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Abstract Contingency tables often arise from collecting patient data and
from lab experiments. A typical question to be answered based on a con-
tingency table is whether the rows or the columns show a significant differ-
ence. Median Polish (MP) is fast becoming a prefered way to analyse con-
tingency tables based on a simple additive model. Often, the data need to
be transformed before applying the MP algorithm to get better results. A
common transformation is the logarithm which essentially changes the un-
derlying model to a multiplicative model. In this work, we propose a novel
way of applying the MP algorithm with generalised transformations that still
gives reasonable results. Our approach to the underlying model leads us to
transformations that are similar to additive generators of some fuzzy logic
connectives. In fact, we illustrate how to choose the best transformation that
give meaningful results by proposing some modified additive generators of
uninorms. In this way, MP is generalied from the simple additive model to
more general nonlinear connectives. The recently proposed way of identifying
a suitable power transformation based on IQRoQ plots [1] also plays a central
role in this work.

1 Introduction

Contingency tables often arise from collecting patient data and from lab
experiments. The rows and columns of a contingency table correspond to two
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≤ 8 9− 11 12 13− 15 ≥ 16

North-West 25.3 25.3 18.2 18.3 16.3

North-Central 32.1 29.0 18.8 24.3 19.0

South 38.8 31.0 19.3 15.7 16.8

West 25.4 21.1 20.3 24.0 17.5

Table 1 Infant Mortality vs Educational Qualification of the Parents in deaths per 1000
live births in the years 1964-1966 (Source: U.S. Dept. of Health, Education and Welfare)

different categorical attributes. Table 1 shows an example of a contingency
table.

A typical question to be answered based on data from a contingency table
is whether the rows or the columns show a significant difference. For the
example of the contingency Table 1, one would be interested in finding out
whether the education of the father or the regions have an influence on the
infant mortality.

Hypothesis tests with non-parametric tests like the Wilcoxon-Mann-Whitney-
U test, Analysis of variance (ANOVA) and the t-test are some of the common
options. However, each of them has its own drawbacks. For more on this,
please refer to [1] and the references therein.

Median polish [2] – a technique from robust statistics and exploratory
data analysis – is another way to analyse contingency tables based on a sim-
ple additive model. We briefly review the idea of median polish in Section 2.
Although the simplicity of median polish as an additive model is appealing,
it is sometimes too simple to analyse contingency table. Very often, especially
in the context of gene, protein or metabolite expression profile experiments,
the measurements are not taken directly, but are transformed before further
analysis. In the case of expression profile, it is common to apply a logarith-
mic transformation. The logarithmic transformation is a member of a more
general family, the so-called power transformations which are explained in
Section 3.

However, it is not clear whether the MP applied to the transformed data
would still unearth the interesting characteristics of the data, since the log-
arithmic transformation essentially changes the underlying model to a mul-
tiplicative model. In this work, we propose a novel way of applying the MP
algorithm that still gives reasonable results. Our approach to the underlying
model leads us to transformations that are similar to additive generators of
some fuzzy logic connectives. In fact, we illustrate how to choose the best
transformation that give meaningful results by proposing some modified ad-
ditive generators of uninorms. The recently proposed way of identifying a
suitable power transformation based on IQRoQ plots [1] also plays a central
role in this work.
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Overall: 20.775

≤ 8 9− 11 12 13− 15 ≥ 16 RE

NW -1.475 0.075 0.0125 -1.075 0.625 -1.475 -

NC 1.475 -0.075 -3.2375 1.075 -0.525 2.375

S 10.900 4.650 -0.0125 -4.800 0.000 -0.350

W -3.200 -5.950 0.2875 2.800 0.000 0.350

CE 7.4750 5.9250 -1.1125 0.0750 -3.6250

Table 2 Median polish for the Infant Mortality data

2 Median Polish

The underlying additive model of median polish is that each entry xij in the
contingency table can be written in the form

xij = g + ri + cj + εij .

• g represents the overall or grand effect in the table. This can be interpreted
as general value around which the data in the table are distributed.

• ri is the row effect reflecting the influence of the corresponding row i on
the values.

• cj is the column effect reflecting the influence of the corresponding column
j on the values.

• εij is the residual or error in cell (i, j) that remains when the overall, the
corresponding row and column effect are taken into account.

For a detailed explanation of the MP algorithm please refer to [2]. Table 2
shows the result of median polish applied to Table 1.

The result of median polish can help to better understand the contingency
table. In the ideal case, the residuals are zero or at least close to zero. Close
to zero means in comparison to the row or column effects. If most of the
residuals are close to zero, but only a few have a large absolute value, this
is an indicator for outliers that might be of interest. Most of the residuals
in Table 2 are small, but there is an obvious outlier in Southern region for
fathers with the least number of years of education.

3 Median Polish on Transformed Data

Transformation of data is a very common step of data preprocessing (see for
instance [3]). There can be various reasons for applying transformations be-
fore other analysis steps, like normalisation, making different attribute ranges
comparable, achieving certain distribution properties of the data (symmetric,
normal etc.) or gaining advantage for later steps of the analysis.
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The logarithm is a special instance of parametric transformations, called
power transformations (see for instance [2]) that are defined by

tλ(x) =
{

xλ−1
λ if λ 6= 0,

ln(x) if λ = 0.

It is assumed that the data values x to be transformed are positive. If this
is not the case, a corresponding constant ensuring this property should be
added to the data.

We restrict our considerations on power transformations that preserve the
ordering of the values and therefore exclude negative values for λ.

3.1 The Non-additive Model

When we choose λ = 0, i.e. the logarithm for the power transformation, we
obtain the following model.

ln(xij) = g + ri + cj + εij . (1)

Transforming back to the original data yields the model

xij = eg · eri · ecj · eεij .

So it is in principle a multiplicative model (instead of an additive model as
in standard median polish) as follows:

xij = g̃ · r̃i · c̃j · ε̃ij

where g̃ = eg, r̃i = eri , c̃j = ecj , ε̃ij = eεij . The part of the model which
is not so nice is that the residuals also enter the equation by multiplication.
Normally, residuals are always additive, no matter what the underlying model
for the approximation of the data is.

Towards overcoming this drawback, we propose the following approach.
We apply the median polish algorithm to the log-transformed data in order
to compute g (or g̃), ri (or r̃i) and cj (or c̃j). The residuals are then defined
at the very end as

εij := xij − g̃ · r̃i · c̃j . (2)

Let us now rewrite Eq. (1) in the following form:

ln(xij) = ln(g̃) + ln(r̃i) + ln(c̃j) + ln(ε̃ij).

Assuming that the residuals are small, we have

ln(xij) ≈ ln(g̃) + ln(r̃i) + ln(c̃j).
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Transforming this back to the original data, we obtain

xij ≈ exp (ln(g̃) + ln(r̃i) + ln(c̃j)) .

A natural question that arises now is the following: What happens with
other power transformations, i.e., for λ > 0? In principle the same, as we
obtain

xij ≈ t−1
λ (tλ(g̃) + tλ(r̃i) + tλ(c̃j)). (3)

Let us denote by ⊕λ the corresponding, possibly associative, operator ob-
tained as follows:

x⊕λ y = t−1
λ (tλ(x) + tλ(y)) . (4)

Now, we can interpret Eq. (3) as

xij ≈ g ⊕λ r̃i ⊕λ c̃j (5)

Thus the problem of determining a suitable transformation of the data
before applying the median polish algorithm essentialy boils down to finding
that operator ⊕λ which minimises the residuals in (2), viz.,

εij = xij − g ⊕λ r̃i ⊕λ c̃j .

3.2 Finding a Suitable Transformation Based on
IQRoQ Plots

As stated earlier, power transformations are the most commonly used trans-
formations on data. Recently Klawonn et al. [1] have proposed a novel way
of finding the particular λ of a power transformation to be applied on the
data such that applying the Median Polish on that still reveals interesting
characteristics of the data. In the following we briefly detail their technique.

An ideal result for median polish would be when all residuals are zero or
at least small. The residuals get smaller automatically when the values in
the contingency table are smaller. This would mean that we tend to put a
high preference on the logarithmic transformation (λ = 0), at least when the
values in the contingency table are greater than 1.

Neither single outliers of the residuals nor of the row or column effects
should have an influence on the choice of the transformation. What we are
interested in is being able to distinguish between significant row or column
effects and residuals. Therefore, the spread of the row or column effects should
be large whereas at least most of the absolute values of the residuals should
be small.
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To measure the spread of the row or column effects, [1] uses the interquar-
tile range which is a robust measure of spread and not sensitive to outliers
like the variance. The interquartile range is the difference between the 75%-
and the 25%-quantile, i.e. the range that contains 50% percent of the data in
the middle. They use the 80% quantile of the absolute values of all residuals
to judge whether most of the residuals are small. One should not expect all
residuals to be small. There might still be single outliers that are of high
interest.

Finally, they compute the quotient of the interquartile range of the row or
column effects and divide it by the 80% quantile of the absolute values of all
residuals. They call this quotient the IQRoQ value (InterQuartile Range over
the 80% Quantile of the absolute residuals). The higher the IQRoQ value, the
better is the result of median polish. For each value of λ, the corresponding
power transformation is applied to the contingency table and calculate the
IQRoQ value. In this way, we obtain an IQRoQ plot, plotting the IQRoQ
value depending on λ.

4 Transformations and Additive Generators of Fuzzy
Logic Connectives

It is very interesting to note the similarity between the operator ⊕λ and
t-norms / t-conorms [4] in fuzzy logic.

On the one hand, the above family of power transformations closely resem-
ble the Schweizer-Sklar family of additive generators of t-norms. In fact, the
power transformations are nothing but the negative of the additive genera-
tor of the Schweizer-Sklar t-norms. Note that additive generators of t-norms
are non-increasing, and in the case of continuous t-norms they are strictly
decreasing, which explains the need for a negative sign to make the function
decreasing.

On the other hand, given continuous and strict additive generators, one
constructs t-norms / t-conorms precisely by using Eq. (4).

However, it should be emphasised that additive generators of t-norms or
t-conorms cannot be directly used here. The additive generator of a t-norm
is non-increasing while one requires a transformation to maintain the mono-
tonicity in the arguments. In the case of the additive generator of a t-conorm,
though monotonicity can be ensured, their domain is restricted to just [0, 1].
This can be partially overcome by normalising the data to fall in this range.
However, this type of normalisation may not be reasonable always. Further,
the median polish algorithm applied to the transformed data do not always
remain positive and hence determining the inverse with the original generator
is not possible.

The above discussion leads us to consider a suitable modification of the
additive generators of t-norms / t-conorms that can accommodate a far larger
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range of values both in their domain and co-domain. Representable uninorms
are another class of fuzzy logic connectives that are obtained by the additive
generators of both a t-norm and a t-conorm. In this work, we construct new
transformations by suitably modifying the underlying generators of these
representable uninorms [4].

4.1 Modified Additive Generators of Uninorms : An
Example

Let us assume that the data x are coming from (−M,M). Consider the follow-
ing modified generator of the uninorm obtained from the additive generators
of the Schweizer-Sklar family of t-norms and t-conorms. Let e ∈ (−M,M)
be any arbitrary value. Then the following is a valid transformation with

hλ : [−M, M ] →
[
(−M)λ − eλ

λ
,
1
λ

]
, for all λ ∈ [−∞, 0[ ∪ ]0,∞].

hλ(x) =





xλ − eλ

λ
, x ∈ [−M, e]

1−

M − x

M − e




λ

λ
, x ∈ [e,M ]

;

(hλ)−1 (x) =





(xλ + eλ)
1
λ , x ≤ 0

M − (M − e) [(1− xλ)]
1
λ , x ≥ 0

.

Note that hλ is monotonic for all λ ∈ [−∞, 0[ ∪ ]0,∞] and increases with
decreasing λ.

That this modified generator is a reasonable transform can be seen by
applying on the following data. Consider the 10× 10 table generated by the
following additive model. The overall effect is 0, the row effects are 10, 20,
30, . . . , 100, the column effects are 1, 2, 3, . . . , 10. To each of these
entries is added a noise from a uniform distribution over the interval [-0.5,
0.5]. From the IQRoQ plots for this data given in Figure 1, it can be seen
that the global maxima occur at λ = 1. So the IQRoQ plots propose to apply
the above transformation with λ = 1 which is a linear transformation of the
data.



8 Balasubramaniam Jayaram and Frank Klawonn

1 2 3 4 5

0
2

4
6

8

IQRoQ for column effects

λ

IQ
R

_C
ol

 / 
Q

80
_R

es

(a) Artificial Data, e = 5, L = 110,
IQRoQ Column Plot
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(b) Artificial Data, e = 5, L = 110,
IQRoQ Row Plot

Fig. 1 IQRoQ plots for the column and row effects of the Artificial data with Modified
Schweizer-Sklar generator

4.2 A Novel Way of Finding a Suitable
Transformation

In this section we present the algorithm to find a suitable transformation of
the given data such that the MP algorithm performs well to elucidate the
underlying structures in the data. We only consider a one parameter family
of operators with the parameter denoted by λ.

The proposed algorithm is as follows. Let ⊕λ denote the one parameter
family of operators whose domain and range allow it to be operated on the
data given in the contingency table. Then for each λ the following steps are
performed:

1. Apply the transformation ⊕λ to the contingency table.
2. Apply the median polish algorithm to find the overall, row and column

effects, viz., g̃, r̃i, c̃j for each i, j.
3. Find the residuals εij = xij − g ⊕λ r̃i ⊕λ c̃j for each i, j.
4. Determine the IQRoQ values of the above residuals.

Finally, we plot λ versus the above IQRoQ values to get the IQRoQ plots for
the column and row effects.

Clearly, the operator corresponding to the λ at which the above IQRoQ
plots peak is a plausible transformation for the given contingency table.
Though, a rigorous mathematical analysis and support for the above state-
ment is not immediately available, an intuitive explanation is clear from the
earlier work of Klawonn et al. [1]. Further, we illustrate the same by applying
the above hλ transformations on some real data sets and present our results
in the next section.
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Overall: 0.2919985

≤ 8 9− 11 12 13− 15 ≥ 16 RE

NW 0.00025312 0.0027983 -0.00025004 -0.010879 0.0000000 -0.010113225

NC -0.00025312 -0.0027983 -0.01200293 0.010879 0.0078014 0.006694490

S 0.01098492 0.0091121 0.00025004 -0.044525 -0.0035433 -0.001558958

W -0.01102793 -0.0305895 0.00456985 0.014641 0.0000000 0.001558958

CE 0.0318984143 0.0293532152 -0.0112376220 0.0002531186 -0.0294192135

Table 3 Median polish on the hλ-transformed Infant Mortality data with λ = −0.5
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(a) e = 2, M = 40, IQRoQ Column Plot
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(b) e = 2, M = 40, IQRoQ Row Plot

Fig. 2 IQRoQ plots for the column and row effects of the Infant Mortality data

4.3 Some Illustrative Examples

Let us consider the data given in the Contingency table Table 1. Applying
the above algorithm with the transformation hλ we obtain the IQRoQ plots -
Figures 2(a) and (b) - which suggest a value of around λ = −0.5. The ’median
polished’ contingency table for λ = −0.5 is given in Table 3.

We finally consider two larger contingency tables with 14 rows and 97
columns that are far too large to be included in this paper. The tables con-
sist of a data set displaying the metabolic profile of a bacterial strain after
isolation from different tissues of a mouse. The columns reflect the various
substrates whereas the rows consist of repetitions for the isolates from tumor
and spleen tissue. The aim of the analysis is to identify those substrates that
can be utilized by active enzymes and to find differences in the metabolic
profile after growth in different organs.

The corresponding IQRoQ plots shown in Figures 3(a) and (b) suggest
that we choose a value of around λ = 0.4. The ’median polished’ contingency
table for λ = 0.4 shows that the number of residuals that are larger than the
absolute value of most of the row or column effects is roughly 50%.
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(a) e = 10, M = 20000, IQRoQ Column
Plot
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(b) e = 10, M = 20000, IQRoQ Row
Plot

Fig. 3 IQRoQ plots for the column and row effects of the Spleen data

5 Conclusions

In this work, we have shown that that the Median Polish algorithm does
not always give interpretable results when applied to raw contingency tables.
This necessitates a transformation of the data. However, both the choice of
the transformation and the fact that the transformation leads to changing
the underlying model of the data from a simple additive to a multiplicative
model become an issue. We have proposed a novel way of applying the MP
algorithm even in this case that still gives reasonable results. Our approach to
the underlying model leads us to transformations that are similar to additive
generators of some fuzzy logic connectives. Further, we have illustrated how
to choose a suitable transformation that gives meaningful results.
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