). While learning the current task Tt, the gradient preconditioning induced by the warp layers (green rectangles in the
RoI Head of the detector) effectively modulates the dotted-red task-wise gradients to the dotted-green gradients, which inherently
guides the average gradients (solid green arrows) to a better optima that respects all three task manifolds Wt,Wt−1 and Wt−2.
Additionally, backbone features and RoI Head outputs are distilled (purple arrows) from the previous model. (best viewed in color)

FBackbone)(I). Here, without loss of generality, we focus
on R-CNN family [2], [20], [34] of two-stage detectors.
FBackbone takes I as input and generates a feature map
F ∈ RC×H×W where C,H and W refer to the number of
channels, height and width of the feature map respectively.
FRPN takes these features and proposes areas which can
possibly contain an object. Concretely, it outputs a class-
agnostic objectness score and the bounding box location
for N proposals. Each of these proposals (which is RoI
pooled feature from F ) is classified into one of Ti≤t classes
and its bounding box locations are regressed by FRoI Head.
Let FOD be parameterised by θ. The challenge in class
incremental object detection, is to continually adapt θ to
learn new tasks Tt+1, without access to all of {D0 · · · Dt},
while maintaining original performance on {T0 · · · Tt}.

3.2 Meta-Learning the Gradient Preconditioning
The standard update rule while training an object detector
FOD parameterised by θ is: θ′ ← θ − µ∇L(θ), where
L is the loss function and µ is the learning rate. We in-
tend to meta-learn a parameterised preconditioning matrix
P (θ;φ), which warps the gradient to the steepest direction
accounting for the different tasks introduced to the object
detector till then. The parameter update is thus given by:
θ′ ← θ − µP (θ;φ)∇L(θ), where φ are parameters of P .

A scalable way to achieve such a gradient precondi-
tioning is to embed it directly into the task learner [33],
[36], [37]. Following Flennerhag et al. [33], we dedicate
some of the network layer for preconditioning (called warp
layers), which are meta-learned across incremental learning
tasks. Hence, the parameter set θ of FOD is split into task
parameters ψ and warp parameters φ, such that θ = ψ ∪φ
and ψ ∩ φ = Ø. During back-propagation, gradient pre-
conditioning is inherently induced on the task layers by
the Jacobians of the warp-layers. As the warp layers are
non-linear transformations, it allows modelling rich rela-
tionships between gradients. This allows for stronger rep-
resentational capability than previous works that consider
preconditioning via block diagonal matrices [38], [39].

The warp parameters which precondition the gradients
are learned using information from all the tasks seen till
then. The carefully defined loss function Lwarp (Eqn. 5)
helps achieve this objective. These layers implicitly help
to model the joint task distribution of all the tasks intro-
duced to the detector. This results in better generalization
to new tasks, faster convergence and alleviates catastrophic
forgetting. The illustration in Fig. 2 (top right) explains how
gradient preconditioning via warp layers controls learning.
Before learning Tt, let θ∗t−1 be the optimal parameters that
lie close to the previously learned task manifolds:Wt−1 and
Wt−2. While learning the new task Tt, the preconditioning
layers effectively warp the task-wise gradients. The trans-
formation of the red dotted arrows to green dotted arrows
pictorially shows the change induced by the precondition-
ing matrix to the task-wise gradients in the first step (the
task-wise gradients for the subsequent descent steps are
not shown to avoid clutter). Thus, gradient warping helps
the average task gradients, shown in green, to converge to
a better optima θ∗t , which respects all the task manifolds,
Wt,Wt−1 andWt−2.

3.3 Incremental Object Detector
Fig. 2 illustrates the end-to-end architecture of the meta-
learned incremental object detector. Faster R-CNN [2] is
adapted to incorporate additional warp layers which pre-
conditions the gradient flow. The input image is passed
through the backbone network (FBackbone) to generate a
set of features F , which are in turn passed on to the
RPN and the RoI pooling layers (FRPN ) to generate object
features. These are passed to the RoI Head (FRoI Head)
which contains a set of three residual blocks, each with three
convolutional layers. Amongst these convolutional layers,
we designate one of them as warp layer (colored green),
which is meta-learned using warp loss, Lwarp. All the other
layers of the network constitute the task layers, which
are learned using task loss, Ltask. FRoI Head terminates
in a multi-class classification head (Fcls) and a regression
head (Freg). While learning a new task, distilling backbone
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features and final heads from the previous task helps to
add additional constraint which guides current learning.
Additional implementation details are discussed in Sec. 4.3.

Below, we explain how Ltask and Lwarp are formulated,
followed by the learning and inference strategies.

3.3.1 Task Loss (Ltask):

A standard object detector is learned by minimising the
classification error and the bounding box localization er-
ror based on the predictions from the classification and
regression heads of FRoI Head. Simultaneously, it reduces
the discrepancy in objectness score predicted by FRPN and
the corresponding bounding box offsets from the ground-
truth. Let p = (p0, · · · , pK) denote the class probabilities
for K + 1 classes (K object classes + background class)
and let l = (lx, ly, lw, lh) denote the bounding box locations
predicted by FRoI Head for each of RoI pooled feature. Let
the ground-truth class and bounding box regression targets
be p∗ and l∗. Then, LRoI Head is defined as follows:

LRoI Head = Lcls(p, p
∗) + λ[p∗ ≥ 1]Lloc(l, l

∗), (1)

where Lcls(p, p
∗) = − log pp∗ is the log loss for the true

class p∗ and Lloc is the robust smooth L1 loss function
defined in [20]. p∗ = 0 denotes the background class, and
the localisation loss is not calculated for them. In a similar
manner, the loss for training FRPN which generates an
objectness score o ∈ [0, 1] and the corresponding bounding
box predictions l is defined as follows:

LRPN = Lcls(o, o
∗) + λo∗Lloc(l, l

∗). (2)

where o∗ is the ground truth which denotes whether the
region features contains an object (= 1) or not (= 0) and
l∗ is the bounding box regression target. The weighting
parameter λ is set to 1 for all experiments following [2].

While adapting the current detector FθtOD, with param-
eters θt for a new task Tt, we use a frozen copy of the
previous model Fθt−1

OD , to distill the backbone features and
the RoI head targets. This will ensure that FθtOD does not
deviate too much from Fθt−1

OD ; which indeed acts as a
knowledgeable teacher who has expertise in detecting the
previously known classes. Each training image is passed
through FθtBackbone and Fθt−1

Backbone to obtain Ft and Ft−1.
Each RoI pooled feature from FθtRPN is passed to FθtRoI Head

and Fθt−1

RoI Head to obtain {pt, lt} and {pt−1, lt−1} respec-
tively. See purple arrows in Fig. 2 for clarity. Distillation loss
is defined as:

LDistill = LReg(Ft,Ft−1)+LKL(pt,pt−1)+LReg(lt, lt−1),
(3)

where LReg is the L2 regression loss and LKL is the KL
divergence between the probability distribution generated
by current and previous classification heads, computed only
for the previously seen classes. The final task loss is a convex
combination of the detection and the distillation losses,

Ltask = αLDistill + (1− α)(LRPN + LRoI Head) (4)

where α is the weighting factor which controls the impor-
tance of each of the term in the loss function. We run a
sensitivity analysis on the value of α in Sec. 5.

3.3.2 Warp Loss (Lwarp):
Motivated by the incremental learning methods for image
classification [15], [40], we maintain an Image Store (IStore)
with a small number of exemplar images per class. We
make use of the images from IStore and the current model
parameters θt, to define the warp loss Lwarp. We meta-
learn the warp layers in FRoI Head (refer Fig. 2), which
classifies each of the input RoI pooled features into one of
the classes and predicts its bounding box locations, using
Lwarp. Though IStore guarantees a lower bound on the
number of images per class, the actual per class instance
statistics would be much uneven. This is because each image
can contain multiple instances of different classes. This will
heavily bias the warp layer training towards those classes
which has more instances. To combat this, we propose to use
a feature store FStore, which stores Nfeat features per class.
This is realised by maintaining a fixed size queue per class
and queuing the RoI pooled features into the corresponding
class specific queue. This ensures that even if there are
multiple instances of many classes in the training data of the
detector, the warp layers are updated with equal priority to
all the classes. This is a key component that ensures that
the gradient preconditioning that is meta-learned would
retain equal importance to all the classes. Further, as IStore

contains images and annotations from all the classes seen
till then, this implicitly embeds information from not only
the current class but also the previous classes into the
preconditioning layers and therein the whole network, via
the warped gradients, effectively reducing forgetting.

Let f denote a single RoI Pooled feature and p∗ and l∗

denote the corresponding true class label and the bound-
ing box annotation. f is passed through the RoI head
FRoI Head, to generate class predictions p, and box predic-
tions l. Then, the warp loss Lwarp from the features and
labels stored in FStore is computed as,

Lwarp =
∑

(f ,p∗,l∗)∼FStore

Lcls(p, p
∗) + [p∗ ≥ 1]Lloc(l, l

∗),

s.t., (p, l) = FRoI Head(f) (5)

Here, Lcls is the log loss and Lloc is a smooth L1 regression
loss. Algorithm 1 illustrates the warp loss computation.
Each image in IStore is passed through FBackbone and
FRPN to generate the RoI pooled features and the associ-
ated labels, which is then queued into FStore (Lines 3 - 4).
Once all the RoI features are extracted, we accumulate per
RoI loss to compute the warp loss Lwarp (Lines 6 - 10).
3.3.3 Learning and Inference:
Algorithm 2 summarises the end-to-end learning strategy.
A mini-batch of datapoints Dtr from the current task is
sampled from Dt in Line 3. As introduced in Sec. 3.3.2,
we maintain an Image Store (IStore) with a small number
of exemplar images per class. Specifically, IStore contains
one fixed size (Nimg) queue per class, which is used to
meta-learn the wrap layers. The fixed size queue ensures
that only the recently seen Nimg images per class would
be maintained in the store. Images from Dtr are added to
IStore in Line 5. For images with multiple class objects in it,
we associate it with one of its randomly chosen constituent
class. The task loss Ltask is computed using Eq. 4 and the
task parameters ψt are updated in Lines 6 and 7. The warp
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Algorithm 1 Algorithm GETWARPLOSS

Input: Image store: IStore; Current model params: θt =
ψt ∪ φt.

1: Initialise FStore . A queue of length Nfeat per class
2: for I ∈ IStore do
3: {(fROI pooled, labels)} ← FRPN (FBackbone(I))
4: Enqueue Fstore with {(fROI pooled, labels)}
5: Lwarp ← 0
6: for f, labels ∈ FStore do
7: p∗, l∗ ← labels
8: p, l← FRoI Head(f)
9: Lper RoI = Lcls(p, p

∗) + [p∗ ≥ 1]Lloc(l, l
∗) . Eq. 5

10: Lwarp ← Lwarp + Lper RoI

11: return Lwarp

parameters are updated with warp loss Lwarp after every
γ iterations using Istore in Line 11. We re-emphasise that
while the task layers are updated, the warp layers a kept
fixed, which effectively preconditions the task gradients.
These preconditioning matrices (layers) are updated using
the warp loss by using all the images in IStore, which
contains images of all the classes introduced to the detector
till then, infusing the global information across classes into
the task layers. A key aspect of detection setting is its innate
incremental nature. Even two images from the same task Tt
may not share all same classes. We exploit this behaviour to
learn our warp layers even while training on the first task.

Similar to other meta-learning approaches [10], [11], [26],
at inference time, the images in IStore are used to fine-
tune the task parameters. In this process, meta-learned
preconditioning matrix effectively guides the gradients in
the steepest descent direction resulting in quick adaptation.
In our experiments, we find that with just 10 examples per
task, the model exhibits superior performance. The rest of
the inference pipeline follows standard Faster R-CNN [2].

Algorithm 2 Learning a current task Tt
Input: Current model params: θt = ψt∪φt; Previous model

params: θt−1 = ψt−1 ∪ φt−1; Data for Tt: Dt; Image
store: IStore; Warp update interval: γ; Step len: µ, υ.

1: while until required iterations do
2: i← 0
3: Dtr ← Sample a mini-batch from Dt

4: for I ∈ Dtr do
5: Add I to IStore

6: Ltask ← Compute using Eq. 4
7: ψt ← ψt − µ∇Ltask . Task-parameters update
8: i← i+ 1
9: if i%γ == 0 then

10: Lwarp ← GetWarpLoss(θt, Istore) . Alg. 1
11: φt ← φt − υ∇Lwarp . Meta-parameters update
12: return θt, IStore

4 EXPERIMENTS AND RESULTS

We evaluate the proposed approach on a variety of class in-
cremental settings across two prominent detection datasets.
We compare against the state-of-the-art methods, consis-
tently outperforming them in all the settings. Below, we
introduce the datasets, explain the experimental settings,
provide implementation details and report our results.

4.1 Datasets and Evaluation Metrics
To benchmark our method, we evaluate on PASCAL VOC
2007 [41] and MS COCO 2014 [42] datasets following
Shmelkov et al. [6]. PASCAL VOC 2007 contains 9,963 im-
ages containing 24,640 annotated instances of 20 categories.
Following the standard setting [41], 50% of data is split into
train/val splits and the rest for testing on PASCAL VOC.
MS COCO 2014 contains objects from 80 different categories
with 83,000 images in its training set and 41,000 images
in the validation set. Since the MS COCO test set is not
available, we use the validation set for evaluation.

The mean average precision at 0.5 IoU threshold
(mAP@50) is used as the primary evaluation metric for both
datasets. For MS COCO, we additionally report average
precision and recall across scales, the number of detections
and IoU thresholds, in line with its standard protocol.
4.2 Experimental Settings
Following [6], we simulate incremental versions of both
PASCAL VOC and MS COCO datasets. As introduced in
Sec. 3.1, a group of classes constitute a task Tt, which is
presented to the learner at time t. Let C denotes the set of
classes that are part of Tt. The data Dt for task Tt is created
by selecting those images which have any of the classes in
C. Instances of those classes that are not part of C, but still
co-occur in a selected image would be left unlabelled.

For PASCAL VOC, we order the classes alphabetically
and create multiple tasks by grouping them. We consider
four different settings, in the decreasing order of difficulty:
(a) the first task T1 containing initial 15 classes and the next
five successive tasks (T2 · · · T6) containing a new class each.
(b) T1 containing first 15 classes and T2 containing the rest of
5 classes. (c) T1 containing first 10 classes and T2 containing
the other 10 classes. (d) Grouping all the initial 19 classes in
T1 and the last class into T2. For MS COCO, we use the first
40 classes as task T1 and the rest as T2.
4.3 Implementation Details
We build our incremental object detector based on Faster
R-CNN [2]. Continually learning a Faster R-CNN is more
challenging than the case of Fast R-CNN (as deployed in
Shmelkov et al. [6]), since it makes use of pre-computed
Edge Box proposals [21], while we also learn the RPN. To
maintain fairness in comparison with [6], we use ResNet-50
[43] with frozen batch normalization layers as the backbone.

The classification head of Faster R-CNN handles only
the classes seen so far. Following other class incremental
works [16], [44], [45], this is done by setting logits of the
unseen class to a very high negative value (−1010). This
makes the contribution of the unseen classes in the softmax
function negligible (e−10

10 → 0), while computing the class
probabilities (referred to as p in Eq. 1). While updating the
task parameters ψ, the warp parameters φ are kept fixed
and vice-versa. This is achieved by selectively zeroing out
the gradients during the backward pass of the correspond-
ing loss functions; Ltask and Lwarp. Other than these two
modifications, the architectural components and the training
methodology is the same as standard Faster R-CNN.

We use stochastic gradient descent (SGD) with momen-
tum 0.9. The initial learning rate is set to 0.02 and subse-
quently reduced to 0.0002, with a warm-up period of 100 it-
erations. Each task is trained for 18,000 and 90,000 iterations
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Class Split aero cycle bird boat bottle bus car cat chair cow table dog horse bike person mAP-old plant sheep sofa train tv mAP

1-20 79.4 83.3 73.2 59.4 62.6 81.7 86.6 83.0 56.4 81.6 71.9 83.0 85.4 81.5 82.7 76.8 49.4 74.4 75.1 79.6 73.6 75.2
1-15 78.1 82.6 74.2 61.8 63.9 80.4 87.0 81.5 57.7 80.4 73.1 80.8 85.8 81.6 83.9 76.9 - - - - - 76.9

(1-15)+16 [6] 70.5 78.3 69.6 60.4 52.4 76.8 79.4 79.2 47.1 70.2 56.7 77.0 80.3 78.1 70.0 69.7 26.3 - - - - 67.0
Ours 78.8 79.0 65.9 51.8 57.3 76.1 84.2 80.3 47.3 77.0 60.4 76.0 81.8 76.9 80.6 71.6 33.3 - - - - 69.2

(1-15)+
16+17

[6] 70.3 78.9 67.7 59.2 47.0 76.3 79.3 77.7 48.0 58.8 60.2 67.4 71.6 78.6 70.2 67.4 27.9 46.8 - - - 63.9
Ours 80.1 79.9 66.2 53.4 58.4 79.6 84.9 79.0 47.3 72.9 60.7 73.7 81.2 78.3 80.4 71.7 35.5 56.3 - - - 68.7

(1-15)+
16+..+18

[6] 69.8 78.2 67.0 50.4 46.9 76.5 78.6 78.0 46.4 58.6 58.6 67.5 71.8 78.5 69.9 66.4 26.1 56.2 45.3 - - 62.5
Ours 80.1 79.4 65.0 53.2 58.0 78.4 85.0 77.5 46.3 72.9 59.2 74.1 81.4 75.7 79.9 71.1 35.4 55.8 50.0 - - 67.1

(1-15)+
16+..+19

[6] 70.4 78.8 67.3 49.8 46.4 75.6 78.4 78.0 46.0 59.5 59.2 67.2 71.8 71.3 69.8 66 25.9 56.1 48.2 65.0 - 62.4
Ours 77.7 78.5 67.1 51.9 56.9 74.9 84.1 79.1 46.4 71.8 59.4 72.5 81.6 75.6 79.5 70.5 33.5 58.2 49.4 65.5 - 66.5

(1-15)+
16+..+20

[6] 70.0 78.1 61.0 50.9 46.3 76.0 78.8 77.2 46.1 66.6 58.9 67.7 71.6 71.4 69.6 66 25.6 57.1 46.5 70.7 58.2 62.4
Ours 77.5 77.1 66.8 53.6 55.0 73.7 83.6 76.7 45.2 74.0 57.7 72.4 81.3 77.0 79.1 70.0 34.9 58.1 49.6 67.5 53.7 65.7

TABLE 1
Per-class AP and overall mAP values when five classes from PASCAL VOC dataset are added one-by-one to a model initially

trained on 15 categories on the left. ‘mAP-old’ column refers to the mAP of all the base classes, while ‘mAP’ column refers to the
mAP of all the classes seen till then. Our approach achieves consistent improvement in detection performance, compared to [6].

for PASCAL VOC and MS COCO respectively. The training
is carried out on a single machine with 8 GPUs, each of them
processing two images at a time. Hence, the effective batch
size is 16. During evaluation, 100 detections per image are
considered with an NMS threshold of 0.4. Nfeat and Nimg ,
which control the queue size of the feature store (FStore)
and image store (IStore) respectively, are set to 10. Note
that both FStore and IStore are class specific queues of fixed
length. Hence they do not grow in size as the oldest item
will be dequeued as a new item is enqueued to an already
full queue. The warp update interval γ and α in Eq. 4, is set
to 20 and 0.2 respectively. Our implementation is based on
Detectron2 [46] library. We would be releasing the code and
trained models for further clarity and reproducibility.

4.4 Results
In the following, we organise the results for each of the
experimental settings outlined in Sec. 4.2. The classes in-
troduced in each task are color coded for clarity.
Adding Classes Sequentially: In the first experiment, we
consider incrementally adding one new class at a time to
the object detector that is trained to detect all the previously
seen classes. We simulate this scenario by training the de-
tector on images from the first 15 classes of PASCAL VOC
and then adding 16th − 20th classes one by one.

Table 1 shows the class-wise average precision (AP) at
IoU threshold 0.5 and the corresponding mean average
precision (mAP). The first row is the upper-bound where
the detector is trained on data from all 20 classes. The
AP values when FOD is trained on first 15 class examples
and evaluated on test data from the same 15 classes is
reported in the second row. The following five pair of rows
showcase the result when a new class is added. The notation
(1 − 15) + 16 + .. + 20 is a shorthand for this setting. Our
meta-learned model performs favourably well against the
previous best method [6] on all the sequential tasks.
Adding Groups of Classes Together: Next, we test our
method in a dual task scenario, where T1 contains one set of
classes and T2 contains the remaining classes. We consider
10 + 10, 15 + 5 and 19 + 1 settings for PASCAL VOC. Tables
2, 3 and 4 show the corresponding results. The second row
in each of the tables shows the upper-bound when all class
data is available for training. The third row reports the AP
values when we train and evaluate FOD on T1. When the
second task T2 is added with standard training, we see that
performance on classes of the first task drops significantly
(fourth row). This evaluation is carried out on test examples

from all 20 classes. In the subsequent rows, we report the
accuracies of our proposed methodology when compared
against Shmelkov et al. [6], Faster ILOD [24] and ORE [23] .
We see that our approach comfortably outperforms [6] and
Faster ILOD [24] in terms of mAP in all the settings. ORE
[23] has a slightly better performance in the 15+5 setting.
ORE’s capability to model unknown objects explicitly is
orthogonal to our work and can be incorporated into ours.
We will explore this direction in a future work. Class-wise
AP values are also reported, showing our improvements on
majority of the classes. We compare with DMC [25] in the
Supplementary. Qualitative results are showcased in Fig. 3.

Table 5 reports the results on MS COCO in a 40 + 40
setting (results are reported on entire val-set). For the sake
of comparison with [6], [24], we also report results on mini-
val, which contains the first 5000 images from the validation
split. Following the standard COCO evaluation, we report
average precision across multiple IoUs (AP -(.50:.05:.95),
AP 50-.50, AP 75-.75) and scales (APS-small, APM -medium
and APL-large) and average recall while using 1, 10 and
100 detections per image (AR1, AR10, AR100) and different
scales (ARS-small, ARM -medium and ARL-large).

5 DISCUSSIONS AND ANALYSIS

Here, we report ablation results and the justification for our
design choices. All the experiments are conducted in the
15+5 setting, where 5 new classes are added to the detector
trained on the first 15 classes of PASCAL VOC [41].
Ablation Experiment: We design a set of experiments to
clearly understand the contribution of each of the con-
stituent components of the proposed methodology: distil-
lation, gradient preconditioning and fine-tuning. Table 6
shows the results of this ablation study where each of these
components are selectively switched on (X) and off (×) in a
15 + 5 setting. We note that using only the distillation loss
to avoid forgetting during the training for a new task helps
to achieve 58.5% mAP. Just using gradient preconditioning
during incremental learning results in a lower mAP of
47.6%, but fine-tuning it with the same amount of data
results in 13.5% mAP improvement when compared to fine-
tuning a distilled model, which results in only 5.1% mAP
improvement. This clearly brings out the effectiveness of
meta-learning the gradient preconditioning layers, for quick
adaptability. Finally, although using both distillation and
gradient preconditioning helps to achieve an mAP of 54.3%,
the best performance is achieved when fine-tuning is also
applied resulting in an mAP of 67.8%.
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Train with aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP

All 20 79.4 83.3 73.2 59.4 62.6 81.7 86.6 83.0 56.4 81.6 71.9 83.0 85.4 81.5 82.7 49.4 74.4 75.1 79.6 73.6 75.2
First 10 78.6 78.6 72.0 54.5 63.9 81.5 87.0 78.2 55.3 84.4 - - - - - - - - - - 73.4
Std Training 35.7 9.1 16.6 7.3 9.1 18.2 9.1 26.4 9.1 6.1 57.6 57.1 72.6 67.5 73.9 33.5 53.4 61.1 66.5 57.0 37.3

Shmelkov et al. [6] 69.9 70.4 69.4 54.3 48.0 68.7 78.9 68.4 45.5 58.1 59.7 72.7 73.5 73.2 66.3 29.5 63.4 61.6 69.3 62.2 63.1
Faster ILOD [24] 72.8 75.7 71.2 60.5 61.7 70.4 83.3 76.6 53.1 72.3 36.7 70.9 66.8 67.6 66.1 24.7 63.1 48.1 57.1 43.6 62.2
ORE [23] 63.5 70.9 58.9 42.9 34.1 76.2 80.7 76.3 34.1 66.1 56.1 70.4 80.2 72.3 81.8 42.7 71.6 68.1 77.0 67.7 64.6

Ours 76.0 74.6 67.5 55.9 57.6 75.1 85.4 77.0 43.7 70.8 60.1 66.4 76.0 72.6 74.6 39.7 64.0 60.2 68.5 60.5 66.3

TABLE 2
Per-class AP and overall mAP on PASCAL VOC when 10 new classes are added to a detector trained on the first 10 classes.

Train with aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP

All 20 79.4 83.3 73.2 59.4 62.6 81.7 86.6 83.0 56.4 81.6 71.9 83.0 85.4 81.5 82.7 49.4 74.4 75.1 79.6 73.6 75.2
First 15 78.1 82.6 74.2 61.8 63.9 80.4 87.0 81.5 57.7 80.4 73.1 80.8 85.8 81.6 83.9 - - - - - 53.2
Std Training 12.7 0.6 9.1 9.1 3.0 0.0 8.5 9.1 0.0 3.0 9.1 0.0 3.3 2.3 9.1 37.6 51.2 57.8 51.5 59.8 16.8

Shmelkov et al. [6] 70.5 79.2 68.8 59.1 53.2 75.4 79.4 78.8 46.6 59.4 59.0 75.8 71.8 78.6 69.6 33.7 61.5 63.1 71.7 62.2 65.9
Faster ILOD [24] 66.5 78.1 71.8 54.6 61.4 68.4 82.6 82.7 52.1 74.3 63.1 78.6 80.5 78.4 80.4 36.7 61.7 59.3 67.9 59.1 67.9
ORE [23] 75.4 81.0 67.1 51.9 55.7 77.2 85.6 81.7 46.1 76.2 55.4 76.7 86.2 78.5 82.1 32.8 63.6 54.7 77.7 64.6 68.5

Ours 78.4 79.7 66.9 54.8 56.2 77.7 84.6 79.1 47.7 75.0 61.8 74.7 81.6 77.5 80.2 37.8 58.0 54.6 73.0 56.1 67.8

TABLE 3
Per-class AP and overall mAP when last 5 classes from PASCAL VOC are added to a detector trained on the initial 15 classes.

Train with aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP

All 20 79.4 83.3 73.2 59.4 62.6 81.7 86.6 83.0 56.4 81.6 71.9 83.0 85.4 81.5 82.7 49.4 74.4 75.1 79.6 73.6 75.2
First 19 76.3 77.3 68.4 55.4 59.7 81.4 85.3 80.3 47.8 78.1 65.7 77.5 83.5 76.2 77.2 46.6 71.4 65.8 76.5 - 67.5
Std Training 16.6 9.1 9.1 9.1 9.1 8.3 35.3 9.1 0.0 22.3 9.1 9.1 9.1 13.7 9.1 9.1 23.1 9.1 15.4 50.7 14.3

Shmelkov et al. [6] 69.4 79.3 69.5 57.4 45.4 78.4 79.1 80.5 45.7 76.3 64.8 77.2 80.8 77.5 70.1 42.3 67.5 64.4 76.7 62.7 68.3
Faster ILOD [24] 64.2 74.7 73.2 55.5 53.7 70.8 82.9 82.6 51.6 79.7 58.7 78.8 81.8 75.3 77.4 43.1 73.8 61.7 69.8 61.1 68.6
ORE [23] 67.3 76.8 60.0 48.4 58.8 81.1 86.5 75.8 41.5 79.6 54.6 72.8 85.9 81.7 82.4 44.8 75.8 68.2 75.7 60.1 68.9

Ours 78.2 77.5 69.4 55.0 56.0 78.4 84.2 79.2 46.6 79.0 63.2 78.5 82.7 79.1 79.9 44.1 73.2 66.3 76.4 57.6 70.2

TABLE 4
Per-class AP and overall mAP when tvmonitor class from PASCAL VOC is added to the detector, trained on all other classes.

Fig. 3. Qualitative results of our incremental object detector trained in a 10+10 setting where T1 = {aeroplane, bicycle, bird, boat,
bottle, bus, car, cat, chair, cow} and T2 = {diningtable, dog, horse, motorbike, person, pottedplant, sheep, sofa, train, tvmonitor}.

AP AP 50 AP 75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

mini-
val

All 80 31.5 50.9 33.5 15.4 35.6 43.5 28.7 44.3 45.9 26.1 51.2 61.8
[6] 21.3 37.4 - - - - - - - - - -
[24] 20.6 40.1 - - - - - - - - - -

Ours 23.8 40.5 24.4 12 26.6 32 24.2 38.4 39.7 20.7 44.6 52.4

full-
val

All 80 31.2 51 33.1 14.8 34.6 41.5 28.9 44.8 46.4 25 51.5 61.7
Ours 23.7 40.4 24.5 11.8 26.2 30 24.3 38.6 40 20.5 44.3 52.7

TABLE 5
AP and AR values when 40 new classes are added to a model

trained with the first 40 classes on MS COCO dataset.

Choice of Preconditioning Layers: We characterise the
forgetting in a two stage object detector and identify that the
backbone, the RPN (FRPN ) and the RoI Head (FRoI Head)
have different forgetting rates. This can be attributed to
the category-agnostic nature of FRPN . It learns to predict
regions that can possibly contain an object (expressed by
the objectness score), making it independent of the object
class. We hypothesise that keeping the RPN fixed or training

it along for the new classes would not lead to significant
performance change. Our experimental results corroborate
with this, where we see a similar overall mAP of 58.5% vs.
58.1% for a distilled detector with and without trained RPN.

We choose to add the preconditioning layers in
FRoI Head because: (a) Its category-specific nature as op-
posed to category-agnostic nature of FRPN makes it the
most forgetful component in the object detection pipeline.
(b) Since each RoI-pooled feature (which is an input to
FRoI Head) corresponds to only a single object, this helps
to meta-learn the preconditioning layers in a class balanced
manner using the FStore. (c) The earlier the preconditioning
is applied to the gradients in the back-propagation path,
the larger portion of the network is adapted effectively.
We choose one layer from each of the residual blocks in
FRoI Head as preconditioning layers (refer Fig. 2). Empiri-
cally, we find that adding the preconditioning layers to the
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D G F T1 T2 All

X × × 64.5 40.8 58.5
X × X 71.0 41.6 63.6
× X × 45.6 53.6 47.6
× X X 69.7 55.2 66.1
X X × 58.2 42.7 54.3
X X X 71.7 55.9 67.8

TABLE 6
An ablation study to understand the

contribution of Distillation (D),
Gradient preconditioning (G) and

Fine-tuning (F).

α T1 T2 All

0.1 64.5 40.8 58.54
0.2 66.5 35.2 58.67
0.4 68.5 27.0 58.08
0.6 69.1 16.8 56.03
0.8 70.0 3.0 53.23

TABLE 7
Sensitivity analysis on the

hyper-parameter α, in Eq. 4. α
controls the importance of

distillation and detection losses.

last residual block yields the best result (58.5% mAP), when
compared to adding it to the other two layers (55.6% and
54.1% mAP respectively).
Sensitivity Analysis: We run a sensitivity analysis on the
weighting factor α which weighs the importance of the
distillation loss and the object detection loss in Eq. 4. The
results are reported in Table 7, where we clearly see that
increasing the importance for distillation, reduces the ability
to learn new tasks. Only distillation technique is used to
reduce forgetting in these results.

6 CONCLUSION

The existing incremental object detection approaches are
based on knowledge distillation, which helps in retaining
old learning at the cost of a reduced adaptability to new
tasks. In this work, we propose a meta-learning approach
to object detection, that learns to precondition the gradient
updates such that information across incremental tasks is
automatically shared. This helps the model not only to retain
old knowledge but also to adapt flexibly to new tasks. The
meta-learned incremental object detector outperforms the
current best methods on two benchmark datasets. Further,
our extensive ablation experiments brings out the contribu-
tions of each constituent components of the methodology.
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