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Abstract

Both neutrinoless double beta decay and leptogenesis require neutrinos to be Majorana fermions. A re-
lation between these two phenomena can be derived once the mechanism of neutrino mass generation is 
specified. Using the current data from the neutrino oscillations, we constrain the Majorana phases of the 
neutrino mixing matrix by minimising the effective neutrino mass in neutrinoless double beta decay. Given 
these Majorana phases at the effective neutrino mass floor, we show that it is possible to obtain a large 
enough CP asymmetry (≥ 10−8) required for adequate leptogenesis, without additional phases at high 
scale. Such scenario pushes the lower bound on M1 (the mass of the lightest of the heavy neutrinos in the 
Type-I see-saw mechanism) to a higher value compared to the usual Davidson-Ibarra bound. In particular, 
we find that M1 ≥ 1010 (109) GeV for the case of Normal (Inverted) hierarchy. We extend our analysis to 
the case when one of the heavy neutrinos decouples (two right handed neutrino models). In this case we 
find M1 ≥ 1010 (1011) GeV for the case of Normal (Inverted) hierarchy.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

At present the Standard Model (SM) of particle physics, which is based on the gauge group 
SU(3)C ×SU(2)L×U(1)Y , is considered to be the best candidate to explain elementary particles 
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Table 1
Global fit 3σ ranges of neutrino oscillation parameters [10].

Parameters Normal Hierarchy (NH) Inverted Hierarchy (IH)

�m2
21

10−5 eV2 6.79 − 8.01 6.79 − 8.01

|�m2
31|

10−3 eV2 2.427 − 2.625 2.412 − 2.611

sin2 θ12 0.275 − 0.350 0.275 − 0.350

sin2 θ23 0.418 − 0.627 0.423 − 0.629

sin2 θ13 0.02045 − 0.02439 0.02068 − 0.02463

δ(◦) 125 − 392 196 − 360

and their interactions in nature. However, it doesn’t address certain issues like sub-eV masses of 
three generations of active neutrinos. Moreover, it does not explain the observed baryon asym-
metry of the Universe, measured to be nB/nγ = (6.09 ±0.06) ×10−10 [1,2]. Therefore, we need 
to go beyond the SM of particle physics to address these issues.

The current neutrino oscillation experiments [3–5] confirmed non-zero, but tiny neutrino 
masses and also mixing between different flavours. The mixing matrix, relating the flavour 
eigenstates to mass eigenstates, is called the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) ma-
trix [6–8]. It is parameterized as [9]

UPMNS =
⎛
⎝ c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

⎞
⎠Uph , (1)

where Uph = diag(1, eiα1 , eiα2) and the symbols cij and sij stand for cos θij and sin θij respec-
tively. Of the three phases in UPMNS, α1, α2 are called the Majorana phases and δ is called the 
Dirac phase.

In terms of the mixing matrix UPMNS the neutrino mass matrix can be given as

mν = U†mdiagU
∗ (2)

where mdiag = diag(m1, m2, m3). Thus the neutrino mass matrix mν consists of nine parameters: 
three masses, three mixing angles and three phases. At present the oscillation experiments mea-
sure two mass square differences: namely solar (�m2

sol) and atmospheric (�m2
atm), three mixing 

angles θ23, θ12 and θ13 to a good degree of precision. Data indicate that |�m2
atm| � �m2

sol. 
Without loss of generality, we can define �m2

sol = �m2
21 = m2

2 − m2
1 and �m2

atm = �m2
31 =

m2
3 − m2

1 � m2
3 − m2

2 = �m2
32. Matter effects in solar neutrino oscillations require �m2

21 > 0, 
but, so far, the sign of �m2

31 is not determined. The case of �m2
31 > 0 is called Normal hierarchy

(NH) and that of �m2
31 < 0 is called Inverted hierarchy (IH). For NH the smallest neutrino mass 

(mmin) is m1, whereas it is m3 for IH. The 3σ ranges of the oscillation parameters are given in 
Table 1. At present the value of Dirac phase δ is quite ambiguous. T2K experiment [11] prefers 
a value δ ≈ −π/2 whereas NOvA experiment [12] prefers δ ≈ 0. The best fit values for global 
fits is δ ≈ −3π/4 for NH and δ ≈ −π/2 for IH [10].

The oscillation experiments do not give us any hint about the nature of neutrino being either 
Dirac or Majorana. However, the neutrinoless double beta decay (0νββ) experiments [13] can 
explore the Majorana nature of neutrinos. At present, the best lower limit on half-life of the 
0νββ using 76Ge is T 0ν > 8.0 × 1025 yrs at 90% C.L. from GERDA [14]. For 136Xe isotope, the 
1/2
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derived lower limits on half-life from KamLAND-Zen experiment are T 0ν
1/2 > 1.6 ×1026 yrs [15]. 

The proposed sensitivity of the planned nEXO experiment is T 0ν
1/2 ≈ 6.6 × 1027 yrs [16]. The 

above mentioned lower limits on T 0ν
1/2 lead to an upper limit on effective neutrino mass |mee|

about 10−2 eV. In future these experiments will increase their sensitivities down to the floor of 
|mee| i.e. |mee|min, obtained by minimising |mee| with respect to the oscillation parameters.

Since Majorana neutrinos violate lepton number by two units they can also lead to leptogene-
sis. Therefore, within a given neutrino mass model, we can expect a correlation between the two 
lepton number violating processes, namely 0νββ-decay and leptogenesis. The phenomenon of 
0νββ-decay depends on the effective neutrino mass: |mee| which involves only the low energy 
neutrino parameters, while the leptogenesis involves low energy oscillation parameters as well as 
unknown high energy parameters. The relation between 0νββ-decay and leptogenesis has been 
well studied in the literature for |mee| > |mee|min. See for instance [17–28]. In this work, we con-
sider the following issues: Suppose the Majorana phases of UPMNS take the values which lead to 
the worst case scenario for 0νββ-decay, i.e. |mee| takes the value |mee|min. In such a situation, is 
it possible to get sufficient CP asymmetry for adequate leptogenesis, without additional phases 
from the high energy scale? If the answer is affirmative, then how does the bound on M1 (the 
mass of the lightest of the heavy neutrinos in Type-I see-saw mechanism) in such a scenario, 
compare with the usual Davidson-Ibarra bound [29]? We also consider the question of whether 
this bound depends on the hierarchy of the light neutrino masses and also on the number of heavy 
neutrinos.

Here we first minimise |mee| as a function of mmin and find the ranges of values of Ma-
jorana phases α1 and α2 which yield |mee|min. With these phases as inputs, we compute the 
CP-asymmetries εl

1 (l = e, μ, τ ) responsible for leptogenesis [17–19,30–45] within a frame work 
of type-I seesaw mechanism [46–54]. The latter requires only the addition of three right handed 
neutrinos Ni (i = 1, 2, 3) to the SM. Since these particles are electrically neutral and have no 
charges under the SM gauge group, they can have bare Majorana masses Mi (i = 1, 2, 3). As a 
result the CP-violating out-of-equilibrium decay of the lightest of these heavy neutrinos (N1) in 
the early Universe could generate a net lepton asymmetry, which is then converted to observed 
baryon asymmetry of the Universe by electroweak sphalerons [31,55]. We obtain a lower bound 
on M1 (mass of N1) at the effective neutrino mass floor, both for NH and for IH in the scenario 
with three right handed neutrinos as well as in the scenario of two right handed neutrinos, by im-
posing the constraint εl

1 ≥ 10−8, which can give rise adequate leptogenesis. We see that the lower 
bound on M1 is pushed to a higher value compared to the usual Davidson-Ibarra bound [29] due 
to restrictive choice of Majorana phases at the effective neutrino mass floor.

The paper is organised as follows. In the section 2, we minimise the effective neutrino mass 
parameter |mee| as a function of mmin and obtain the allowed ranges of Majorana phases for 
various different values of mmin. We then obtain the flavour dependent CP-asymmetry parameters 
in section 3 corresponding to the set of low energy parameters which minimise |mee|. In section 4, 
we repeat this calculation for the case where there are only two heavy right handed neutrinos 
(which corresponds to setting mmin = 0). We present our conclusion in the last section 5.

2. Effective Majorana mass and its minimisation

The most promising way to find the Majorana nature of neutrinos is through 0νββ decay 
experiments. The 0νββ decay rate is proportional to the effective Majorana mass |mee|, which is 
given by,
3
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|mee| = |m1 cos2 θ12 cos2 θ13 + m2 cos2 θ13 sin2 θ12e
−2iα1 + m3 sin2 θ13e

−2i(α2−δ)|. (3)

As we see from Eq. (3), the value of effective Majorana mass depends on light neutrino masses 
m1, m2, m3, mixing angles θ12, θ13 and three CP-phases δ, α1 and α2. Given the minimum mass 
(mmin), the other two neutrino masses can be defined in terms of the �m2

21 and the �m2
31. 

For NH, m1 is mmin and m2 =
√

m2
min + �m2

21, m3 =
√

m2
min + �m2

31. For IH, m3 is mmin

and �m2
31 is negative. The expressions for the other two masses are m1 =

√
m2

min + |�m2
31|, 

m2 =
√

m2
min + |�m2

31| + �m2
21. At present, both the mixing angles, θ12 and θ13, are strongly 

constrained by the neutrino oscillation data, while the three phases, which are responsible for 
CP-violation [56–59], are essentially unconstrained.

First, we consider the dependence of the minimum of |mee| on mmin qualitatively based on 
Eq. (3). Here we take the ranges of the three phases to be (−π, +π). We need to consider the 
cases of NH and IH separately. For NH, we consider four different mass sub-ranges for mmin =
m1.

i). m1, (10−2 − 1) eV: In this case m1 � m2 � m3. The first term in Eq. (3) is positive and has 
the largest magnitude. To obtain the minimum of |mee| the second and third term have to be 
negative. This leads to the conditions α1 = ±π/2 and α2 = δ ± π/2.

ii). m1, (10−3 − 10−2) eV: Here m2 � 0.01 eV and m3 � 0.05 eV. Given sin2 θ12 ≈ 0.35 and 
sin2 θ13 ≈ 0.02, the |mee| is dominated by the second term and the third term is negligibly 
small. Hence the minimum of |mee| occurs for α1 ≈ ±π/2, and depends very weakly on α2
and δ. In this case, the magnitudes of m1 and m2 are comparable and hence the complete 
cancellations between the first two terms of Eq. (3) is possible. In such a situation, it is 
possible for |mee| → 0.

iii). m1, (10−4 − 10−3) eV: Here again the second term of Eq. (3) has the largest magnitude 
with the first and third having similar magnitudes. Requiring both these to have sign op-
posite to that of the second term imposes the conditions α1 = ±π/2 and α2 ≈ δ ± π . The 
minimisation procedure leads to a lower bound on |mee| � 10−3 eV.

iv). m1, (10−6 − 10−4) eV: This case is similar to the third case except that the first term is 
negligibly small. The minimisation condition is equivalent to the requirement that the terms 
two and three must have opposite sign. This occurs when α2 = α1 + δ − (2n + 1)π/2 for 
appropriate integer values of n. Here also we obtain a lower bound on |mee| � 10−3 eV.

Turning to the case of IH, we consider the following two sub-ranges for mmin = m3.

i). m3, (10−6 − 10−2) eV: This case similar to first case of NH. Hence the conditions on α1
and α2 are same.

ii). m3, (10−2 − 1) eV: The smallness of m3 and sin2 θ13 make the third term in Eq. (3) com-
pletely negligible and the minimization of |mee| completely independent of α2 and δ. Re-
quiring a cancellation between the first two terms, we get α1 = ±π/2.

To verify the qualitative deductions made above, we calculated the minimum of |mee| as a 
function of mmin through simulations. For illustration, we kept the Dirac phase fixed at δ =
−π/2. As shown above, the minimization of |mee| fixes (α2 − δ). Choosing a different value 
of δ merely changes α2, on which there is no experimental constraint at the moment. We varied 
mmin within its sub-range, the neutrino oscillation parameters within their 3σ ranges and the two 
4
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Fig. 1. Minimum of |mee| as a function of mmin in case of normal hierarchy (Blue) and inverted hierarchy (Purple). The 
Pink shaded region defined by mmin > 0.12 eV is ruled out by PLANCK data [2]. (For interpretation of the colours in 
the figure(s), the reader is referred to the web version of this article.)

Majorana phases α1 and α2 in (−π , +π). We randomly chose a set of values of the neutrino 
parameters within their respective ranges and calculated |mee|. We repeated this procedure 107

times and picked the minimum value of |mee| and the corresponding values of α1 and α2. The 
variation of |mee| with respect to mmin as shown in Fig. 1, where |mee| = 10−3 (10−2) eV for 
NH (IH) as mmin → 0. We note that |mee| → 0 for the case of NH if mmin is in the sub-range 
(10−3 − 10−2) eV [60–62].

The four panels of Fig. 2 show the values of α1 and α2 which minimise |mee| for the four 
sub-ranges of mmin in the case of NH. The two panels of Fig. 3 shows similar results in the case 
of IH. The relation between α1 and α2, in all the six panels match those expected from qualitative 
discussion. The values of Majorana phases, α1 and α2, obtained by minimising |mee| are plotted 
in Fig. 4 as a function of mmin. We note that the values of α1 and α2 in Fig. 4 are consistent with 
those in Fig. 2 (NH) and Fig. 3 (IH). Had we chosen a value of δ other than −π/2, the value of 
α1 is unaffected and the value of α2 would be shifted by (δ + π/2).

3. Flavoured CP-asymmetry with three right handed neutrinos

In the previous section we derived the constraints on α1 and α2 as a function of mmin by 
minimizing |mee|. We utilize these values of the phases in the present section to compute the CP-
asymmetry parameter εl

1 of leptogenesis. In Type-I seesaw mechanism, the SM is extended by the 
inclusion of three right handed neutrinos, which have no gauge charges. These neutrinos can have 
bare Majorana masses. They can also couple to left handed lepton doublet and the Higgs doublet 
through yukawa couplings. These couplings give rise to a Dirac mass matrix of the neutrinos on 
spontaneous symmetry breaking. In this extended model, the leptonic mass terms are

Lmass = −
(

1

2
(NiR)c(MR)ijNjR + v√

2

Li(Ye)ij 
Rj + v√

2

Li(Yν)ijNjR + h.c.

)
, (4)

where v is the vacuum expectation value of the Higgs. In Eq. (4) i, j run from 1 to 3, 
Li

represents the SU(2)L doublets, 
Ri and NjR are right handed charged lepton and neutrino fields 
respectively. The seesaw mechanism leads to a light neutrino mass matrix, mν = −mT

DM−1
R mD , 

where mD = Yνv/
√

2 is the Dirac mass matrix and MR is the mass matrix of right handed 
neutrinos. Without loss of generality we consider MR to be diagonal and in this basis mD contains 
the rest of the physical parameters that appear in mν .
5
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Fig. 2. The allowed values of α1 and α2, when |mee| attains its minimum in the ranges: a). mmin = (10−2 − 1) eV, b). 
mmin = (10−3 − 10−2) eV, c). mmin = (10−4 − 10−3) eV, d). mmin = (10−6 − 10−4) eV. The hierarchy is assumed to 
be NH. Dirac phase δ is fixed at −π/2.

Fig. 3. The allowed values of α1 and α2, when |mee| attains its minimum in the ranges: a). mmin = (10−2 − 1) eV. b). 
mmin = (10−6 − 10−2) eV. The hierarchy is assumed to be IH. Dirac phase δ is fixed at −π/2.

The Majorana mass of the heavy neutrinos Ni (i = 1, 2, 3) can give rise to lepton number 
violation. Therefore, the CP-violating out-of-equilibrium decay of Ni to 
 H and 
̄H † in the 
early Universe can give rise to a net lepton asymmetry. This lepton asymmetry is then converted 
to an observed baryon asymmetry via electroweak sphalerons. We assume that the masses of the 
6
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Fig. 4. Values of Majorana phases obtained by minimising |mee |: α1 (Green) and α2 (Blue) versus mmin for a). Normal 
hierarchy, b). Inverted hierarchy. Dirac phase δ is fixed at −π/2.

right handed neutrinos have the pattern M1 
 M2 
 M3, so that the lepton asymmetry arises 
purely due to the decay of the lightest right handed neutrino N1.

The baryon asymmetry in a comoving volume, generated by the decay of N1, can be given 
as

YB = Cεl
1κ × n

eq
N1

(T → ∞)

s
, (5)

where C ∼ O(1) is the sphaleron conversion factor and κ = �/H(T ), where � is total decay 
rate of lightest right handed neutrino and H(T ) = (2π2/45)g∗T 3 is the Hubble expansion pa-
rameter. The factor (neq

N1
/s)(T → ∞) = 135ζ(3)/(4π4g∗) with g∗ ≈ 100 being the relativistic

degrees of freedom above electroweak phase transition. In a weak wash out regime where κ ≈ 1, 
one gets YB ∼ εl

1/g∗ ≈ 10−10. This implies that εl
1 ∼ 10−8. On the other hand, in a strong wash 

out regime κ < 1 and can be obtained by solving the required Boltzmann equations [38]. For 
a typical value κ ∼ 0.01, one gets YB ∼ κεl

1/g∗ ≈ 10−10. This implies that εl
1 ∼ 10−6 which 

is two orders of magnitude larger than the value of εl
1 in case of weak wash out regime. In 

the following we will be interested to obtain a lower bound on M1 at the effective neutrino 
mass floor (where the Majorana phases α1 and α2 are obtained by minimising |mee|) irrespec-
tive of weak or strong wash out regime. Therefore, it is sufficient for our purpose to consider 
the CP-violating parameter εl

1 > 10−8 which can give rise adequate leptogenesis. We note that 
the use of Boltzmann equations only yields a precise value of κ . However, it does not im-
prove the lower bound on M1. See for instance [38]. Hence the lower bound obtained on M1
in case of weak wash out regime by demanding adequate baryogenesis should be valid in case 
of strong wash out regime too. In order to obtain the lower bound on M1 in what follows we 
use Casas-Ibarra parameterization [63] for the Yukawa matrix connecting light and heavy neu-
trinos.

For a given flavour l, the neutrino yukawa coupling matrix can be written in Casas-Ibarra 
parameterization [63] as,

(Yν)i l = 1

v

√
MiRij

√
mjU

∗
l j . (6)

In Eq. (6) mj , Mi, (j, i = 1, 2, 3) are mass eigenvalues of the light and heavy Majorana neutrinos 
respectively and U is the PMNS matrix. The matrix R in Eq. (6) is a complex orthogonal matrix. 
It is parameterized in terms of three complex angles zi (i = 1, 2, 3) as
7
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R=
⎛
⎝ cos z2 cos z3 cos z2 sin z3 sin z2

− cos z3 sin z1 sin z2− cos z1 sin z3 cos z1 cos z3− sin z1 sin z2 sin z3 cos z2 sin z1

− cos z1 cos z3 sin z2+ sin z1 sin z3 − cos z3 sin z1− cos z1 sin z2 sin z3 cos z1 cos z2

⎞
⎠ .

(7)

The CP-asymmetry generated in a particular flavour l (l = e, μ, τ), is given by

εl
1 = − 3M1

16πv2

Im

(∑
jk

m
1/2
j m

3/2
k U∗

ljUlkR1jR1k

)
∑
j

mj |R1j |2 , (8)

where mj and mk are appropriate light neutrino mass eigen value.
In terms of Casas-Ibarra parameterization, Eq. (8) can be written as [64]

εl
1 = − 3M1

16πv2

1

m1|R11|2 + m2|R12|2 + m3|R13|2
× {m2

1 Im[U∗
l1Ul1R11R11] + m

1/2
1 m

3/2
2 Im[U∗

l1Ul2R11R12]
+m

1/2
1 m

3/2
3 Im[U∗

l1Ul3R11R13] + m
1/2
2 m

3/2
1 Im[U∗

l2Ul1R12R11]
+m2

2 Im[U∗
l2Ul2R12R12] + m

1/2
2 m

3/2
3 Im[U∗

l2Ul3R12R13]
+m

1/2
3 m

3/2
1 Im[U∗

l3Ul1R13R11] + m
1/2
3 m

3/2
2 Im[U∗

l3Ul2R13R12]
+m2

3 Im[U∗
l3Ul3R13R13]}. (9)

We consider the following question: Is it possible to get large enough εl
1, with no phases in the 

matrix R and all the CP violation coming purely through the phases in the PMNS matrix, so 
that adequate leptogenesis occurs? A related question we consider is: If the phases in the PMNS 
matrix take values which minimize |mee|, then what effect do such phases have on εl

1 and on the 
lower bound on M1? To explore these questions, we set the phases in R to be zero and assume 
zi to be real. Hence R becomes a real orthogonal matrix. Only the decays of the lightest right 
handed neutrino creates CP-asymmetry. Therefore only the elements of the first row of R enter 
in the expression εl

1. In our parameterization of R, these elements depend only on sinz2 and 
sin z3, i.e., εl

1 is independent of sin z1. For simplicity, we assume sinz2 = sin z3 = sin z. It must 
be noted that the total CP-asymmetry, ε1 = εe

1 + ε
μ
1 + ετ

1 = 0 when the matrix R is real. Under 
the assumptions we made, the expression in Eq. (9) simplifies to

εl
1 = − 3M1

16πv2

1

m1|R11|2 + m2|R12|2 + m3|R13|2
× {√m1m2 (m2 − m1) Im[U∗

l1Ul2]R11R12

+√
m1m3 (m3 − m1) Im[U∗

l1Ul3]R11R13

+√
m2m3 (m3 − m2) Im[U∗

l2Ul3]R12R13}. (10)

This expression contains various low energy parameters, the mass of the lightest right handed 
neutrino, the Higgs vacuum expectation value and an extra free parameter sinz which comes 
from high energy scale. Here we study the dependence of CP-asymmetry on the parameters 
mmin and sin z using the latest oscillation data at the floor of |mee|.
8
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Fig. 5. Allowed points in the plane of sin z versus mmin when |mee| is minimised, which give rise to ε1 > 10−8 εl . The 
left column shows the figures for l = e(Fig.a), μ(Fig.c), τ(Fig.e), where we assumed the hierarchy to be NH and the 
right column shows the figures for l = e(Fig.b), μ(Fig.d), τ(Fig.f ), where we assumed the hierarchy to be IH. The red 
points correspond to M1 = 109 GeV and the green points correspond to M1 = 1010 GeV. In generating these figures, we 
set sin z2=sin z3=sin z and fixed δ = −π/2.

Below, we present the results of our numerical study. As in section 2, we use the best-fit values 
for the mass-squared differences and the mixing angles. For the purpose of illustration, the value 
of δ is fixed to be −π/2 and the values of α1 and α2 are chosen to be those which minimize |mee|. 
We consider only those values of mmin and sin z for which ε1 � 10−8. We take into account the 
Davidson-Ibarra bound [29] by considering the values of M1 ≥ 108 GeV. Our results are shown 
in Fig. 5.
9
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Fig. 6. Values of Majorana phases obtained by maximising |mee|: α1 (Green) and α2 (Blue) versus mmin: a). Normal 
hierarchy, b). Inverted hierarchy. Dirac phase δ is fixed at −π/2.

We considered three values of M1 = 108, 109, 1010 GeV. When M1 = 108 GeV, all values 
of εl

1 (l = e, μ.τ) are less than 10−8 independent of mmin and sin z, both for NH and IH. For 
M1 = 109 GeV, the asymmetries εμ

1 , ετ
1 become larger than 10−8 only for IH and that too for 

a single point sin z = 1 and mmin � 10−3 eV. For M1 = 1010 GeV, a large set of values of sin z

and mmin are allowed. For NH, all three asymmetries have values in the range 10−8 to 10−7 for 
the mmin range (10−6, 0.1) eV and sin z range (10−3, 1). In the case of IH, εl

1 > 10−8 is possible 
only if sin z > 0.2 and mmin in the range (10−4, 0.2) eV. Hence adequate leptogenesis requires 
the lightest heavy neutrino mass M1 to be � 1010 GeV when the oscillation parameters are at 
the floor of |mee|. From Eq. (10) we see that εl

1 → 0 if the light neutrino masses are almost 
degenerate. Hence there are no allowed points for mmin ≥ 0.2 eV for both NH and IH.

Note that the lower bound M1 obtained here is two orders of magnitude larger than Davidson-
Ibarra bound [29]. We believe this occurs due to the following two reasons:

• The restricted choice of Majorana phases α1 and α2 obtained from the minimization of 
|mee|.

• The choice of R is to be real.

One way to lower this bound is to consider R to be complex [29]. However here we consider 
alternative values of α1 and α2 which does not minimise |mee|. As an example we maximise 
|mee| and found the values of α1 and α2. These values of α1 and α2 are plotted in Fig. 6 as 
function of mmin. The CP asymmetry parameter εl

1 is computed using these values of α1 and α2
while all the other parameters are varied in the ranges mentioned previously. In Fig. 7 we plot the 
allowed values of sin z versus mmin which satisfy the constraint |εl

1| > 10−8. From this figure, we 
find the allowed value of M1 = 109 GeV for both NH and IH. This lower value is applicable only 
if sin z < 0.25 and mmin < 10−3 eV in the case of NH. On the other hand for IH, the lower value 
of M1 = 109 GeV requires that sin z = 1 and mmin � 10−3 eV, which is similar to the situation 
when |mee| is minimized.

In presenting our numerical results, we have fixed the value of δ = −π/2. From the expres-
sions of |mee| and εe

1, it is easy to see that they depend on α1 and (α2 − δ). For a different input 
value of δ, we can obtain the same values for |mee| and εe

1 by changing the value of α2 appropri-
ately. However, the other two CP asymmetries, εμ

1 and ετ
1 , have a more complicated dependence 

of δ, α1 and α2. Hence, it is worth studying how the limits of εl and on M1 change if a different 
1

10



N. Narendra, N. Sahu and S. Uma Sankar Nuclear Physics B 962 (2021) 115268
Fig. 7. Allowed points in the plane of sin z versus mmin when |mee| is maximised, which give rise to ε1 > 10−8 εl . The 
left column shows the figures for l = e(Fig.a), μ(Fig.c), τ(Fig.e), where we assumed the hierarchy to be NH and the 
right column shows the figures for l = e(Fig.b), μ(Fig.d), τ(Fig.f ), where we assumed the hierarchy to be IH. The red 
points correspond to M1 = 109 GeV and the green points correspond to M1 = 1010 GeV. In generating these figures, we 
set sin z2=sin z3=sin z and fixed δ = −π/2.

value of δ is used as an input. In computing the limits on M1 for different values of δ, we have 
fixed the values of α1 and α2 such that |mee| is minimized.

We present our results for the input values of δ = −0.1π in Fig. 8, where sin z is plotted 
against mmin. As in the case of the earlier figures, the red points are the allowed solutions for 
M1 = 109 GeV and the green points are the allowed solutions for M1 = 1010 GeV. We note 
that the plots in Fig. 8 are quite similar to those in Fig. 5. Very similar features are also seen 
in Fig. 9 where the input value of δ = −0.9π . Thus, we see that the CP asymmetries related 
11
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Fig. 8. Allowed points in the plane of sin z versus mmin when |mee| is minimised, which give rise to ε1 > 10−8 εl . The 
left column shows the figures for l = e(Fig.a), μ(Fig.c), τ(Fig.e), where we assumed the hierarchy to be NH and the 
right column shows the figures for l = e(Fig.b), μ(Fig.d), τ(Fig.f ), where we assumed the hierarchy to be IH. The red 
points correspond to M1 = 109 GeV and the green points correspond to M1 = 1010 GeV. In generating these figures, we 
set sin z2=sin z3=sin z and fixed δ = −0.1π .

to leptogenesis are not sensitively dependent on the value of δ. By adjusting the values of the 
Majorana phases α1 and α2, it is possible to get adequate CP asymmetry for M1 � 109 GeV, for 
any value of δ.

Here, we also briefly discuss the effect of the approximation sinz2 = sin z3 = sin z that was 
made in generating the numerical results. The CP asymmetries depend on the three elements 
of the first row of the R matrix, R11, R12 and R13, each of which can vary in the range (0,1), 
12
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Fig. 9. Allowed points in the plane of sin z versus mmin when |mee| is minimised, which give rise to ε1 > 10−8 εl . The 
left column shows the figures for l = e(Fig.a), μ(Fig.c), τ(Fig.e), where we assumed the hierarchy to be NH and the 
right column shows the figures for l = e(Fig.b), μ(Fig.d), τ(Fig.f ), where we assumed the hierarchy to be IH. The red 
points correspond to M1 = 109 GeV and the green points correspond to M1 = 1010 GeV. In generating these figures, we 
set sin z2=sin z3=sin z and fixed δ = −0.9π .

subject to the orthogonality constraint. With the above approximation, we have R11 = cos2 z, 
R12 = cos z sin z and R13 = sin z. When sin z � 1, we see that all the three R1j � 1. In the limit 
sin z 
 1, we have R11 � 1 and R12, R13 
 1. On the other hand, when sinz � 1, we have 
R11, R12 
 1 and R13 � 1. Thus, despite making the simplifying assumption of setting two 
angles to be the same, we are able to explore most of the allowed values of R11, R12 and R13. 
Hence, our results are not dependent on this simplifying approximation.
13
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4. Flavoured CP-asymmetry with two right handed neutrinos

It is possible to generate two independent mass square differences with only two non zero 
light neutrino masses, i.e., we can set mmin ≡ 0. This scenario can be achieved in the limit the 
heaviest right handed neutrino decouples. We implement this decoupling by setting the third row 
of the yukawa coupling matrix in Eq. (6) to be zero. Since one of the light neutrino masses is 
zero, one of the Majorana phases becomes unphysical and can be set equal to zero. Hence, the 
CP-asymmetries depend only on two phases δ and α1. We consider the cases of NH and IH 
separately.

4.1. NH (m1 = 0)

In this case, the effective Majorana mass is

|mee| = m2 cos2 θ13 sin2 θ12e
−2iα1 + m3 sin2 θ13e

2iδ. (11)

As before, we need a cancellation between two terms to minimize |mee|, which leads to the 
condition α1 + δ = (2n + 1)π/2. Because of the wide difference in the values of sin2 θ12 and 
sin2 θ13 the cancellation is never complete and the minimum of |mee| in this case is of order 
10−3 eV, as illustrated in Fig. 1.

The condition that the third row of the matrix Yν should consist of zeros leads to the following 
form of R,

R =
⎛
⎝0 cos z sin z

0 − sin z cos z

1 0 0

⎞
⎠ , (12)

where we assume z to be a real angle, as we did in three right handed neutrino case. The expres-
sion for the CP-asymmetry is

εl
1 = − 3M1

16πv2

1

m2|R12|2 + m3|R13|2
√

m2m3 (m3 − m2) [Im(U∗
l2Ul3)]R12R13. (13)

In Fig. 10 (left panel) we have plotted εl
1 as a function of sin z. We inputted M1 = 1010 GeV, 

δ = −π/2 and α1 � −π , with the Majorana phase being obtained by minimizing |mee|. For this 
value of M1, |εl

1| ∼ 10−8 is possible. Lower values M1 do not give rise to adequate leptogenesis. 
We also checked if smaller values of M1 will be allowed if the Majorana phase is fixed by 
maximizing |mee|. In Fig. 10 (right panel), we find that a value of M1 = 1010 GeV is required 
to obtain εl

1 � 10−8 for the values of the phases, δ = −π/2 and α1 � −π/2. Since εl
1 ∝ M1 for 

M1 < 1010 GeV we cannot get εl
1 > 10−8.

4.2. IH (m3 = 0)

In this case, the effective Majorana mass is

|mee| = m1 cos2 θ12 cos2 θ13 + m2 cos2 θ13 sin2 θ12 e−2iα1 . (14)

As before, we need a cancellation between two terms to minimize |mee|, which leads to 
the condition α1 = (2n + 1)π/2. An exact cancellation is not possible because m2 � m1 and 
cos2 θ12 � 2 sin2 θ12. We are led to a lower limit on |mee| of the order 10−2 eV, as illustrated in 
Fig. 1.
14
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Fig. 10. The CP-asymmetry corresponding to different flavours of leptons εe
1 , εμ

1 , ετ
1 . The inputs used are M1 = 1010

GeV, δ = −π/2 and the hierarchy is NH. (a) The value of the Majorana phase is α1 � −π , which minimizes |mee|. (b). 
The value of the Majorana phase is α1 � −π/2, which maximizes |mee|.

Fig. 11. The CP-asymmetry corresponding to different flavours of leptons εe
1 , εμ

1 , ετ
1 . The inputs used are δ = −π/2 and 

the hierarchy is IH. (a) The value of the Majorana phase is α1 � −π , which minimizes |mee| and M1 = 1010 GeV. (b). 
The value of the Majorana phase is α1 � −π/2, which maximizes |mee| and M1 = 1012 GeV.

Once again we impose the condition that the third row of the matrix Yν should consist of 
zeros. This leads to the following form of R,

R =
⎛
⎝ cos z sin z 0

− sin z cos z 0
0 0 1

⎞
⎠ , (15)

where we again assume z to be a real angle. The expression for the CP-asymmetry is

εl
1 = − 3M1

16πv2

1

m1|R11|2 + m2|R12|2
√

m1m2 (m2 − m1) [Im(U∗
l1Ul2)]R11R12. (16)

As in the case of NH, we input M1 = 1010 GeV and δ = −π/2. The value of α1 is taken to be 
� π/2, which is the smallest value that minimizes |mee|. In Fig. 11(left panel), we have plotted εl

1
as a function of sin z. Here again, a value of M1 = 1010 GeV is needed to obtain |εl

1| ∼ 10−8. We 
also checked the parameter space for εl

1 ≥ 10−8 by maximizing |mee|. In Fig. 11(right panel), we 
need M1 = 1012 GeV to obtain εl

1 � 10−8, for δ = −π/2 and α1 � −π . Further smaller values 
of M1 cannot give rise to adequate leptogenesis. Thus, in the case of mmin → 0, the lower limit 
on M1, needed to generate adequate leptogenesis, rises to 1010 GeV.
15
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5. Conclusions

In this work, we studied the correlation between the low energy lepton number violating pro-
cess 0νββ-decay and the high energy lepton number violating flavour dependent leptogenesis, 
using oscillation parameters at the effective neutrino mass floor, which is obtained by minimizing 
|mee| with respect to mmin. This is done with the motivation of exploring the question: What ef-
fect do Majorana phases have on the CP asymmetries of the leptogenesis, if they take the values 
that lead to the worst case scenario for 0νββ-decay? Our calculation is done in a type-I see-
saw framework where three heavy right handed neutrinos are added to the SM. We expressed 
the Yukawa matrix connecting light and heavy neutrinos through Casas-Ibarra parameterization, 
which involves the light and heavy neutrino masses, the low energy neutrino oscillation param-
eters involved in PMNS matrix and an unknown orthogonal matrix R, usually accommodating 
the high energy phases. In general, the orthogonal matrix R is complex and can give rise to addi-
tional CP violation. We considered the consequences of setting the high energy phases to be zero 
and assuming this R matrix to be real. To keep the algebra simple, we parameterized R in terms 
of a single angle z. We then explored the possibility of obtaining adequate leptogenesis purely 
from the phases of PMNS matrix when they take the values which can minimise |mee|. Due to the 
restrictive choice of Majorana phases, we show that the lower bound on M1 is pushed to a higher 
side in comparison to the usual Davidson-Ibarra bound. In particular, a right handed neutrino 
mass of 1010 GeV is needed to obtain adequate leptogenesis in case of NH. For IH, M1 = 109

GeV is possible provided m3 � 10−3 eV and sin z = 1. However, if we choose other Majorana 
phases in the PMNS matrix which not necessarily minimise |mee|, then adequate leptogenesis 
purely through the PMNS matrix is possible for M1 = 109 GeV for both NH and IH. We verified 
it by choosing a set of Majorana phases which are obtained by maximizing |mee|.

We also considered the case where the lightest neutrino mass is zero which corresponds to the 
case where one of the heavy right handed neutrino decouples. Here again, we explore obtaining 
the necessary CP asymmetry purely from the phases in the PMNS matrix, by choosing the high 
scale mixing matrix R to be real. When the Majorana phases are fixed by the minimization of 
|mee|, the lower bound on M1 is found to be 1010 (1011) GeV for NH (IH). On the other hand, if 
the Majorana phases are fixed by the maximization of |mee|, the lower limit on M1 is found to 
be 1010 (1012) GeV for NH (IH). Thus our results show that the lower bound on M1 in two right 
handed neutrino models is larger than the case of three right handed neutrinos. The most likely 
reason for the increased lower limit on M1 is the presence of only one Majorana phase in the 
case of two right handed neutrinos, as opposed to two Majorana phases in the case of three right 
handed neutrinos.
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Appendix A

In this appendix, we discuss the form of the complex rotation matrix R in the Casas-Ibarra 
parametrization, in the limit one of the light neutrino masses becomes zero and one of the heavy 
neutrino states decouples. The yukawa matrix (Yν)il in Eq. (6), in general, is a 3 × 3 matrix. If 
16
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the heavy neutrino state M3 decouples, the elements of the 3th row of this matrix vanish. From 
Eq. (6), we obtain

(Yν)3l =
√

M3

v

[
R31

√
m1(U

†)1l + R32
√

m2(U
†)2l + R33

√
m3(U

†)3l

]
. (17)

Suppose the light neutrino mass m1 is set to zero, as we should for vanishing mmin in the case of 
NH. Then condition that the LHS of the above equation should vanish gives rise to the constraints 
R32 = 0 = R33. Orthogonality of R implies that R31 = 1 and R11 = 0 = R21. The four remaining 
elements of R, R12, R13, R22 and R23, form a 2 × 2 complex orthogonal matrix, defined by one 
complex angle z. In the case of vanishing mmin for IH, we need to set m3 = 0. It is easy to see 
from Eq. (17) that the decoupling of M3 leads to the condition R33 = 1 which makes the third 
row and the third column of R trivial. The upper 2 ×2 block of R is a complex orthogonal matrix, 
once again parametrized by a single complex angle z.

The above argument can be extended to a general case. Suppose we want the heavy eigenstate 
with mass Mi to decouple and we also want the light mass mj to be set to zero. The requirement 
that the ith row of (Yν)il should vanish leads to the condition Rij = 1 which means that the 
ith row and j th column of R are trivial. The remaining four elements of R then form a 2 × 2
complex orthogonal matrix parametrized by a single complex angle z.

References

[1] G. Hinshaw, et al., WMAP, Astrophys. J. Suppl. Ser. 208 (2013) 19, arXiv :1212 .5226 [astro -ph .CO].
[2] N. Aghanim, et al., Planck, arXiv :1807 .06209 [astro -ph .CO].
[3] Q.R. Ahmad, et al., SNO, Phys. Rev. Lett. 89 (2002) 011301, arXiv :nucl -ex /0204008 [nucl -ex].
[4] J.N. Bahcall, C. Pena-Garay, New J. Phys. 6 (2004) 63, arXiv :hep -ph /0404061 [hep -ph].
[5] S. Fukuda, et al., Super-Kamiokande, Phys. Rev. Lett. 86 (2001) 5656–5660, arXiv :hep -ex /0103033 [hep -ex].
[6] B. Pontecorvo, Sov. Phys. JETP 7 (1958) 172–173.
[7] B. Pontecorvo, Sov. Phys. JETP 6 (1957) 429.
[8] Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28 (1962) 870–880.
[9] T.K. Kuo, J.T. Pantaleone, Phys. Rev. Lett. 57 (1986) 1805–1808.

[10] I. Esteban, M.C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni, T. Schwetz, J. High Energy Phys. 01 
(2019) 106, arXiv :1811 .05487 [hep -ph].

[11] K. Abe, et al., T2K, Phys. Rev. Lett. 107 (2011) 041801, arXiv :1106 .2822 [hep -ex].
[12] M.A. Acero, et al., NOvA, Phys. Rev. Lett. 123 (15) (2019) 151803, arXiv :1906 .04907 [hep -ex].
[13] M. Agostini, et al., Nature 544 (2017) 47, arXiv :1703 .00570 [nucl -ex].
[14] M. Agostini, et al., GERDA, Phys. Rev. Lett. 120 (13) (2018) 132503, arXiv :1803 .11100 [nucl -ex].
[15] A. Gando, et al., KamLAND-Zen, Phys. Rev. Lett. 117 (8) (2016) 082503, arXiv :1605 .02889 [hep -ex].
[16] J.B. Albert, et al., EXO-200, Nature 510 (2014) 229–234, arXiv :1402 .6956 [nucl -ex].
[17] T. Endoh, S. Kaneko, S.K. Kang, T. Morozumi, M. Tanimoto, Phys. Rev. Lett. 89 (2002) 231601, arXiv :hep -ph /

0209020 [hep -ph].
[18] P.H. Frampton, S.L. Glashow, T. Yanagida, Phys. Lett. B 548 (2002) 119–121, arXiv :hep -ph /0208157 [hep -ph].
[19] M.N. Rebelo, Phys. Rev. D 67 (2003) 013008, arXiv :hep -ph /0207236 [hep -ph].
[20] A.S. Joshipura, E.A. Paschos, W. Rodejohann, J. High Energy Phys. 08 (2001) 029, arXiv :hep -ph /0105175 [hep -ph].
[21] S. Pascoli, S.T. Petcov, W. Rodejohann, Phys. Rev. D 68 (2003) 093007, arXiv :hep -ph /0302054 [hep -ph].
[22] J.R. Ellis, M. Raidal, Nucl. Phys. B 643 (2002) 229–246, arXiv :hep -ph /0206174 [hep -ph].
[23] G.C. Branco, T. Morozumi, B.M. Nobre, M.N. Rebelo, Nucl. Phys. B 617 (2001) 475–492, arXiv :hep -ph /0107164

[hep -ph].
[24] G.C. Branco, R. Gonzalez Felipe, F.R. Joaquim, Phys. Lett. B 645 (2007) 432–436, arXiv :hep -ph /0609297 [hep -ph].
[25] N. Sahu, S.U. Sankar, Nucl. Phys. B 724 (2005) 329–342, arXiv :hep -ph /0501069 [hep -ph].
[26] M.C. Chen, K.T. Mahanthappa, Phys. Rev. D 71 (2005) 035001, arXiv :hep -ph /0411158 [hep -ph].
[27] T. Asaka, T. Yoshida, J. High Energy Phys. 09 (2019) 089, arXiv :1812 .11323 [hep -ph].
[28] K. Bhattacharya, N. Sahu, U. Sarkar, S.K. Singh, Phys. Rev. D 74 (2006) 093001, arXiv :hep -ph /0607272 [hep -ph].
17

http://refhub.elsevier.com/S0550-3213(20)30353-9/bib89334BF544C8A9E3990D25A740468057s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib30B9B72CD5039DCB195373EE3DEF3DF0s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib5BCC041840D33F854A34072E60643D4As1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibF027083535268E18F8484CC5EE1498A7s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibD6AD785539DDD3FFCF07CDDAAF829F01s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibE798D52EE037B730C1EE5B04454EEB6Bs1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibEF1F026B9D4F935BCA4A443927828F23s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib62BC39C0119C15969E594B777B3E7D28s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib9CFCF82F1646337FAB36D503AF18BD5Ds1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibB0754A8FB7644B43396093842EEB0621s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibB0754A8FB7644B43396093842EEB0621s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib999743104B510CAF89DD0490D88A7070s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibDEFF67DDDE28DD334A1A99A68B99F035s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib7491B7102BF73D674E121FC5AE609BA6s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibB3F14DCC29FD83F4278A3A986050616Ds1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib931F0E90C6BD719DB8050DD2ECBB0ED7s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib6C0FEF206C1B168CBD77953FA8AA95FFs1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibA8C7D5CADCA5DAB33AE13166BB8584F6s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibA8C7D5CADCA5DAB33AE13166BB8584F6s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib239B3036C692E71B55604ADF31FB206Es1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibD4175EF6FE54CDB60E237E51C42FFDFFs1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib102056659C5179A036955206F33E2164s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib201E85F5C55BE804E7AFC17AA89D8CDAs1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib5F412AF0384EC82D8F11DEE9BEC4269Cs1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib8E59BBDB7E380AD70CA0924081BB4F6Es1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib8E59BBDB7E380AD70CA0924081BB4F6Es1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibECE9B6C8416163E106FEA8EBFC2BFA37s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib18C22F7BF95F2432EF9C5B9D23323AC8s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib8435203980820F5EE6292C16F6C7D899s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib15493554F2B1E9012A6175E48AB55D9Bs1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibBEF3E6D66D74F472FA501A19FBE9D1F2s1


N. Narendra, N. Sahu and S. Uma Sankar Nuclear Physics B 962 (2021) 115268
[29] S. Davidson, A. Ibarra, Phys. Lett. B 535 (2002) 25–32, arXiv :hep -ph /0202239 [hep -ph].
[30] A.D. Sakharov, Sov. Phys. Usp. 34 (5) (1991) 392–393.
[31] M. Fukugita, T. Yanagida, Phys. Lett. B 174 (1986) 45–47.
[32] M.A. Luty, Phys. Rev. D 45 (1992) 455–465.
[33] R.N. Mohapatra, X. Zhang, Phys. Rev. D 46 (1992) 5331–5336.
[34] A. Acker, H. Kikuchi, E. Ma, U. Sarkar, Phys. Rev. D 48 (1993) 5006–5008, arXiv :hep -ph /9305290 [hep -ph].
[35] M. Flanz, E.A. Paschos, U. Sarkar, Phys. Lett. B 345 (1995) 248–252, arXiv :hep -ph /9411366 [hep -ph].
[36] M. Flanz, E.A. Paschos, U. Sarkar, J. Weiss, Phys. Lett. B 389 (1996) 693–699, arXiv :hep -ph /9607310 [hep -ph].
[37] M. Plumacher, Z. Phys. C 74 (1997) 549–559, arXiv :hep -ph /9604229 [hep -ph].
[38] W. Buchmuller, P. Di Bari, M. Plumacher, Ann. Phys. 315 (2005) 305–351, arXiv :hep -ph /0401240 [hep -ph].
[39] J. Faridani, S. Lola, P.J. O’Donnell, U. Sarkar, Eur. Phys. J. C 7 (1999) 543–549, arXiv :hep -ph /9804261 [hep -ph].
[40] R. Barbieri, P. Creminelli, A. Strumia, N. Tetradis, Nucl. Phys. B 575 (2000) 61–77, arXiv :hep -ph /9911315 [hep -

ph].
[41] G.F. Giudice, A. Notari, M. Raidal, A. Riotto, A. Strumia, Nucl. Phys. B 685 (2004) 89–149, arXiv :hep -ph /0310123

[hep -ph].
[42] N. Sahu, U. Sarkar, Phys. Rev. D 74 (2006) 093002, arXiv :hep -ph /0605007 [hep -ph].
[43] A. Abada, S. Davidson, A. Ibarra, F.X. Josse-Michaux, M. Losada, A. Riotto, J. High Energy Phys. 09 (2006) 010, 

arXiv :hep -ph /0605281 [hep -ph].
[44] A. Pilaftsis, T.E.J. Underwood, Nucl. Phys. B 692 (2004) 303–345, arXiv :hep -ph /0309342 [hep -ph].
[45] A. Pilaftsis, T.E.J. Underwood, Phys. Rev. D 72 (2005) 113001, arXiv :hep -ph /0506107 [hep -ph].
[46] P. Minkowski, Phys. Lett. B 67 (1977) 421–428.
[47] M. Gell-Mann, P. Ramond, R. Slansky, Conf. Proc. C 790927 (1979) 315–321, arXiv :1306 .4669 [hep -th].
[48] R.N. Mohapatra, G. Senjanovic, Phys. Rev. Lett. 44 (1980) 912.
[49] J. Schechter, J.W.F. Valle, Phys. Rev. D 22 (1980) 2227.
[50] E. Ma, Phys. Rev. Lett. 81 (1998) 1171–1174, arXiv :hep -ph /9805219 [hep -ph].
[51] M. Magg, C. Wetterich, Phys. Lett. B 94 (1980) 61–64.
[52] T.P. Cheng, L.F. Li, Phys. Rev. D 22 (1980) 2860.
[53] G.B. Gelmini, M. Roncadelli, Phys. Lett. B 99 (1981) 411–415.
[54] E. Ma, U. Sarkar, Phys. Rev. Lett. 80 (1998) 5716–5719, arXiv :hep -ph /9802445 [hep -ph].
[55] P.B. Arnold, L.D. McLerran, Phys. Rev. D 36 (1987) 581.
[56] M. Tanimoto, Phys. Rev. D 55 (1997) 322–329, arXiv :hep -ph /9605413 [hep -ph].
[57] H. Minakata, H. Nunokawa, Phys. Rev. D 57 (1998) 4403–4417, arXiv :hep -ph /9705208 [hep -ph].
[58] S.M. Bilenky, C. Giunti, W. Grimus, Phys. Rev. D 58 (1998) 033001, arXiv :hep -ph /9712537 [hep -ph].
[59] J. Arafune, M. Koike, J. Sato, Phys. Rev. D 56 (1997) 3093–3099, arXiv :hep -ph /9703351 [hep -ph].
[60] S.M. Bilenky, C. Giunti, Int. J. Mod. Phys. A 30 (04n05) (2015) 1530001, arXiv :1411 .4791 [hep -ph].
[61] S. Pascoli, S.T. Petcov, W. Rodejohann, Phys. Lett. B 549 (2002) 177–193, arXiv :hep -ph /0209059 [hep -ph].
[62] S.M. Bilenky, S. Pascoli, S.T. Petcov, Phys. Rev. D 64 (2001) 053010, arXiv :hep -ph /0102265 [hep -ph].
[63] J.A. Casas, A. Ibarra, Nucl. Phys. B 618 (2001) 171–204, arXiv :hep -ph /0103065 [hep -ph].
[64] S. Pascoli, S.T. Petcov, A. Riotto, Nucl. Phys. B 774 (2007) 1–52, arXiv :hep -ph /0611338 [hep -ph].
18

http://refhub.elsevier.com/S0550-3213(20)30353-9/bib9F9EFD0B214B5C85D2591169B8A607CAs1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibAA7B1EA09FE773D00096B9A4D4091ED3s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib654E1CF8D16D30855CCC736EBFFAD418s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibBCE7BE05C389ED92769B8575246F4EB7s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibAAFCA80E6337441BD07C0D4D5CBBCBD6s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib90425BB9B59B138CD3A94D71E3D3DA31s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibE58BFA618F96FC8AE7173860DAB7D3C8s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib7D4C2AC46BB268643899D0ED36F234B5s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib0D151A4FEDE09C4EB9E7CC150E72C244s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibF83B8CE48E2069AAF9DEB7D95DBC9451s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibFF5FCAE81F3E2104D45E622C493853E1s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib6706AF9BED36A588005450334A73E217s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib6706AF9BED36A588005450334A73E217s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib4DF963235DEE81CD3AD0493857B82C2Cs1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib4DF963235DEE81CD3AD0493857B82C2Cs1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibC5F90438C763E0281F16DB1F1B306727s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibCF81B8239E381D80FA46166CFB5873F6s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibCF81B8239E381D80FA46166CFB5873F6s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibB64AF4DFDA08AB06740A52DB5261D4DDs1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib3E184DE8F37659B3B202C516449890D2s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibADD2B090BFBF49417BB3AB7A01295D54s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib882BADE8E896CBC1DEA7386BD15AA05Es1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib60265ADB237F230363000E5769FFD3FCs1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib6BE2131ED68EAF99B55EC9FEFA33B69Es1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibB9A63B1A3382C95819FD02ABCA62C729s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib4FFBFC9D917150F609DAD1286A0F60A7s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib01365DA53AE3F3D656BF39E9577535ABs1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib55E6A5956375C91E6B1CBF4B2EDAD991s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibA91049A9734290F25D343A57B3DA97E6s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib71D3395E992C8C720AE4F10BCA1AE7FEs1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib089D7A5418A707C2C28644D87D36994Cs1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib0F181629CEEEB4DF8AC8D0CFF4F60BEAs1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib7B13942590932B1BDDDB71DABE2C6084s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibD646DB4A2CF91F5ADB4F0467256B0D67s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib6AA062E608A1DEB428D0F1BF7F851D85s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib8FB505D9F261F1E1D73CA3C6604F6D4Bs1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib7860942C4C7A5C3C00CB7AA51501B033s1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bibD81E93DCBE1965A5803C23795E3F2B6Fs1
http://refhub.elsevier.com/S0550-3213(20)30353-9/bib5200054947B0A1A61DD2E6CA24A817EEs1

	Flavoured CP-asymmetry at the effective neutrino mass floor
	1 Introduction
	2 Effective Majorana mass and its minimisation
	3 Flavoured CP-asymmetry with three right handed neutrinos
	4 Flavoured CP-asymmetry with two right handed neutrinos
	4.1 NH (m1=0)
	4.2 IH (m3=0)

	5 Conclusions
	Declaration of competing interest
	References


