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ABSTRACT
Determining the distribution of redshifts of galaxies observed by wide-field photometric experiments like the Dark Energy
Survey (DES) is an essential component to mapping the matter density field with gravitational lensing. In this work we describe
the methods used to assign individual weak lensing source galaxies from the DES Year 3 Weak Lensing Source Catalogue to
four tomographic bins and to estimate the redshift distributions in these bins. As the first application of these methods to data, we
validate that the assumptions made apply to the DES Y3 weak lensing source galaxies and develop a full treatment of systematic
uncertainties. Our method consists of combining information from three independent likelihood functions: self-organizing map
p(z) (SOMPZ), a method for constraining redshifts from galaxy photometry; clustering redshifts (WZ), constraints on redshifts
from cross-correlations of galaxy density functions; and shear ratios (SRs), which provide constraints on redshifts from the
ratios of the galaxy-shear correlation functions at small scales. Finally, we describe how these independent probes are combined
to yield an ensemble of redshift distributions encapsulating our full uncertainty. We calibrate redshifts with combined effective
uncertainties of σ 〈z〉 ∼ 0.01 on the mean redshift in each tomographic bin.

Key words: gravitational lensing: weak – galaxies: distances and redshifts – dark energy.

1 IN T RO D U C T I O N

The matter density fluctuations present in the Universe, and their
evolution over time under the impact of gravity and cosmic ex-
pansion, are sensitive to cosmological physics, including the nature

� E-mail: jmyles@stanford.edu(JM); alexalarcongonzalez@gmail.com(AA)

of dark energy, neutrino masses, and the nature of dark matter.
Galaxy surveys like the Dark Energy Survey (DES; Abbott et al.
2018; Troxel et al. 2018), the Kilo-Degree Survey (KiDS; Heymans
et al. 2020), Hyper Suprime-Cam survey (HSC; Hikage et al. 2019),
the Legacy Survey of Space and Time (LSST; LSST Dark Energy
Science Collaboration 2012), or the Euclid mission (Laureijs et al.
2011) use this to achieve competitive constraints on cosmological
parameters from observable proxies of the matter density field. In
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particular, the DES first 3 yr of observation data are used, among
other purposes, to measure three two-point (3 × 2 pt) correlation
functions (DES Collaboration et al. 2021):

(i) cosmic shear: the correlation function of the shapes of ‘source’
galaxies divided into four tomographic bins (Amon et al. 2021; Gatti
et al. 2021; Secco et al. 2021);

(ii) galaxy clustering: the autocorrelation function of the positions
of luminous red ‘lens’ galaxies selected by the RedMaGiC algorithm
(Rozo et al. 2016; Rodrı́guez-Monroy et al. 2021), or alternatively
the positions of an optimized magnitude-limited sample (Porredon
et al. 2021a,b); and

(iii) galaxy–galaxy lensing: the cross-correlation function of
source galaxy shapes around lens galaxy positions (Prat et al. 2021).

The use of gravitational lensing signals is indispensable in this
approach: In a photometric survey, while the positions of galaxies
can be used as tracing matter density, the only direct connection to
the underlying density field is through its effect on the images of
distant galaxies by means of gravitational lensing. In order to draw
conclusions on the physical density fluctuations from observations
of gravitational lensing, however, the distances to the lensed back-
ground sources must be known.

Any gravitational lensing measurement, including the interpreta-
tion of the cosmic shear and galaxy–galaxy lensing correlation func-
tions, therefore relies on a robust characterization of the distribution
n(z) of redshifts z of the respective source galaxy samples (Huterer
et al. 2006; Hildebrandt et al. 2012; Benjamin et al. 2013; Huterer,
Cunha & Fang 2013; Samuroff et al. 2017; Joudaki et al. 2019;
Tessore & Harrison 2020). While ideally this could be accomplished
by measuring the spectrum of each galaxy in a given catalogue,
it is so far only feasible to gather spectra for small, possibly non-
representative subsets of galaxies. As a consequence, large optical
imaging surveys with measurements of tens or hundreds of millions
of galaxies must rely on relatively few, noisy photometric bands to
constrain redshifts. The key challenge in doing this is the presence
of degeneracies in the statistical colour–redshift relation, making
it commonly impossible to uniquely determine the redshift of any
given galaxy from wide-band photometry. One can address this
challenge by determining a prescription for reweighting the n(z) of
a sample with credible, known redshifts according to those galaxies’
relative abundance in the overall sample detected and selected by
a photometric survey (e.g. Lima et al. 2008; Cunha et al. 2012;
Bonnett et al. 2016; Speagle & Eisenstein 2017a,b; Hoyle et al. 2018;
Tanaka et al. 2018; Euclid Collaboration et al. 2020; Hildebrandt
et al. 2020a; Schmidt et al. 2020; Wright et al. 2020a). The problem
of degeneracies in the statistical colour–redshift relation in this
case manifests as uncertainty on the measured redshift distribution,
often quantified in terms of uncertainties on the moments of the
measured n(z). Much of the work in estimating redshift distributions
is dedicated to understanding how measured n(z) are biased due
to sample variance and selection biases in the sample of galaxies
with credible redshifts (Gruen & Brimioulle 2017; Hartley et al.
2020b). In this work, we describe the analysis used to characterize
the redshift distributions of the DES Year 3 (the first three seasons of
observations) source galaxy sample from their photometry, validate
this methodology on realistic simulations of the survey data, and
present the results of the analysis on the DES data.

A challenge to determination of n(z) is the combination of incom-
pleteness in the spectroscopic samples and inaccuracies in many-
band photometric redshifts used to calibrate the colour–redshift
maps. Our work ameliorates this challenge by weighting the redshift-
calibration sample to match the abundance of the target sample in

a high-dimensional colour space (Buchs et al. 2019). Differences
in reweighting procedures are known to result in scientifically
meaningfully different constraints on the matter clustering parameter
σ 8 (Troxel et al. 2018; Joudaki et al. 2019), highlighting the critical
importance of properly accounting for the impact of selection biases
on redshift distribution measurement.

A robust redshift analysis should be validated on simulations,
rely on multiple independent data sets and methodologies, and have
well-characterized uncertainties. Besides the work presented in this
paper on photometric redshifts, we accomplish this by combining
photometric information with galaxy clustering and shear ratios
(SRs) to constrain redshift distributions. Clustering redshifts (WZ)
and SR play the essential role of providing additional, independent
constraining power to validate and further constrain photometric
redshift distributions (Gatti et al. 2020; Sánchez et al. 2021).

We describe this overall DES Year 3 redshift inference scheme in
Section 2. In Section 3, we describe the data used in this analysis.
We develop the methodology for determining n(z) from galaxy
magnitude and colours and the uncertainty on those n(z) in Sections 4
and 5, respectively. We present our results in Section 6 and discuss
their implications in Section 7.

2 D ES Y3 REDSHI FT SCHEME

The overarching DES Year 3 redshift inference scheme uses multiple,
independent analyses to robustly characterize the weak lensing
source galaxy redshift distributions. As illustrated in Fig. 1, the three
likelihood functions computed rely on three independent methods
and data: SOMPZ, clustering redshifts, and SR:

(i) Self-organizing map p(z) (SOMPZ) leverages the Y3 DES deep
fields (Hartley et al. 2020a) to accurately determine the number
density of galaxies in deep ugrizJHKs colour space. Since redshifts
are well constrained at a given ugrizJHKs colour, this number density
can be used to properly weigh galaxies within a sample of credible
redshifts in a way that is not subject to selection biases. In brief,
this method relies on determining the p(z) at a given cell in eight-
band colour space from galaxies with deep eight-band coverage,
the probability of each cell in eight-band colour space contributing
to the galaxies in a given cell in noisy three-band colour–magnitude
space, and the abundance of galaxies in three-band colour–magnitude
space, to compute the overall redshift distribution of the Year 3
lensing source galaxy sample. The validation of this method and the
characterization of its sources of uncertainty are outlined in detail in
this work.

(ii) Clustering redshifts constrain the distances to source galaxies
from their angular galaxy clustering with samples of reference
galaxies within narrow redshift ranges (Newman 2008; McQuinn
& White 2013; Ménard et al. 2013; Cawthon et al. 2017; Davis et al.
2017; Johnson et al. 2017; Morrison et al. 2017; Gatti et al. 2018;
Hildebrandt et al. 2020a; van den Busch et al. 2020). This method
is based on the fact that the amplitude of this correlation function is
proportional to the fraction of source galaxies in physical proximity
to those reference galaxies. Clustering redshifts validate and refine
photometric n(z) with the key benefit of avoiding any reliance on the
statistical colour–redshift relation and bypassing the completeness
issues associated with spectroscopic survey coverage. The details of
this analysis are described fully in Gatti et al. (2020).

(iii) SRs (Jain & Taylor 2003; Mandelbaum et al. 2005; Heymans
et al. 2012; Prat et al. 2018, 2019; Hildebrandt et al. 2020b)
provide additional constraining power and validation by measuring
the galaxy–galaxy lensing signal of a lens galaxy redshift bin at small
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Figure 1. Flowchart illustrating the weak lensing redshift distributions calibration scheme. The three main n(z|model) likelihood functions of the analysis,
shown in grey, are SOMPZ, clustering redshifts, and SR. Note that the parameter constraint plot is only an illustration and is not a result from real measurements.

scales. The ratio of this signal from two source bins reflects the ratio
of mean lensing efficiencies of objects in those source bins with
respect to the lens bin redshift. This, in turn, depends on the redshift
distribution of the sources. Because this methodology utilizes lensing
signals, it is virtually independent from SOMPZ and clustering
redshifts. The methodology of this analysis is described fully in
Sánchez et al. (2021). Both the clustering and SR redshift constraints
are derived from data on small angular scales, which allows the
redshift constraints to remain largely statistically independent of
cosmological constraints based on larger-scale signals.

In summary, we use galaxy photometry to constrain n(z) with
SOMPZ, galaxy positions to constrain n(z) with clustering redshifts,
and galaxy shapes to constrain n(z) with SRs. As in past work, we
assess consistency of these measurements. We further subsequently
combine these measurements. The final result of this analysis is
an ensemble of redshift distributions whose variation encodes the
combined uncertainties on the n(z) due to all sources of information.
Any DES Y3 lensing likelihood that uses the same redshift bins
can be estimated by sampling from this ensemble. Specifically,
the n(z)s in this ensemble are ordered with an algorithm called
HYPERRANK, which facilitates sampling and marginalization over
the n(z) ensemble within the cosmological likelihood Markov chains
(Cordero et al. 2021).

3 DATA

3.1 DES Wide Field Survey

This work presents tomographic redshift distributions for the DES
Year 3 weak lensing source catalogue, described in Gatti et al. (2021).
The source catalogue is a subset of the DES Year 3 Gold catalogue of
photometric objects (Sevilla-Noarbe et al. 2020). After the applied
selections, it consists of 100 208 944 galaxies with measured r, i, and
z METACALIBRATION photometry and shapes (Sheldon & Huff 2017).

We note that a subset of the selections defined in Gatti et al. (2021)
were motivated by achieving a more homogeneous photometric
catalogue, and therefore more accurate redshift calibration. These
cuts on METACALIBRATION photometry are as follows:

(i) 18 < mi < 23.5,
(ii) 15 < mr < 26,
(iii) 15 < mz < 26,
(iv) −1.5 < mr − mi < 4, and
(v) −4 < mz − mi < 1.5.

The bright limits of selections (i)–(iii) remove nearby galaxies
for which no lensing signal is expected. They also remove some
remaining stars that were incorrectly included in the source galaxy
sample. The faint limit of these selections excludes the region of
magnitude space where COSMOS-30 30-band photometric redshifts
are found to be more biased (Laigle et al. 2016; Joudaki et al. 2019).
Selections (iv) and (v) remove unphysical colours that are assumed
to be caused by catastrophic flux measurement failures.

In this work, we frequently refer to this sample and its photometry
as wide (field) data. For further details on this catalogue, we refer the
reader to Gatti et al. (2021).

For the DES Y3 weak lensing analysis, we exclude DES wide-field
g-band data due to biases caused by difficulties in modeling the g-
band point spread function (PSF). In particular, METACALIBRATION

requires an accurate PSF model to deconvolve (and subsequently
reconvolve) a galaxy image from the PSF in order to determine how
a galaxy image responds to artificial shear. Inadequate modelling of
the PSF would lead to an imprecise constraint on the shear response
Rs of each galaxy. In the g band, such model inaccuracies are expected
to result, e.g. from chromatic effects on the PSF (Plazas & Bernstein
2012). Our diagnostics indeed show that PSF models are significantly
less accurate in the g band than in the redder DES filters. As a result,
we do not use g-band data for any purpose that requires accurate
PSF deconvolution, including the METACALIBRATION correction for
selection biases. This problem precludes the use of the g band for
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Figure 2. The four DES deep fields used for our redshift analysis. Each
field has overlapping deep DES ugriz bands and archival JHK bands from
the VIDEO or UltraVISTA surveys. Green points indicate DES deep-field
galaxies with no spectroscopic or many-band photometric redshifts. Yellow
(S), blue (C), and red (P) indicate deep-field galaxies with redshifts from
spectroscopy, COSMOS2015, or PAUS+COSMOS, respectively. Missing
rectangular regions are DECam CCDs on which scattered light hampered
precision deep photometry.

defining redshift bins, since selection biases can only be corrected
within METACALIBRATION when all selections (including the selection
into a redshift bin) are made based on properties also measured on
artificially sheared images, which are not available in the g band. For
further details on this challenge, see Gatti et al. (2021).

3.2 DES Deep Field Survey and artificial wide-field photometry

The DES Y3 Deep Fields and mock wide-field photometry for the
deep-field detections are the cornerstone of SOMPZ. Full character-
ization of these data products are provided in Hartley et al. (2020a)
and Everett et al. (2020), respectively, and we summarize requisite
details here. Our inference method relies on extracting source density
information from four deep fields named E2, X3, C3, and COSMOS
(COS) covering areas of 3.32, 3.29, 1.94, and 1.38 deg2, respectively,
as shown in Fig. 2. After masking regions with artefacts such as
cosmic rays, artificial satellites, meteors, asteroids, and regions of
saturated pixels, 5.2 square degrees of overlap with the UltraVISTA
and VIDEO near-infrared (NIR) surveys (McCracken et al. 2012;
Jarvis et al. 2013) remain. This yields 2.8M detections with measured
ugrizJHKs photometry with limiting magnitudes 24.64, 25.57, 25.28,
24.66, 24.06, 24.02, 23.69, and 23.58, substantially fainter than the
faintest galaxies in the sample of source galaxies. In this work, we
frequently refer to this sample and its photometry as deep-(field)
data.

In order to relate galaxies with given deep photometry to observed
lensing sources with wide photometry, we rely on the BALROG

(Suchyta et al. 2016) software that injects simulated galaxies, based
on the deeper photometry from the DES deep fields, into real images.
For this analysis, BALROG was used to inject model profiles fit to

deep-field galaxies into the broader wide-field footprint (Everett
et al. 2020). After injecting galaxies into images, the output is
passed into the DES Y3 photometric pipeline. Each deep-field
galaxy is injected multiple times at different positions, and injected
galaxies are detected equivalently to real galaxies, yielding multiple
realizations of each deep-field galaxy. The output matched catalogue
of 2417 437 injection-realization pairs containing both deep and wide
photometric information is a key part of our redshift calibration
inference method. This catalogue is called the deep/BALROG sample.
Note that this sample contains a total of 267 229 unique deep-field
galaxies having ≥1 BALROG realization that passes the wide-field
selection criteria.

With respect to the consistency of BALROG and Y3 GOLD fluxes,
we highlight that the Y3 GOLD catalogue (Sevilla-Noarbe et al.
2020) accounts for photometric effects including reddening due to the
interstellar medium, achromatic (i.e. ‘grey’) zero-point recalibrations
relative to an original DES Y3 calibration, and chromatic corrections
for the SED-dependent effects of differential optical throughput
as a function of focal plane location and variable environmental
conditions at the telescope site. The work of Everett et al. (2020)
captures corrections for reddening as described above in the injec-
tions, but does not model the other two effects at injection time (thus
eliminating any need to apply the corrections to detections). We
emphasize that Everett et al. (2020) verify that the mock wide-field
fluxes generated by BALROG are more than sufficiently robust for
all Y3 calibration purposes. Our findings discussed in Section 5.4
reinforce this conclusion in the context of redshift calibration. For
details on the origins of these photometric calibration procedures,
see Burke et al. (2018) and Sevilla-Noarbe et al. (2020).

3.3 Redshift samples

Our analysis relies on the use of galaxy samples with known redshift
and deep-field photometry. To this end, we use catalogues of both
high-resolution spectroscopic and multiband photometric redshifts
and develop an experimental design that allows us to test uncertainty
in our redshift calibration due to biases in these samples. The
spectroscopic catalogue we use contains both public and private
spectra from the following surveys: zCOSMOS (Lilly et al. 2009),
C3R2 (Masters et al. 2017, 2019), VVDS (Le Fèvre et al. 2013),
and VIPERS (Scodeggio et al. 2018). We use two multiband photo-
z catalogues from the COSMOS field (Scoville et al. 2007): the
COSMOS2015 30-band photometric redshift catalogue (Laigle et al.
2016), which includes 30 broad, intermediate, and narrow bands
covering the UV, optical, and IR regions of the electromagnetic
spectrum, and the PAUS+COSMOS 66-band photometric redshift
catalogue (Alarcon et al. 2020a) from the combination of PAU Survey
data (Eriksen et al. 2019; Padilla et al. 2019) in 40 narrow-band filters
and 26 COSMOS2015 bands excluding the mid-infrared.

Fig. 2 shows the DES deep-field footprints (Hartley et al.
2020a) and highlights the footprint of each of the different redshift
catalogues. While the two photo-z catalogues are limited to the
COSMOS field, our spectroscopic compilation partially covers the
COSMOS, X3, and C3 fields. Fig. 3 shows the DES i-band magnitude
distribution for all galaxies with ugrizJHKs photometry and for
each of the redshift samples (for a definition of BDF magnitude
see Hartley et al. 2020a). Each galaxy has been weighted by the
same weight used in the cosmological analysis, which includes the
galaxy detection probability from BALROG, the METACALIBRATION

response and a lensing weight (see Section 4.1 for more details
on these weights). While the spectroscopic compilation spans the
largest area among the redshift catalogues, it is also the shallowest.
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Figure 3. Top panel: distribution of redshift samples as a function of
DES i-band magnitude. Each galaxy in this histogram is weighted by all
weights used in the cosmological analyses: probability of detection from
BALROG, METACALIBRATION response, and lensing weight (see Section 4.1).
For details on the definition of the ‘Bulge Plus Disk, Fixed Ratio’ (BDF)
galaxy profile, see Hartley et al. (2020a). Bottom panel: distribution of
redshifts used in our analysis, for one of our redshift samples SPC. This
sample is defined to preferentially use redshift from spectroscopy, then
PAUS+COSMOS, then COSMOS2015. Each galaxy in this stacked histogram
is weighted by all weights used in the analysis: probability of detection from
BALROG, METACALIBRATION response, and lensing weight (see Section 4.1).

The COSMOS2015 catalogue is the deepest, but also has the lowest
redshift precision. Finally, the PAUS+COSMOS catalogue is more
precise than COSMOS2015 and, unlike spectroscopic samples, is
nearly complete in the highly relevant magnitude range of up to i ≈
23 but has the lowest areal coverage at faint magnitudes.

To estimate the redshift distribution of each tomographic bin, we
compose three main redshift samples for which we rank the redshift
information differently, meaning that for an object with redshift
information from multiple origins, we choose the estimation from
the highest ranked one. These redshift samples are as follows:

(i) SPC: This sample ranks first the spectroscopic catalogue (S),
then PAUS+COSMOS (P), and, finally, COSMOS2015 (C). This
sample is designed to inform an understanding of cosmological
results that is minimally reliant on the COSMOS2015 data without
introducing potential selection biases such as those discussed by
Gruen & Brimioulle (2017).

(ii) PC: This sample ranks first the PAUS+COSMOS catalogue
before COSMOS2015, and does not include spectroscopic redshifts.
This sample is designed to inform an understanding of cosmolog-
ical results that are maximally reliant on many-band photometric
redshifts, and thus not affected by selection effects resulting from
spectroscopic survey selection functions.

(iii) SC: This sample ranks first the spectroscopic catalogue before
COSMOS2015, and does not include the PAUS+COSMOS catalogue.
This sample is designed to inform an understanding of cosmological
results that are not reliant on PAU multiband photometric redshifts.

The fiducial ensemble of redshift distributions is generated by
marginalizing over all three of these redshift samples (SPC, PC,
SC) with equal prior, which, in practice, is achieved by simply
concatenating the n(z) samples produced from these three redshift
samples. In addition to the three samples used for our fiducial
analysis, we define the following alternative redshift samples that
we deem less reliable. These samples are used to test the robustness
of our redshift information:

(i) C: This sample includes only information from the COS-
MOS2015 catalogue and would therefore suffer most strongly from
systematic biases in these photometric redshifts.

(ii) SPC-MB: This sample (SPC, magnitude-biased) is artificially
constructed to enable an additional robustness test of our dependence
on theCOSMOS2015 catalogue. The motivation for constructing this
sample is that the redshift information used in SPC still preserves 10
per cent of the effective information from COSMOS2015, primarily
at the faintest magnitudes, due to the paucity of spectroscopic
redshifts for galaxies at these fainter magnitudes. We thus construct
SPC-MB to test the impact on our n(z) of including these redshifts
from primarily fainter galaxies in COSMOS2015. In order to assess
the potential impact of biases in these faint COSMOS2015 galaxies
without removing them, which would introduce selection effects
such as those discussed by Gruen & Brimioulle (2017), we must
define some prescription for producing realistic de-biased redshifts
for these galaxies. We achieve this with the following prescription:
We bin galaxies for which we have a spectroscopic/PAU redshift
and a COSMOS2015 photometric redshift into magnitude–redshift
bins with lower magnitude bin limits [18, 21, 22.4] and redshift bin
widths of 0.01. For each of these galaxies, we compute the redshift
bias � = zSPC − zCOSMOS2015. We remove all outlying galaxies with
|�| > 0.15. For each magnitude–redshift bin, we compute the mean
bias 〈�〉. We then add this mean bias in each bin to theCOSMOS2015
galaxies in that bin for which we do not have a spectroscopic/PAU
redshift, thus yielding a realistic mock spectroscopic/PAU redshift
for them. In this way, we generate a sample of realistically corrected
COSMOS2015 redshifts without being subject to selection effects
that would be introduced by removing these galaxies entirely.

These variant samples are detailed in Table 1. The impact of using
these respective samples to produce redshift distributions is discussed
in Section 5.2. Note that we do not attempt a calibration of the
DES Y3 lensing source redshift distribution that is solely informed
by spectroscopic redshifts. The sample of available spectroscopic
redshifts in the deep fields does not span the full ugrizJHKs colour-
space of the DES data. If any cell in deep colour space were to only
include the subset of galaxies with successful spectroscopic redshift,
we expect the resulting estimates of the redshift distributions would
suffer from unquantified selection biases. However, comparisons of
redshift calibration between the samples used, some of which are
almost a 1:1 mixture of spectroscopic and high-quality photometric
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Table 1. Redshift samples used in our analysis, both in the fiducial case (SC,
PC, and SPC) and in the less reliable cases (C and SPC-MB) and their relative
contribution from spectroscopic data, PAUS+COSMOS and COSMOS2015.

Name Spectra (per cent)
PAUS+COSMOS

(per cent)
COSMOS2015

(per cent)

SC 47 0 53
PC 0 87 13
SPC 47 43 10

C 0 0 100
SPC-MB 47 43 10∗

Notes. The relative contribution includes all galaxy weights used in the
analysis: probability of detection from BALROG, METACALIBRATION response,
and lensing weight (see Section 4.1). Note that, as described in Section 3.3, we
artificially bias the COSMOS2015 redshifts when constructing the SPC-MB
sample to enable the robustness test for which this sample is designed.

redshifts, should provide robust indications of any relevant biases in
the PAU or COSMOS2015 photometric redshift samples.

3.4 Simulated galaxy catalogues

We use the BUZZARD cosmological simulations to validate aspects
of our analysis. These simulations are briefly described here, and
discussed comprehensively in DeRose et al. (2021), as well as
additional validation tests of the photometry in these simulations
in DeRose et al. (2019).

The BUZZARD simulations are galaxy catalogues that have been
populated in N-body light-cones by applying the ADDGALS algorithm.
They make use of a set of three independent N-body light-cones with
box sizes of [1.05, 2.6, 4.0] (h−3 Gpc3), with mass resolutions of
[0.33, 1.6, 5.9] × 1011 h−1 M	, and spanning redshift ranges in the
intervals [0.0, 0.32, 0.84, and 2.35], respectively. This produces a
simulation that spans 10 313 deg2. We use the L-GADGET2 N-body
code, a memory-optimized version of GADGET2 (Springel 2005),
with initial conditions generated using 2LPTIC at z = 50.

ADDGALS provides simulated galaxy positions, velocities, absolute
magnitudes, spectral energy distributions (SEDs), ellipticities, and
half-light radii for each galaxy. Positions and absolute magnitudes
are assigned such that the simulated galaxies reproduce projected
clustering measurements in the Sloan Digital Sky Survey Main
Galaxy Sample (SDSS MGS). Likewise, SEDs are assigned from
SDSS MGS using a conditional abundance-matching model (DeRose
et al. 2020), which reproduces the colour- and-luminosity-dependent
clustering in SDSS MGS. Broad-band photometry is produced from
these SEDs by k-correcting them to each galaxy’s rest frame,
and integrating over the DES and VISTA bandpasses to produce
ugrizJHKs photometry. While we find reasonably good agreement
between the BUZZARD photometry and that observed in our deep and
wide fields, the match is by no means perfect, particularly in bluer
bands and for redshifts z > 1.2, as illustrated in fig. 1 of DeRose
et al. (2021).

The simulations are ray-traced using CALCLENS using an Nside =
8192 HEALPIX grid (Becker 2013), and angular deflections, shear, and
magnification quantities are computed for each galaxy. The DES Y3
footprint mask is applied to the ray-traced simulations, resulting in
a footprint with an area of 4305 deg2. We apply a photometric error
model to the mock wide-field photometry in our simulations based on
a relation measured from BALROG. A weak lensing source selection is
applied to the simulations using the PSF-convolved sizes and i-band
SNR in order to match the non-tomographic source number density,
5.84 arcmin−2, in the METACALIBRATION source catalogue. In order

to simulate a lens galaxy catalogue, we also apply the REDMAGIC
selection algorithm on the simulations using the same configuration
as used in the Y3 data.

4 SOMPZ M E T H O D O L O G Y

We aim to determine the redshift distribution n(z) of the weak lensing
galaxy sample, proportional to the probability p(z) of a galaxy in that
sample to be at a given redshift z, by reweighting the distribution of
redshifts of a sample with reliable redshift information in a suitable
way that prevents selection bias and reduces sample variance. A
sample of galaxies with both well-constrained redshift and deep
photometry in several bands, and an additional, larger sample of
galaxies with deep photometry in the same set of bands provide
crucial information on how to accurately perform that weighting.
In this section, we provide details of the methodology and, in
addition, brief descriptions of the additional steps of DES Y3 redshift
distribution calibration related to clustering redshifts (Gatti et al.
2020), image simulations (MacCrann et al. 2020), and SRs (Sánchez
et al. 2021).

4.1 Redshift distribution inference formalism

Extracting the redshift information from deep, several-band pho-
tometry to estimate the redshift of an observed wide-field galaxy
amounts to marginalizing over deep photometric information (Buchs
et al. 2019). The probability distribution function for the redshift of a
galaxy, conditioned on observed wide-field colour–magnitude x̂ and
covariance matrix �̂, and on passing a selection function ŝ, can be
written by marginalizing over deep photometric colour x as follows:

p(z|x̂, �̂, ŝ) =
∫

dx p(z|x, x̂, �̂, ŝ)p(x|x̂, �̂, ŝ). (1)

The large number of dimensions of the variables on the right-
hand side of equation (1) make these probabilities unfeasible to
evaluate directly. We instead must discretize the smooth colour and
colour–magnitude spaces spanned by x and (x̂, �̂) into categories
c and ĉ. These c and ĉ, which we call cells, define a set of galaxy
photometric phenotypes (Buchs et al. 2019; Sánchez & Bernstein
2019). While any of the many existing unsupervised classification
or clustering algorithms can be used to categorize galaxies in this
way, we use the self-organizing map because it allows for a two-
dimensional representation of the data set whose continuity facilitates
interpolation and easily interpretable visualizations (Kohonen 1982,
2001; Carrasco Kind & Brunner 2014; Greisel et al. 2015; Masters
et al. 2015). With this compressed information, we can marginalize
over deep-field information c to write the p(z) for the ensemble of
galaxies associated with a particular cell ĉ as

p(z|ĉ, ŝ) =
∑

c

p(z|c, ĉ, ŝ)p(c|ĉ, ŝ). (2)

After associating ĉ with tomographic bins according to a given
binning algorithm (discussed in detail in Section 4.3), the n(z) in
each tomographic bin b̂ can be constructed by marginalizing over
(i.e. summing) the constituent cells ĉ ∈ b̂ of the tomographic bin:

p(z|b̂, ŝ) =
∑
ĉ∈b̂

p(z|ĉ, ŝ)p(ĉ|ŝ, b̂) (3)

=
∑
ĉ∈b̂

∑
c

p(z|c, ĉ, ŝ)p(c|ĉ, ŝ)p(ĉ|ŝ, b̂). (4)

Each galaxy is assigned to exactly one wide SOM cell and each
wide SOM cell ĉ is assigned to exactly one tomographic bin.
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Figure 4. Visual representation of each term in the SOMPZ inference methodology. Top left-hand panel: wide SOM cells assigned to the second tomographic
bin. Middle left-hand panel: transfer function p(c|ĉ) for the selected wide SOM cell ĉ. Lighter colour indicates higher values of p(c|ĉ), which corresponds
to deep SOM cells with a larger number of BALROG draws in the selected ĉ. Bottom left-hand panel: three selected deep SOM cells c with non-zero p(c|ĉ).
Different colours indicate different deep SOM cells. Top right-hand panel: the redshift distribution of a tomographic bin. Middle right-hand panel: one wide
SOM cell in that bin. Bottom right-hand panel: three deep SOM cells associated with the highlighted wide SOM cell.

The redshift probability conditioned on both c and ĉ is statistically
difficult to estimate because very few galaxies will meet both
conditions simultaneously. In other words, because the number of
pairs (c, ĉ) is so large, each pair will have very few, if any, galaxies.
However, under the assumption that the p(z) for galaxies assigned
to a given deep photometric cell c should not depend sensitively on
the noisy wide photometry of that galaxy, we can relax the selection
condition ĉ to b̂ (as in equation 5) or remove this selection entirely
(as in equation 6):

p(z|b̂, ŝ) ≈
∑
ĉ∈b̂

∑
c

p(z|c, b̂, ŝ)p(c|ĉ, ŝ)p(ĉ|ŝ) (5)

≈
∑
ĉ∈b̂

∑
c

p(z|c, ŝ)p(c|ĉ, ŝ)p(ĉ|ŝ). (6)

We use the approximations in equations (5) and (6) for our fiducial
measurement on the Y3 weak lensing source catalogue. In particular,
for each tomographic bin, we use equation (5) when possible (i.e.
in cases for which at least one galaxy satisfies both c and b̂), and
equation (6) otherwise. For our tests on the equivalent simulated
catalogue, we use equation (5) exclusively, discarding cases for
which there is no galaxy satisfying both c and b̂. We illustrate each
factor in this equation in Fig. 4 and show the fiducial self-organizing
maps in Fig. 5. The validity and impact of these assumptions are
discussed in Section 5.1.1.

The terms in this equation are estimated from the following
different samples of galaxies:

(i) p(ĉ|ŝ) is computed from our wide sample, which consists of
all galaxies in the DES Year 3 weak lensing source catalogue.
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Figure 5. Visualization of the wide (top panel) and deep (bottom panel) field self-organizing maps. Shown here are the total number of unique galaxies assigned
to each SOM (left-hand panels), the mean redshift of each cell (middle panels), and the standard deviation of the redshift distribution of each cell (right-hand
panels). White cells in the deep SOM are parts of colour space for which there are no galaxies in the COSMOS2015 sample.

(ii) p(c|ĉ, ŝ) is computed from our deep and BALROG samples,
which consist of all detected and selected BALROG realizations of the
galaxies in the deep sample. We call this term the transfer function.

(iii) p(z|c, b̂, ŝ) is computed from the redshift sample subset of
the deep sample, for which we have reliable redshifts, eight-band
deep photometry, and wide-field BALROG realizations.1

4.2 Weighting redshift distributions for lensing analyses

Under weak lensing shear γ , the measured galaxy ellipticity trans-
forms as e → e + Rγ with a shear response R. Average quantities
like mean tangential shear or two-point correlation functions are thus
implicitly weighted by R.

Additionally, each galaxy has an explicit lensing weight w defined
to reduce the variance of the measured shear (for more detail, see
Gatti et al. 2021). When predicting any shear signal, the n(z) must be
weighted by the product of response and explicit weight, R × w (see
section 3.3 in MacCrann et al. 2020 for details and blending-related
limitations of this approach).

4.2.1 Lensing weighted wide SOM cell occupation

The contribution of a wide cell ĉ to the lensing signal measured by
some selection ŝ of galaxies needs to take into account the response
and lensing weights of individual galaxies in ĉ. Thus, the weight
of wide SOM cell ĉ is computed with the following sum over all
galaxies i assigned to that cell:

p(ĉ|ŝ) =
∑
i∈ĉ

wiRi∑
j∈ŝ wjRj

. (7)

1This term could, in principle, be computed from the overlapping photometry
of the deep and wide fields, but is much more well sampled by making use
of BALROG.

4.2.2 Lensing-weighted p(z|c, b̂, ŝ)

In addition to the response and lensing weightings, each selected
galaxy in the BALROG sample must be weighted by the number of
times it was detected, passed the selection ŝ, and was assigned to the
same bin b̂; this weight must also be normalized by the number of
times Ninj it was injected with BALROG.

The lensing weighted p(z) for a galaxy i in the deep sample, given
its assignment to a deep cell c and a wide bin b̂, is

p(z|c, b̂, ŝ) ∝
∑

i∈(c,b̂)

wiRipi(z)

Ni,inj
, (8)

where the sum runs over BALROG realizations i of redshift sample
galaxies that are assigned to deep-field cell c and tomographic bin
b̂, and pi(z) is either the spectroscopic or many-band photometric
redshift posterior for that galaxy.

4.2.3 Lensing-weighted transfer matrix

Finally, the lensing-weighted transfer matrix p(c|ĉ, ŝ) is found
by similarly weighting the counts of (c, ĉ) pairs among BALROG

realizations:

p(c|ĉ, ŝ) = p(c, ĉ|ŝ)

p(ĉ|ŝ)
. (9)

The respective sums over BALROG realizations i to compute the
numerator and denominator of this term are

p(c, ĉ|s) ∝
∑
i∈ŝ

δc,ci
δĉ,ĉi

wiRi/Ni,inj, (10)

p(ĉ|ŝ) ∝
∑
i∈ŝ

δĉ,ĉi
wiRi/Ni,inj. (11)

Note that the transfer function is computed from BALROG realiza-
tions, not the full wide galaxy sample, since only for the former are
both wide-field and deep-field photometry available.
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4.2.4 Smooth response weights

As a consequence of using response to weight on a per-galaxy
basis, the derived redshift distribution can carry the noise inherent
in the responses themselves. This may even generate a non-physical
negative distribution at some redshifts. To remedy this, the response
weights are smoothed over a grid of galaxy size and signal-to-noise
ratio according to the treatment in MacCrann et al. (2020, see their
appendix D). As demonstrated there on the simulated sample, this
introduces an error in mean redshift (per tomographic bin) of the
order of |�z̄| ≈ 10−3. In contrast, the effect of response weighting
overall is an order of magnitude larger at |�z̄| ≈ 0.01. Therefore,
we can conclude that the uncertainty introduced due to smoothing
the response weights is negligible with respect to the other effects
at play, and that the resulting redshift distributions benefit from the
reduced noise in response.

4.3 Construction of tomographic bins

Once galaxies have been categorized into phenotypes based on their
photometric observations, we construct tomographic bins and assign
each phenotype ĉ to a bin. For our fiducial result, we construct these
bins according to the following procedure:

(i) To construct a set of n tomographic bins b̂, begin with an
arbitrary set of n + 1 bin edge values ej.

(ii) Assign each galaxy in the redshift sample to the tomographic
bin b̂ in which the best-estimate median redshift value of its p(z) (or
its spectroscopic redshift z) falls. This yields an integral number of
galaxies Nspec,(ĉ,b̂) satisfying the dual condition of membership in a
wide SOM cell ĉ and a tomographic bin b̂. This can be written as a
sum over BALROG realizations i of redshift galaxies:

Nspec,(ĉ,b̂) =
∑

i

δĉ,ĉi
δb̂,b̂i

. (12)

(iii) Assign each wide cell ĉ to the bin b̂ to which a plurality of its
constituent redshift sample galaxies are assigned:

b̂ = {ĉ| argmax
b̂

Nspec,(ĉ,b̂)}. (13)

(iv) Adjust the edge values ej post-hoc such that the numbers of
galaxies in each tomographic bin b̂ are approximately equal and
repeat the procedure from step (ii) with the final edges ej.
This procedure yields bin edges of [0.0, 0.358, 0.631, 0.872, 2.0]
for the Y3 weak lensing source catalogue. As an inconsequential
result of the slight differences in the Y3 source galaxy catalogue and
the simulated equivalent, the bin edges in the equivalent BUZZARD

catalogue are [0.0, 0.346, 0.628, 0.832, 2.0]. We discuss this choice
to homogenize the number of galaxies in each tomographic bin
separately for data and simulations in Section 5.1.1.

4.4 Clustering redshift information

Fully independent information on the redshift distribution of the
tomographic bins of our source sample is provided by its angular
cross-correlation with galaxy samples of known redshift (Newman
2008; Ménard et al. 2013). Previous experiments have used this type
of information to validate and/or further constrain the mean redshift
of their sources (e.g. Davis et al. 2017; Hildebrandt et al. 2017;
Hildebrandt et al. 2020a). A dominant confounding factor in this
approach is the redshift evolution, within the tomographic bin, of
the clustering bias of the source galaxies, which is highly degenerate

with the mean redshift of a tomographic bin (e.g. Gatti et al. 2018;
van den Busch et al. 2020).

The full description of the DES Y3 source galaxy clustering
redshift analysis is given by Gatti et al. (2020). In brief, as reference
galaxies we use the combination of redMaGiC luminous red galaxies
with high-quality photometric redshifts (Rozo et al. 2016; Rodrı́guez-
Monroy et al. 2021) and spectroscopic galaxies from BOSS and
eBOSS (Smee et al. (Dawson et al. 2013, 2016; Smee et al. 2013;
Ahumada et al. 2019) where they overlap the DES survey area.

There are two ways in which the clustering redshift data is used
to validate and inform the redshift calibration. From comparing
the clustering signal to the signal expected for a fiducial redshift
distribution within a redshift range where the former exists, and
assuming that clustering bias is constant as a function of source
redshift, one can determine the best shift �z of the fiducial redshift
distribution and compare it to zero within its statistical and systematic
uncertainty. This first method is only used as cross-check to validate
the photometric estimate of n(z). Alternatively, one can include the
clustering redshift information in a likelihood analysis, jointly with
sample variance and shot noise, that returns samples of probable
redshift distributions, while marginalizing over a flexible model of
source clustering bias redshift evolution. This second method is used
to generate the ensemble of redshift distributions in this paper (see
Sections 5.1.1 and D5), and it is shown to vastly improve the accuracy
of the shape of n(z) derived from photometric data alone. For details
of both approaches, we refer the reader to Gatti et al. (2020).

4.5 Image simulations and the effect of blending

The calibration as described thus far is aimed at recovering the
distribution of redshifts of the dominant galaxies associated with an
ensemble of detections in the DES Y3 METACALIBRATION catalogue,
weighted by the individual detections’ shear response. However,
the measurement of a detection’s shape commonly depends not
just on the shear of the dominant associated galaxy, but also on
the shear applied to galaxies blended with it. As MacCrann et al.
(2020) show, this leads to significant response to the shear of light
at other redshifts. This is best accounted for by a modification of
the redshift distribution to be used for predicting lensing signals. In
MacCrann et al. (2020), such a modification is derived for the DES
Y3 source galaxy bins defined here. This modification reduces the
mean redshift of the bins (see Section 2) and is calibrated with an
uncertainty shown in Table 2.

We note that this correction to the n(z) calibrated by photometry
and clustering is expected to have non-zero shifts on the mean
redshift in each tomographic bin. Additionally, several aspects of our
photometric calibration strategy are validated in image simulations
(see MacCrann et al. 2020, e.g. recovered true redshift distributions
and their appendix D).

4.6 SR information

For physically separated pairs of a gravitational lens with sources
from two bins, the ratio of the shear signals is indicative of the redshift
distributions of the sources for fixed parameters of the cosmological
model. In the DES Y3 lensing analyses, we use this information as an
additional term in the likelihood of the lensing signals. We provide
a brief summary here and refer readers to Sánchez et al. (2021) for
details of the methodology.

Gravitational shear signals on small to moderate scales are calcu-
lated for the source bins defined here around samples of redMaGiC
lens galaxies. The ratio of these signals between pairs of source bins
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Table 2. Values of and approximate error contributions to the mean redshift of each tomographic bin at each stage of the analysis.

Bin 1 Bin 2 Bin 3 Bin 4
zPZ range 0.0–0.358 0.358–0.631 0.631–0.872 0.872–2.0

〈z〉 SOMPZ 0.332 0.520 0.750 0.944
〈z〉 SOMPZ + WZ 0.339 0.528 0.752 0.952
Effective 〈z〉 SOMPZ + WZ + Blendinga 0.336 0.521 0.741 0.935
Effective 〈z〉 SOMPZ + WZ + SR + Blendingb 0.343 0.521 0.742 0.964

Uncertainty Method
Shot noise and sample variance 3SDIR 0.006 0.005 0.004 0.006
Redshift sample uncertainty Sampling 0.003 0.004 0.006 0.006
BALROG uncertainty None <0.001 <0.001 <0.001 <0.001
Photometric calibration uncertainty PIT 0.010 0.005 0.002 0.002
Inherent SOMPZ method uncertainty PIT 0.003 0.003 0.003 0.003
Combined uncertainty: SOMPZ (from 3SDIR) – 0.012 0.008 0.006 0.009

Shot noise and sample variance 3SDIR MFWZ 0.011 0.007 0.005 0.010
Combined uncertainty: SOMPZ (from 3SDIR-MFWZ) – 0.015 0.010 0.007 0.012
Combined uncertainty: SOMPZ + WZ – 0.016 0.012 0.006 0.015

Effective combined uncertainty: SOMPZ + WZ + Blendinga – 0.018 0.015 0.011 0.017
Effective combined uncertainty: SOMPZ + WZ + SR + Blendingb – 0.015 0.011 0.008 0.015

We find that sample variance in the deep fields is the greatest contributor to our overall uncertainty for our fiducial result. The shot noise and sample
variance term here is computed with the SPC sample. At low redshifts, the photometric calibration uncertainty is also significant, motivating improved
work on the deep-field photometric calibration. As expected, the uncertainty due to choice in redshift sample is a leading source of uncertainty for the
third and fourth bins, motivating follow-up spectroscopic and narrow-band photometric observations. Note the uncertainties combine non-linearly, so
the combined uncertainties are not necessarily the quadrature sum of the contributing factors. Note that we label all results that incorporate blending as
‘Effective’ because we expect non-zero shifts on the mean redshift due to blending (as discussed in Section 4.5), but we do not expect non-zero shifts
on the mean redshift between SOMPZ and WZ.
aThese values correspond to the n(z) prior used in subsequent cosmological analyses.
bThese values correspond to the n(z) posterior from a SR-only chain with fixed cosmology parameters. SR information is included in the cosmology
analysis as an additional modelled data vector (see Section 4.6 for more details).

is used as the data over which likelihoods are calculated. The use of
a ratio removes sensitivity of the measured shear signal to the mean
matter overdensity profile around the lens galaxies but magnification,
intrinsic alignments of sources relative to physically nearby lenses,
and a mild dependence of the geometric SR to cosmology require the
likelihood to be evaluated alongside the cosmological and nuisance
parameters of the Y3 lensing analyses. The SR information provides
constraints on this multidimensional parameter space in addition to,
and somewhat degenerate with, the source redshift information.

For consistency tests in this paper, we use constraints from a
shear-ratio-only chain to judge the consistency of the n(z)s with the
lensing signals, from a free parameter with flat prior for the shift of
the fiducial redshift distribution, at fixed cosmological parameters
(see Sánchez et al. 2021, for details). Note that for the reasons
described in Section 4.5, perfect agreement of the SR constraint
and the redshift distribution derived by means of photometry and
clustering is not expected.

5 C H A R AC T E R I Z AT I O N O F SO U R C E S O F
U N C E RTA I N T Y IN PH OTO M E T R I C N ( Z )

In this section we will characterize the uncertainties in our
measurement of redshift distributions from galaxy photometry. In
brief, our method consists in using secure redshifts to determine
p(z) in eight-band colour-space, and using the DES deep fields to
determine the abundance of galaxies in eight-band colour-space in
the three-band magnitude and colour-space of the lensing source
galaxy sample. As a result, we must incorporate uncertainties in the
redshifts used and in the estimated abundances of galaxies in each
region of colour-space. The fully enumerated list of contributing
sources of uncertainty is as follows:

(i) sample variance: fluctuations in the underlying matter density
field determine the abundance of observed deep-field galaxies of a
given eight-band colour and at a given redshift (Section 5.1);

(ii) shot noise: shot noise in the counts of deep-field galaxies of a
given eight-band colour and at a given redshift (Section 5.1);

(iii) redshift sample uncertainty: biases in the redshifts of the
secure redshift galaxy samples used (Section 5.2);

(iv) photometric calibration uncertainty: uncertainty in the eight-
band colour of deep-field galaxies (Section 5.3);

(v) BALROG uncertainty: imperfections in the procedure of simu-
lating the wide-field photometry of deep-field galaxies (Section 5.4);
and

(vi) SOMPZ method uncertainty: bias in the estimated redshift
distributions relative to truth inherent to the methodology (Sec-
tion 5.5)

We now turn to developing the formalism necessary to describe
each of these uncertainties and how they affect our measured n(z).

Our ultimate goal is to characterize the uncertainty in our estima-
tion of the redshift distribution of each tomographic bin p(z|b̂, ŝ).
It is useful to rewrite this probability (following equations 5 and 9)
explicitly as a function of the four galaxy samples involved in its
estimation:

p(z|b̂, ŝ) ≈
∑
ĉ∈b̂

∑
c

p(z|c)︸ ︷︷ ︸
Redshift

p(c)︸︷︷︸
Deep

p(c, ĉ)

p(c)p(ĉ)︸ ︷︷ ︸
Balrog

p(ĉ)︸︷︷︸
Wide

, (14)

where the right-hand-side terms are implicitly conditioned on the
selections b̂, ŝ (not shown in equation 14 for clarity). Note that the
BALROG sample does not inform the marginal distributions of either
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the deep nor the wide SOM cells, i.e. the BALROG sample is not used
to compute p(c) or p(ĉ).

First, there is uncertainty because the galaxy samples involved are
finite in both number and area. The finite area and size of the redshift
and deep samples introduce shot noise and sample variance, which
we model analytically, as explained in Section 5.1. Moreover, as
mentioned in Section 4.1, the current finite size of the combined
Redshift and BALROG samples makes it difficult to empirically
estimate p(z|c, ĉ) for all (c, ĉ) pairs, so we implement an approximate
estimate for this term (equations 5 and 6). We describe and explore
the effects of this approximation on the n(z) in Section 5.1.1, where
we validate the methodology using simulated mock catalogues.

Secondly, the z values of the redshift sample carry uncertainty.
In Section 5.2, we compare the redshift information that we have
available from different sources in the deep fields (from spectroscopy
and many-band photometry) and discuss the limitations of each.
Thirdly, the cell assignments are stochastic and thus their rate
estimates are subject to shot noise as well as systematic biases. In
Section 5.4, we test the robustness of the BALROG transfer function
against variable observing conditions across the footprint and by
comparing to an alternative transfer function estimated directly with
actual wide and deep photometry. Finally, in Section 5.3, we examine
the photometric zero-point uncertainty across the deep fields that
introduces noise in the deep-field colours, and we describe the
method used to propagate that noise to each estimated p(z|b̂, ŝ).

5.1 Sample variance and shot noise

The SOMPZ Bayesian formalism described in Section 4.1 makes
it very explicit how we estimate the redshift distribution of our
four source weak lensing tomographic bins. As highlighted by
equation (14), we use the sample with the best statistics to infer each
particular probability that is needed to determine the n(z). Therefore,
quantifying the n(z) uncertainty means describing the limitations of
each sample at determining each of these probabilities.

In this subsection, we discuss some of the limitations of the redshift
and deep sample in estimating the redshift and colour probability p(z,
c). Common limitations in redshift calibration samples are shot noise
due to finite sample size, sample variance due to large-scale structure
fluctuations, photometric selection effects; photometric calibration
errors, spectroscopic selection effects and incompleteness, and pho-
tometric redshift errors. We explore systematic errors due to spectro-
scopic redshift biases or photometric redshift biases in Section 5.2,
and discuss errors in the deep-field photometric zero-point calibration
in Section 5.3. We match the photometric selection effects from the
wide field by injecting deep-field galaxies into wide-field images
using BALROG (Everett et al. 2020) and calculating the rate at which
deep-field galaxies would be detected and selected for the weak lens-
ing sample. Since the deep fields are ∼1.5 mag deeper than the wide
field (Hartley et al. 2020a), deep-field depth variations are negligible.

Here we focus on how to estimate the shot noise and sample
variance uncertainty in our deep-field samples. Typically this has
been achieved by performing the same redshift estimation analysis
on mocked realizations of the redshift calibration samples at different
line-of-sight positions. Then, the variance and correlations in the
mean redshift of the tomographic bin n(z) are obtained from the
variations across simulated versions of the data (e.g. Hildebrandt
et al. 2017, 2020a; Hoyle et al. 2018; Buchs et al. 2019; Wright
et al. 2020a). While we also run all methods in multiple simulated
deep-field realizations (Section 5.1.1), we do so as a validation and to
verify if there are any remaining systematic uncertainties intrinsic to
the methods themselves, but not to get an estimate of sample variance

for real data. Instead, we build an analytical model of sample variance
that predicts the distribution of the redshift–colour distribution in the
deep fields, given the data that we have observed, i.e. we write the
distribution of a distribution: P(p(z, c)|data). Given this, one can
propagate this distribution of uncertainties with equation (14) and
calculate the distribution of plausible n(z) shapes allowed by sample
variance and shot noise.

To analytically model sample variance, we use a model involving
three-step Dirichlet sampling, labelled 3SDIR in this work. This
approximate model of sample variance was introduced in Sánchez
et al. (2020), and is the product of three independent Dirichlet
distributions. Sánchez et al. (2020) showed in simulations that 3SDIR

predicted well the levels of uncertainty due to sample variance and
shot noise in the first two moments of the n(z) for a non-tomographic
galaxy sample. We explore its performance at describing the sample
variance of our four tomographic bins using the BUZZARD simulations
and discuss the results in Section 5.1.1. We give extensive technical
details of the model’s mathematical formalism and application to
DES Y3 in Appendix D.

In short, the 3SDIR model describes the probability that galaxies
belong to a redshift bin z and colour phenotype c, given that a number
of galaxies have been observed to be at redshift bin z and colour
phenotype c. We describe the probability in redshift and deep colour
p(z, c) with a finite set of coefficients {fzc} indicating the probability
in redshift bin z and colour phenotype c, where

∑
zcfzc = 1 and 0

≤ fzc ≤ 1. If each redshift sample galaxy were representative and
independently drawn, then a Dirichlet distribution parametrized by
the redshift sample counts Nzc would fully characterize p({fzc}).
Sample variance correlates the redshifts, however, and the more
complex 3SDIR model incorporates this, i.e. p({fzc}|{Nzc}) ≈ 3SDIR.

An alternative approach to estimate the sample variance and
shot noise present in our calibration fields would be to perform
spatial bootstrap or jackknife resampling of the calibration samples
(see e.g. Hildebrandt et al. 2017, 2020a). This technique could be
used separately to estimate the variance in the deep-field colour
distribution p(c) from all four Deep Fields, and the variance in p(z|c)
in the COSMOS field (the only calibration field where we have
complete redshift information). Such a procedure would correctly
estimate the shot noise contribution to our uncertainty and would
additionally account for the variance from the density fluctuations
present within the calibration fields and variance on scales compa-
rable to the angular distance between the field locations on the sky.
We note, however, that to efficiently combine this information with
our WZ likelihood function or in a hierarchical Bayesian model one
would need an analytic model describing the bootstrap-resampled
calibration samples. Chief among the reasons we implement 3SDIR

for the DES Y3 redshift calibration is that, as an analytic model, it
can be readily jointly sampled with the WZ likelihood function.

5.1.1 Methodology validation

In order to validate the methodology we use the suite of BUZZARD

simulations (Section 3.4), where we simulate the DES Y3 wide, deep,
BALROG, and redshift samples. First, we want to test the accuracy of
the SOMPZ methodology in estimating the wide field n(z) using the
eight-band colour and complete redshift information available in the
DES deep fields, in the same spirit as the Buchs et al. (2019) and
Wright et al. (2020a) analyses. Secondly, we want to test the accuracy
of the 3SDIR method in describing the sample variance uncertainty
in the estimated n(z) within the SOMPZ framework. Buchs et al.
(2019) validated the SOMPZ methodology in the context of DES,
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but here we use a more realistic set of simulated samples, and we also
introduce ‘bin conditionalization’ (see equation 5), which reduces the
intrinsic bias in mean redshift of the estimated n(z). Sánchez et al.
(2020) validated the 3SDIR method but in a different context: for
a non-tomographic sample with a different selection than the DES
Y3 source sample, where all galaxies in the deep fields had redshift
information, and without a transfer function to reweight the colours
in the deep field.

We first turn to discussion of testing the accuracy of our method-
ology with the BUZZARD simulated galaxy catalogue. The goal
of this analysis is to calibrate the inherent uncertainty of our
method in simulated conditions that are as realistic as possible. This
uncertainty can be quantified in terms of, for example, uncertainty
on the mean redshift in simulations, which serves as an ideal point
of comparison to the data and can be propagated as a source
of uncertainty in our final ensemble. Because the colour–redshift
relation in this simulation is necessarily an imperfect reproduction
of the true colour–redshift relation of our observed source galaxy
sample, the deliverable uncertainty on the mean redshift is centred
on zero. This stands in contrast to an alternative approach exemplified
by Hildebrandt et al. (2020a), where the colour distributions of
galaxies in simulations are matched to data, thus enabling tests on
simulations to yield an estimate of the residual bias on the mean
redshift in simulations relative to the truth and thus correct for the
magnitude of that bias in the data. As a consequence of our analysis
choice, there are, in general, different colour–redshift degeneracies
in simulations than in data, and the colour-edges of tomographic
bins are effectively different. While this means our BUZZARD SOMs
and tomographic bins are of limited use beyond the specific goal of
calibrating uncertainty, we view this analysis choice as an appropriate
path, given the absence of fully forward-modelled galaxy colour
distributions.

The effect of sample variance in our estimated n(z) is of particular
interest. To this end, we generate 300 versions of the four DES deep
samples (where one of the four has perfect redshift information) at
different random line-of-sight positions in the BUZZARD simulations.
For each of the 300 realizations of the deep fields, we run the SOMPZ
algorithm and we obtain a n(z) estimate for each tomographic
bin by fixing the probabilities to the observed redshift and colour
phenotype number counts. Fig. 6 shows the 300 n(z)s estimated by
SOMPZ for each tomographic bin (light solid lines), together with
their average (dark dashed lines) and the true wide field n(z) in
the simulation (dark solid lines with colour). We find the average
simulated n(z) to be extremely close to the truth. For comparison,
we show the estimated n(z) from data (grey dashed lines), which
shows a reasonable agreement to the simulated ones. Note that the
averaged n(z) in simulations looks much more smooth than that
from data as we are averaging out sample variance, while the n(z)
from data corresponds to a single realization observed in the DES
deep fields, which is affected by sample variance. In addition, to
test the performance of the 3SDIR method, we calculate multiple
samples of n(z) in each BUZZARD realization by drawing from the
3SDIR likelihood, with the range of n(z) samples spanning the sample
variance uncertainty allowed by the 3SDIR model in the redshift–
colour probability.

We show technical details and specific figures of the methods
validation in Appendix E, and highlight the main findings here. We
find the average mean redshift (average z̄ or 〈z̄〉) across the 300
BUZZARD realizations to be consistent between the SOMPZ and
3SDIR methods. However, when compared to the truth we find a
residual offset of �z = [0.0051, 0.0024, −0.0013, −0.0024] in each
bin, where �z ≡ 〈z̄SOMPZ〉 − z̄true.

We take this non-zero offset as a systematic error intrinsic to the
method and due to the assumption of bin conditionalization (equa-
tion 5); we describe how we propagate this uncertainty in Section 5.5.

Using the 3SDIR model, one can compute, in each BUZZARD

realization, a distribution of mean redshift values, or z̄, with the values
allowed by sample variance and shot noise uncertainty. We find the
expected value of that distribution to be unbiased with the mean
redshift value from SOMPZ in individual BUZZARD realizations,
and in each tomographic bin. We also compare the width of the z̄

distribution from 3SDIR in each BUZZARD realization, and the width
across the 300 z̄ from SOMPZ in all realizations. We find the width
predicted by 3SDIR to be within 10 per cent from the width estimated
with SOMPZ in the three lower redshift tomographic bins, but 50
per cent wider in the last tomographic bin. This is a feature of the
3SDIR model, which gives an unbiased likelihood at the expense of
slightly underestimating the uncertainty due to sample variance at
lower redshifts, and overestimating it at higher redshifts.

We have taken great care to validate that 3SDIR provides a
likelihood of n(z) whose mean redshift is fully compatible with
the mean redshift from SOMPZ. The mean redshift serves as
the leading order statistic of the n(z) affecting the cosmological
constraints of cosmic shear analysis, and historically the n(z) has
been parameterized with a fiducial n(z) fixed from galaxy counts
and a shift parameter incorporating the uncertainty information (e.g.
Bonnett et al. 2016; Hoyle et al. 2018; Tanaka et al. 2018; Troxel
et al. 2018; Hildebrandt et al. 2020a; Wright et al. 2020a,b). However,
here we present a change of paradigm and write a full likelihood
function for the redshift distribution. Therefore, we want to make
sure that no intrinsic biases are introduced in z̄ with respect to the
mean redshift of the SOMPZ methodology. There are a number of
advantages to preferring a full likelihood function to a fixed n(z)
with a shift to its mean: It more accurately represents our uncertainty
from photometry and the redshift–colour relation, propagates higher
order moment uncertainties of the redshift distribution, and is more
suitable to be combined with other sources of redshift information
like clustering redshifts. As shown in van den Busch et al. (2020) and
Hildebrandt et al. (2020a), combining a clustering redshift likelihood
function with a fixed n(z) from photometry parametrized with a shift
can introduce a bias in the values of the shift parameter when the n(z)
is inaccurate. However, having a full likelihood over n(z) presents
the full set of possible n(z) distributions spanning our uncertainty
from photometry, with variable shapes, which can be combined, for
example, with a clustering redshifts likelihood function.

In order to combine the 3SDIR likelihood with a clustering redshifts
(or WZ) likelihood, one can draw 3SDIR n(z) samples and importance
sample them by the value of their WZ likelihood with each n(z) draw.
Even though drawing from 3SDIR is very fast, this is an extremely
inefficient process as the drawn n(z) samples very often contain
sample variance fluctuations that deliver a low WZ likelihood.
In contrast, a Hamiltonian Monte Carlo (HMC) sampler has the
ability to draw from the joint combination of both likelihoods and,
although drawing individual samples is slower, sampling the joint
space becomes much more efficient and fast. We have defined a
modified version of the 3SDIR likelihood that we use in a HMC
chain to sample together with the WZ likelihood. For further details
on this HMC chain, see Bernstein (in preparation). This modified
likelihood, or 3SDIR-MFWZ, is defined in Appendix D5, and is by
construction more sensitive to sample variance. In short, it is using
less information of the colour distribution observed in the deep fields.
As a result, the width of z̄ values from 3SDIR-MFWZ is larger in all
redshift bins – [78, 31, 23, 39] per cent larger than 3SDIR in each bin,
respectively (see Appendix E for further details).
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Figure 6. Estimated n(z) in four tomographic bins from the BUZZARD simulations using an ensemble of 300 different sets of deep fields on the BUZZARD sky
(colourful fine dashed lines). The similarity of the mean of the estimated n(z) (colourful broad dashed lines) relative to the truth (colour broad solid lines) is
a basic illustrative validation of the method. The redshift sample used here has 100 000 galaxies drawn from 1.38 deg2, the deep sample in each realization is
drawn from three fields of size 3.32, 3.29, and 1.94 deg2, respectively, from the BUZZARD simulated sky catalogue. The variation in estimated n(z) reflects the
uncertainty of the SOMPZ method primarily due to sample variance in the deep fields. The similarity of the n(z) from simulations to the fiducial result in data
(grey broad dashed line) reflects the similarity of the simulated catalogue to the data.

5.2 Redshift sample uncertainty

If all galaxies with redshift information were selected independently
and representatively from the source population, with no systematic
uncertainties on z, then we could simply merge them all into a single
sample regardless of their origin. In reality, we have overlapping
redshift information from several surveys, each with unique selection
criteria and biases, as described in Section 3.3. We label the different
redshift surveys (or combinations thereof) with R. There are different
ways that we could combine information from multiple surveys. One
limit is to state that one combination R is correct, but we only have
some prior guess p(R) about which one it is. Sampling the Bayesian
posterior for n(z) under this assumption is simple: We simply produce
samples of fzc from each survey independently by the methods of the
previous subsections, and then make a final set of samples for which a
fraction p(R) comes from each survey. In our case we do not know that
any of R is correct, but we none the less execute this marginalization
over R under the principle that it is still likely to now contain the
truth and also span the range of uncertainty that we have from our
ignorance of the quantitative errors in different surveys.

As each of P ≡ PAUS+COSMOS, C ≡ COSMOS2015, and S ≡
SPEC do not span the same region of colour space (or deep SOM cells
c), as detailed in Section 3.3, we define three redshift samples (SPC,
PC, SC) to maximize the completeness of the redshift coverage in
any sample by combining information from different sources, but as
a consequence the different samples also become correlated. We still
sample them separately, assigning them an equal prior probability,
p(R) = 1/3. We note that for those cells c that only have redshift
information from one catalogue, we assume that information to be
correct. Although the spectroscopic samples SPEC technically span
a larger area than the COSMOS field, and are therefore not completed
by photometric data outside this area, they are comprised of several
catalogues with different selection functions in redshift and different
footprints. For simplicity, we use a sample variance theory prediction
which assumes an area equal to the COSMOS area in all redshift
samples, which is a conservative approach.

Both COSMOS2015 and PAUS+COSMOSmultiband photometric
redshift catalogues report an individual redshift function q(z) for each
galaxy, which is not a proper posterior, but a marginalized likelihood
function for different templates of galaxies. If the full likelihood of
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Figure 7. The distribution of mean redshift values z̄ from 3SDIR-MFWZ
for each of the three redshift samples – SPC, PC, and SC – on real data.
We assume that their combination (shown as black histograms) contains the
truth and also spans the range of uncertainty that we have from biases of the
redshift samples.

redshift, templates, and c were known, one could simultaneously
and hierarchically infer the underlying fzc and the redshift posterior
for each galaxy (note that fzc is at the same time the prior for each
galaxy). However, we have found that the width of these q(z) is so
small compared to the redshift resolution that we have with the DES
riz bands that the SOMPZ mean redshift changes by less than 10−3

in all tomographic bins if we treat q(z) as a delta function centred at
the mode of the distribution. This is also a much smaller effect than
both the uncertainty from different redshift samples R and that from
sample variance, so we decide to completely neglect it and treat q(z)
as a delta function when generating the 3SDIR fzc samples.

Fig. 7 shows the distribution of mean redshift values predicted by
3SDIR-MFWZ for each of the samples SPC, PC, and SC, which we
find to be generally in agreement. We find a lower mean redshift
for samples coming from SC, while samples from SPC and PC
agree very well with each other. This is in agreement with Alarcon
et al. (2020a), who find PAUS+COSMOS to be unbiased compared to
spectra, but finds COSMOS2015 to be systematically biased towards
lower redshifts.

The small differences between SPC and PC (Figs 7 and 8)
show that our best photometric redshift and spectroscopic redshift
information produce n(z) samples that are largely in agreement. We
check for additional robustness using the SPC-MB sample, to test
the impact of the faintest galaxies whose redshift information is
dominated by C. We find the z̄ shift between SPC-MB and SPC to
be smaller than ∼0.006, adding confidence that our faintest galaxies,
for which we do not have redundant redshift information, are not
significantly biasing our mean redshift. This test is limited in that
the applied bias as a function of magnitude (described in Section 3)
is inferred from the available overlap between S, P and C, which
is limited for faint galaxies. Fig. 8 shows the difference in z̄ values
between several samples: SPC, PC, SC, C, SPC-MB, and the average
z̄ value of SPC, PC, and SC. The size of the offset in mean redshift
due to using these different underlying redshift samples, as shown

Figure 8. Mean redshift difference �z in each tomographic bin for each
redshift sample being tested: SPC, SC, PC, SPC-MB, C, relative to the
average mean redshift of SPC, SC, and PC. Spectroscopic catalogues are
labelled as S, the PAUS+COSMOS catalogue as P, and the COSMOS2015 as
C. SPC, SC, and PC (solid lines) are the three redshift samples used in this
work. SPC-MB shows the effect of extrapolating the bias between S and C
to all galaxies that are still using redshift information from C in SPC (mainly
faint galaxies) (see Section 3.3 for a definition of the different samples used
in this figure). The mean redshift is obtained by computing the n(z) from
SOMPZ using each sample.

in Fig. 8, illustrates the value of additional follow-up spectroscopic
and narrow-band photometric observational campaigns. As shown
in Fig. 10, this uncertainty is a significant contributor to our overall
error budget; however, we find a smaller uncertainty due to this effect
than Joudaki et al. (2019), who report mean offsets due to varying
the redshift sample of [0.014, −0.053, −0.020, −0.035] (see their
table 1) in a re-analysis of the DES’s Year 1 analysis (Hoyle et al.
2018). An important difference in analyses that acts as a caveat to
any direct comparison of our work with Joudaki et al. (2019) is the
different selection of source galaxies we apply, in particular the faint
magnitude cut i < 23.5 discussed in Section 3 and motivated largely
to reduce effects from redshift biases in COSMOS2015 photometric
redshifts. Subject to this caveat, we attribute the differences between
our uncertainty found here and their reported values to increased
statistical and systematic uncertainty of their method when applied
to few-band data, as indicated by systematic offsets of 0.01–0.03
found in their MICE2 simulated analysis (see their appendix), with
spectroscopic selection effects primarily responsible. In this work,
we mitigate these effects with the inclusion of multiband data from
the deep fields and by creating redshift samples that are complete. The
use of a larger number of bands on its own is likely to significantly
reduce the systematic error due to spectroscopic selection effects
(Masters et al. 2015; Gruen & Brimioulle 2017; Wright et al. 2020a).

5.3 Photometric calibration uncertainty

We now turn to testing the sensitivity of our measured n(z) to the
uncertainty in the photometric zero-points of the deep fields. Note
that our SOMPZ formalism inherently assumes consistent colours
across the four deep fields to assign galaxies to deep SOM cells
c and to set the fluxes of their artificial wide-field renderings in
the BALROG procedure. There are in reality, however, field-to-field
variations in photometric calibration (for more detail, see section 6.4
of Hartley et al. 2020a), encoded in the zero-point uncertainty in each
field of [0.0548, 0.0039, 0.0039, 0.0039, 0.0039, 0.0054, 0.0054,
0.0054] in the ugrizJHKs bands, respectively. We propagate this
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Figure 9. Mean redshifts of each tomographic bin for each of the fiducial redshift samples at each stage of the analysis. Vertical dotted lines indicate the mean
redshift in each bin from the n(z) output of SOMPZ, given a particular redshift sample. The horizontal intervals indicate the 68 per cent confidence intervals
on the mean as estimated according to the methods described in Section 5, some of which shift the mean redshift. The larger uncertainty on the mean from
the SOMPZ+WZ ensemble relative to the SOMPZ ensemble can be attributed to the different sample variance model used to combine SOMPZ with WZ
(3SDIR-MFWZ, rather than 3SDIR; see Section D5). For details on the modification to incorporate the effect of blending as measured by image simulations, see
MacCrann et al. (2020).

zero-point uncertainty to variations in our resulting n(z). The key
physical effect these uncertainties relate to is the interpretation of the
4000-Å break of the Deep Field galaxies in a particular deep band. As
shown in Appendix C, we find empirically that the uncertainty in n(z)
due to this effect is most pronounced at redshifts corresponding to
transitions of the 4000-Å break between the deep photometric filters,
as expected, and that the u-band zero-point uncertainty dominates,
increasing the uncertainty at lower redshift. We summarize briefly
the method for measuring and propagating this uncertainty here and
present greater detail in Appendix C.

We draw samples of deep-field magnitude zero-point offsets from
a Gaussian with standard deviation equal to the photometric zero-
point uncertainty in the Y3 deep-field catalogue in the relevant
band as measured by Hartley et al. (2020a). For each zero-point-
error realization, we perturb all magnitudes in the mock BALROG

catalogue with these zero-points and re-run the SOMPZ procedures
to generate a perturbed n(z). In this way we generate a full ensemble
of n(z)s reflecting the uncertainty of our redshift calibration due to
the photometric calibration.

It then remains to transfer the variation among the n(z)s in
this simulation-based ensemble to a corresponding data-based
ensemble of n(z) distributions. We implement a novel application
of Probability Integral Transforms (PITs) to achieve this. This
PIT method transfers the variation encoded in the ensemble from
simulated n(z) (ensemble A) to our fiducial data result to ultimately
yield a second ensemble (ensemble B). In brief, we achieve this
by transferring the difference between the values of the quantile
function of each realization. For the details of this implementation,
see Appendix C. The impact of this source of uncertainty is shown
in Figs 9 and 10 and documented in Table 2.

5.4 BALROG uncertainty

Recall that we use the BALROG software (see Section 3.2) to
empirically estimate the relation between wide- and deep-field
colours, pB(c, ĉ). The marginal distributions pB(ĉ) and pB(c) from
BALROG are not important, (they are measured from the deep and
wide samples), but the transfer function, pB(c, ĉ)/(pB(c)pB(ĉ)),
is a potentially important source of uncertainty. The probability
of observing certain wide colours ĉ given deep colours c depends
in general on the observing conditions present in the wide field.
Observing conditions vary across the DES Y3 wide-field footprint,
but for our cosmic shear analysis we are interested in the average
n(z) across the footprint. Since BALROG injects galaxies with tiles
placed at random across the DES Y3 wide-field footprint (covering
about ∼20 per cent of it), we are fairly sampling the distribution of
observing conditions present in the wide field.

To verify that the average transfer function from BALROG is
well estimated, we bootstrap the BALROG galaxies by their injected
position in the wide field. First, we create 100 subsamples by
grouping the injected position using the KMEANS RADEC2 software.
Then, we draw the same number of subsamples with replacement,
use them to recompute the average transfer function and calculate
the SOMPZ n(z). We repeat this process 1000 times and find the
dispersion in mean redshift to be smaller than 10−3 in all tomographic
bins. Therefore, we conclude that the internal noise in the average
BALROG transfer function is negligible, and consider f B

cĉ = NB
cĉ/N

B

to be true (with f B
cĉ from equation D2).

2https://github.com/esheldon/kmeans radec
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Figure 10. Variance of each source of uncertainty in each tomographic bin.
Note that the bar symbols indicating contributions from 3SDIR and 3SDIR-
MFWZ start at the same value for each bin, but 3SDIR-MFWZ extends to a
larger total uncertainty. The larger uncertainty estimated by 3SDIR-MFWZ
is an artefact of the likelihood we must use to combine n(z) constraints
from SOMPZ and WZ (see Section D5). As shown here, the redshift sample
uncertainty becomes a larger contributor to the uncertainty for higher redshift
tomographic bins. Note that the contributing sources of uncertainty combine
non-linearly. As a result, to illustrate the relative magnitude of each source
of uncertainty in each bin, and the relative importance of each contributing
source of uncertainty as a function of redshift, we rescale the total variance
in this figure to match the combined uncertainty (see Table 2).

Three of the DES deep fields (C3, E2, X3) overlap with the DES Y3
wide field, which we can use to construct a galaxy sample of position-
matched wide-deep photometry pairs. We refer to this galaxy sample
as WIDE-DEEP. We can empirically estimate the transfer function
using the deep and wide colours observed in this catalogue. We do
not use this transfer function for our fiducial result because it is
computed from one realization of the deep and wide mapping that
happens with the particular wide-field observing conditions found in
the deep fields, which are a much smaller area than the overall wide-
field footprint. However, we can compare the BALROG and WIDE-
DEEP transfer functions and their impact on the mean redshift to see
if they are reasonably in agreement, subject to the limitations just
mentioned.

For this test, we estimate the BALROG transfer function using only
injected deep-field galaxies that are also present in the WIDE-DEEP

sample. We can simulate the uncertainty due to varying observing
conditions of the WIDE-DEEP transfer function using BALROG subsam-
ples similar to the WIDE-DEEP sample. However, BALROG galaxies are
injected at one-fifth of the density of real galaxies, so we can either
reproduce a WIDE-DEEP-like sample with the same number of objects
and five times the area, or the same area but one-fifth of the number
of objects. The uncertainty of the first will be smaller than the real
uncertainty of the WIDE-DEEP, while the uncertainty of the second
case would be larger. We choose the former, which yields a lower
limit on the uncertainty due to variable observing conditions.

We find the difference in mean redshift �z̄ between using the
BALROG or the WIDE-DEEP transfer functions to be within ∼ 2σz̄ of

the distribution of simulated WIDE-DEEP samples: (�z̄ ± σz̄) × 103 =
[−2.8 ± 1.8; 3.6 ± 1.4; 3.1 ± 1.4; 8.2 ± 4.8]. Since the estimated
value of σz̄ is a lower limit, we conclude the difference is consistent
with the expected variance from observing conditions.

5.5 SOMPZ method uncertainty

As shown in Section 5.1.1, we find an intrinsic error on the
mean redshift predicted by SOMPZ when we compare it to the
true mean redshift across 300 BUZZARD realizations. This inherent
method uncertainty, like our zero-point calibration uncertainty, is
incorporated into our n(z) ensemble using the PIT method, albeit in
a much simpler way: we can incorporate this uncertainty by shifting
each probability integral transform by a value drawn from a Gaussian
with zero mean and a standard deviation equal to the root mean square
of these mean offset values, 0.003.

We note that this ensemble is made with an assignment of wide
SOM cells to tomographic bins that is fixed for all realizations.
Additionally, this method uncertainty is necessarily produced from
runs with finite sample sizes, meaning there is some statistical
contribution to the resulting estimate of systematic uncertainty.

5.6 Summary of sources of uncertainty

In summary, we incorporate uncertainties due to the following
sources into a final ensemble of redshift distributions. These results
are summarized in Table 2 and illustrated visually in Figs 9 and 10.
We note that the individual contributing sources of uncertainty do
not combine linearly. We report our best estimate of the uncertainty
due to each factor considered in this section in Table 2, but note that
the combined uncertainty is less than the quadrature sum of these
individual approximations. Fig. 10 illustrates the relative magnitude
of each source of uncertainty for each bin, and the relative importance
of each source of uncertainty as a function of redshift:

(i) Sample variance: This uncertainty is estimated and incorpo-
rated into our result as part of the 3SDIR formalism. This uncertainty
is a main contributor to the uncertainty budget in all of our
tomographic bins.

(ii) Shot noise: This uncertainty is estimated and incorporated into
our result as part of the 3SDIR formalism.

(iii) Redshift sample uncertainty: This uncertainty is estimated by
performing our inference with multiple different underlying redshift
samples, and marginalizing over these choices by compiling their
resultant n(z) samples into a single ensemble. The uncertainty added
by this marginalization is non-negligible in the third and fourth
tomographic bins and dominant in the third tomographic bin.

(iv) Photometric calibration uncertainty: This uncertainty is esti-
mated by running many times in simulations with offsets introduced
to the galaxy photometry, and is incorporated into our result using
PIT. This uncertainty is non-negligible in the first tomographic bin.

(v) BALROG uncertainty: This uncertainty is estimated by replacing
the transfer function p(c|ĉ) with an equivalent term estimated
directly from galaxies for which we have independent deep and wide
photometry, rather than using BALROG. This uncertainty is found to
be negligible in all bins and is thus not propagated into our final
resulting ensemble.

(vi) SOMPZ method uncertainty: This uncertainty is estimated
by running many times in simulations, and is incorporated into
our result using PIT. This uncertainty is found to be negligible in
all tomographic bins but it nevertheless propagated into our final
resulting ensemble.
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Figure 11. Visualization of the ensemble of redshift distributions in four tomographic bins, as inferred from SOMPZ only (open), and from SOMPZ combined
with WZ (filled). Each violin symbol shows the 95 per cent credible interval of the probability of a galaxy in the weak lensing source sample and assigned to
a given tomographic bin to have redshift z. The width at any part of a violin indicates the relative likelihood of p(z) in that histogram bin. The uncertainty on
p(z) is due to biases in the secure redshifts used in the analysis, sample variance and shot noise in the galaxies in the DES deep fields, photometric calibration
uncertainty for the DES deep fields, and the inherent uncertainty of the methods applied. SR information is included in the cosmology analysis as an additional
modelled data vector whose effect on the n(z) can be quantified in terms of shifts on the mean redshift (see Section 4.6 for more details). The low-probability
region of SOMPZ-only near z ∼ 0.75 is due to an imprint of large-scale structure in the COSMOS field, as illustrated by the abundance of spectroscopic and
photometric redshifts available in that region in Fig. 3.

6 R ESULTS

6.1 Redshift distribution ensembles

The results of the combined redshift calibration techniques are shown
in Fig. 11. We show the ensemble produced by SOMPZ as well as the
ensemble constrained by the addition of WZ. Notably, our knowledge
of the uncertainty on our measurement is not limited to the mean
redshift, or any other finite set of moments of the distributions.
Rather, the ensemble of redshift distributions effectively defines a
full probability distribution function for the p(z) of each histogram
bin, as illustrated by the violin plots of Fig 11. Visual inspection of
the SOMPZ-only distributions show that they are often not smooth
functions of z. This is expected because the 3SDIR likelihood (and
similar 3SDIR-MFWZ likelihood) aims to raise the uncertainties to
the levels expected from sample variance, but does not force the
resultant distributions to be smooth. The filled violins include WZ
information, which heavily favours smooth n(z) in the 0.1 < z

< 1.0 region where WZ data are available. The smoother nature

of the ensemble after incorporating WZ demonstrates the valuable
independence of that probe and its lesser reliance on biased redshift
samples. SR information is included in the cosmology analysis as
an additional modelled data vector whose effect on the n(z) can be
quantified in terms of shifts on the mean redshift (see Section 4.6 for
more details).

6.2 Consistency of independent redshift distribution measures

Fig. 12 demonstrates consistency among the distinct sources of infor-
mation used to determine n(z), namely SOMPZ (colour–magnitude),
WZ (clustering), and SR. A formal consistency check is complicated
by the fact that the methods do not constrain common directions in
the space of all possible n(z)’s. We choose to compare z̄, the mean
of n(z), and define �z here as the shift of z̄ relative to the mean z̄ of
the SOMPZ+WZ ensemble. Even with this simplification, there are
complications, e.g. WZ can only constrain n(z) (and hence its mean)
as restricted to the range in z where adequate reference samples exist.
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Figure 12. Consistency of the measured mean redshift in each tomographic bin from the three inference likelihoods on data. Each axis represents the difference
�z̄ in mean redshift z̄ for a particular bin relative to the mean value of z̄ in the SOMPZ+WZ ensemble. As noted in the text, z̄ can only be calculated from
WZ and SR information using a windowed (or weighted) average over z, so this plot makes use of such windows where necessary. As shown by the light-blue
contour, the inclusion of information from the ratios of the shear-position correlation functions at small scales significantly reduces the uncertainty on the mean
redshift in each tomographic bin. Note the contours including SR information have additional uncertainty due to incorporating the effect of blending, thus
leading to the false appearance that our combined SOMPZ+WZ+SR constraint is less constraining than SOMPZ, WZ, and SR individually.

Similarly, SR data measure redshift with an implicit weight related
to lensing efficiency functions. The �z values are plotted by always
applying matching redshift windows to both SOMPZ and the sample
under study.

On this basis, we find consistency between the three methods,
as well as the combinations thereof. While the constraints on the
mean redshift in each tomographic bin from SRs are broader than
from SOMPZ, the relative independence of this information yields
significantly more precise combined constraints on these means.
The WZ constraints on z̄ are weaker than those from SOMPZ,
but as detailed in Gatti et al. (2020), the WZ data are much more
powerful in constraining the shape and smoothness of n(z) than in

constraining the mean. This is illustrated directly by comparing the
SOMPZ ensemble to the SOMPZ+WZ ensemble in Fig. 11.

Further, because the shear signals measured in the SR analysis are
subject to systematic observational effects described in MacCrann
et al. (2020), we expect a certain degree of inconsistency between
SR and SOMPZ. Overall, however, within the reported uncertainties,
we find that these three likelihood functions can be combined. As
described in Section 4.6, the SR information is included in the
cosmology chains as an additional data vector, where the SR model
is evaluated alongside the cosmological and nuisance parameters of
the Y3 lensing analyses. As a result, the uncertainty we report in
Table 2 is not a prior on the uncertainty in the mean directly used in
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the cosmological Markov chains, but the posterior from a SR-only
chain where SOMPZ+WZ is used as the n(z) prior, the cosmological
parameters are fixed, and the nuisance parameters are varied within
their priors.

7 D ISCUSSION

We derive constraints on the redshift distributions of the DES
Y3 lensing source sample from the combination of wide-field
photometry (Sevilla-Noarbe et al. 2020; Gatti et al. 2021), deep-
field photometry (Hartley et al. 2020a), artificial DES wide-field
photometry (Everett et al. 2020), and high-quality photometric and
spectrocopic redshifts, using and updating the methodology of Buchs
et al. (2019). When quantifying the full uncertainty, including sample
variance, the choice of redshift sample, calibration uncertainty of the
photometric deep fields, and necessary assumptions made in the
method, we find small errors (σ 〈z〉 ∼ 0.01) on the mean redshift
of each of the four tomographic bins. Within their joint errors,
these redshift distributions are consistent with estimates from cross-
correlation of galaxies with high-quality redshift reference samples
(Gatti et al. 2020) and with the ratios of small-scale galaxy-galaxy
lensing signals (Sánchez et al. 2021), which we incorporate for a
joint estimate of n(z)s. Similar to Hildebrandt et al. (2017), we
also quantify the full uncertainty in n(z) shape that, while for many
applications being subdominant to the uncertainty in mean redshift,
can be fully propagated to parameter constraints from DES Y3
lensing analyses (Cordero et al. 2021). We note in this context that
3SDIR is the first analytic model whose samples are full-shape n(z).

While these results are encouraging, it is useful to consider the
limiting factors of our analysis to inform future work. There is not
one single effect. Rather, we find that our uncertainty is dominated
by photometric calibration uncertainty of the deep fields at the low-
redshift end of our sample, and that sample variance in the deep fields
and biases in the redshift samples dominate at higher redshifts. Future
work should address these sources of uncertainties with targeted
observing campaigns and development of new methods. In particular,
the LSST science requirement specification for error on the mean
redshift below 0.003 will require improvements on all counts. As
discussed by Speagle & Eisenstein (2017a,b), the overlap of LSST
photometry with NIR photometry from the Euclid survey (Laureijs
et al. 2011), especially over joint deep fields, will enable methods like
those used in our work for future lensing surveys (see also Rhodes
et al. 2017; Capak et al. 2019). We enumerate several opportunities
for improving weak lensing redshift calibration as follows:

(i) Spectroscopic follow-up targeting SOM cells: The deep SOM
constructed for this work defines a map of eight-band colour space
that can be used to design future spectroscopic surveys. Many, but
not all, cells defined by this SOM are populated with spectroscopic
redshifts. Particularly for the eight- or nine-band (e.g. including the
NIR Y band) colour space spanned by deeper lensing samples, the
fraction of cells covered by spectroscopy is expected to decrease, the
number of spectroscopic redshifts per cell is expected to decrease,
and the magnitude range, at fixed colour, spanned by spectroscopic
observations is expected to not match the magnitude range of the
lensing sources. Follow-up observations should prioritize deep SOM
cells with few redshifts, or with highly discrepant redshifts, as done
by Masters et al. (2019). Larger samples per cell will be required to
address any degeneracies remaining at fixed colour, and to calibrate
the effects of magnitude-dependent incompleteness at fixed colour.

(ii) Narrow-band imaging: Narrow-band imaging can serve as
a valuable complement to broad-band imaging and spectroscopic

surveys. Narrow-band imaging offers the benefit of measuring
relatively high wavelength resolution data for surveys of large fields
without selection biases. Given the intractable nature of selection
biases in spectroscopic redshift samples, narrow-band imaging can
serve a key role in breaking degeneracies of the colour–redshift
relation for the large regions of colour–magnitude space sampled
by weak lensing surveys. Given the dominance of redshift sample
uncertainty in the most cosmologically constraining bins, redshifts
informed by narrow-band imaging may prove key to meeting the
LSST redshift calibration requirements (see e.g. Benitez et al. 2014;
Alarcon et al. 2020a).

(iii) Improved transfer function: A key innovation of this work
is the construction of a transfer function encoding the probabilis-
tic relation between deep- and wide-field photometry. While this
transfer function was validated to be a negligible contribution to our
uncertainty, it could be improved by injecting across a larger fraction
of the wide-field survey footprint to probe more variation in survey
properties. Further, as described in Everett et al. (2020), the BALROG

injection procedure itself could be improved by using galaxy image
cutouts, rather than CModel fits, to account for the full diversity in
galaxy image properties that exceeds what the CModel galaxy profile
is able to describe.

(iv) Photometric calibration uncertainty leads to redshift uncer-
tainty that, at low redshift, is dominated by the DES deep-field
u-band calibration. Reducing the uncertainty on the u-band zero-
point can significantly aid redshift calibration. Additional u-band
data collected after the DES Y3 deep field effort will enable an
improved photometric calibration in future work.

(v) Improved optimization schemes for incorporating magnitude
to the photometric information used in the Deep SOM: We construct
the deep SOM with colour only, rather than colour–magnitude,
following the finding by Buchs et al. (2019) that the addition of
total flux (or magnitude) to the deep SOM does not improve the
performance of SOMPZ (see their section 5.1). Depending on the
survey photometric noise, it is, in principle, possible for there to be
residual correlation between redshift and magnitude at fixed eight-
band colour, as shown in fig. 4 of Speagle et al. (2019), but also
possible for the addition of total flux (or magnitude) to worsen results
because magnitude correlates more weakly with redshift than colour.
We leave it to future work to perform additional tests including
magnitude in the information used in the deep SOM.

(vi) In our analysis, the sample variance on the abundance of an
eight-band colour in our deep-field sample is propagated throughout,
but the abundance is not updated from wide-field information. A
hierarchical Bayesian model can significantly reduce the sample
variance on p(c) by using p(ĉ) and the transfer function p(c|ĉ) to
update and constrain p(c) (Leistedt, Mortlock & Peiris 2016; Sánchez
& Bernstein 2019). Likewise, p(z|c) can be further constrained with
a hierarchical Bayesian model that includes clustering information
from wide-field galaxies (Alarcon et al. 2020b).

(vii) Modeling n(z) with dependence on observing conditions:
variations in observing conditions over surveys remains a barrier
to using the full non-homogeneous photometric data set collected
by a given galaxy survey. To enable analysis of cosmic shear two-
point functions in a survey with non-uniform depth, future work may
require modeling lensing survey n(z) from non-uniform catalogues
(see e.g. Hoyle et al. 2018, appendix B; Heydenreich et al. 2020).
Our formalism, by explicitly evaluating the observing-condition-
dependent transfer function p(c|ĉ), naturally extends toward this
goal. Future work can use BALROG to mock galaxies at varying levels
of survey depth to match non-uniform surveys.
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DES Y3 has developed several new redshift calibration methods
to facilitate advanced quantification of our uncertainties. Given our
results, we conclude that future work for deeper lensing surveys such
as DES Y6 and Stage-IV experiments such as the LSST (LSST Dark
Energy Science Collaboration 2012) must address these challenges
to achieve the stated LSST science goal of uncertainty on the mean
redshift below 0.003. In particular, we highlight the need for
targeted spectroscopic and narrow-band photometric observations
overlapping the LSST footprint. We emphasize the utility of our
constructed SOMs to facilitate effective experimental design for
such observations. Work to achieve these goals is underway; see
e.g. Euclid Collaboration et al. (2020) and Masters et al. (2017).
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APPENDI X A : A PPENDI X O N SOM

Figs A1 and A2 show the i-band magnitude and colours of each
wide and deep SOM cell, respectively. Given that the SOM training
algorithm attempts to construct a smooth map in the full parameter
space of the training inputs, we can interpret stark differences in
adjacent cells as indirect indicators of degeneracies in the colour–
redshift relation. Comparison with the upper right-hand panel of
Fig. 5 indicates that the wide SOM cells with the broadest p(z|ĉ)
tend to be cells with overall fainter galaxies, supporting the intu-
itive conclusion that our redshift constraints are weaker for fainter
galaxies.

Figure A1. Visualization of the wide self-organizing map. Shown here are the mean i-band magnitude (left-hand panel), the mean r − i colour (middle panel),
and the mean z − i colour (right-hand panel) of each cell in the wide SOM. The implementation of SOMs used in our analysis generates a toroidal map; in other
words, the left and right edges of each map correspond to the same region of colour–magnitude space, as do the upper and lower edges.

MNRAS 505, 4249–4277 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/3/4249/6286909 by guest on 16 August 2022

http://dx.doi.org/10.1051/0004-6361/201936966
http://dx.doi.org/10.1111/j.1365-2966.2012.21952.x
http://dx.doi.org/10.1093/pasj/psz010
http://dx.doi.org/10.1111/j.1365-2966.2012.20468.x
http://dx.doi.org/10.1093/mnras/stw2805
http://arxiv.org/abs/2007.15635
http://dx.doi.org/10.1051/0004-6361/201834878
http://dx.doi.org/10.1093/mnras/sty957
http://dx.doi.org/10.1093/mnras/stt653
http://dx.doi.org/10.1111/j.1365-2966.2005.09782.x
http://dx.doi.org/10.1103/PhysRevLett.91.141302
http://dx.doi.org/10.1093/mnras/sts118
http://dx.doi.org/10.1093/mnras/stw3033
http://arxiv.org/abs/1906.09262
http://dx.doi.org/10.3847/0067-0049/224/2/24
http://arxiv.org/abs/1110.3193
http://dx.doi.org/10.1051/0004-6361/201322179
http://dx.doi.org/10.1093/mnras/stw1304
http://dx.doi.org/10.1088/0067-0049/184/2/218
http://dx.doi.org/10.1111/j.1365-2966.2008.13510.x
http://arxiv.org/abs/1211.0310
http://dx.doi.org/10.1086/301004
http://dx.doi.org/10.1111/j.1365-2966.2005.09282.x
http://dx.doi.org/10.3847/1538-4357/aa6f08
http://dx.doi.org/10.3847/1538-4357/ab184d
http://dx.doi.org/10.1088/0004-637X/813/1/53
http://dx.doi.org/10.1051/0004-6361/201219507
http://dx.doi.org/10.1093/mnras/stt914
http://arxiv.org/abs/1303.4722
http://dx.doi.org/10.1093/mnras/stx342
http://dx.doi.org/10.1086/589982
http://dx.doi.org/10.3847/1538-3881/ab0412
http://dx.doi.org/10.1086/668294
http://dx.doi.org/10.1103/PhysRevD.103.043503
http://dx.doi.org/10.1093/mnras/stz1309
http://dx.doi.org/10.3847/1538-4365/aa96b0
http://dx.doi.org/10.1093/mnras/stw1281
http://dx.doi.org/10.1093/mnrasl/slw201
http://dx.doi.org/10.1093/mnras/sty3222
http://arxiv.org/abs/2004.09542
http://dx.doi.org/10.1093/mnras/staa2799
http://dx.doi.org/10.1051/0004-6361/201630114
http://dx.doi.org/10.1086/516585
http://dx.doi.org/10.3847/1538-4357/aa704b
http://dx.doi.org/10.1088/0004-6256/146/2/32
http://dx.doi.org/10.1093/mnras/stw1485
http://dx.doi.org/10.1093/mnras/stx510
http://dx.doi.org/10.1093/mnras/stz2968
http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x
http://dx.doi.org/10.1093/mnras/stv2953
http://dx.doi.org/10.1093/pasj/psx077
http://dx.doi.org/10.21105/astro.2003.11558
http://arxiv.org/abs/2007.01846
http://dx.doi.org/10.1051/0004-6361/201936782
http://dx.doi.org/10.1051/0004-6361/202038389


4270 J. Myles et al.

Figure A2. Visualization of the deep-field self-organizing map. Shown here are the mean i-band magnitude (upper left-hand panel) of each cell of the deep
SOM, as well as each colour used in the deep SOM training. The implementation of SOMs used in our analysis generates a toroidal map; in other words, the
left and right edges of each map correspond to the same region of colour–magnitude space, as do the upper and lower edges.

APPENDIX B: SOMPZ IMPLEMENTATION
DE TA ILS

We enumerate here several technical details about the implementa-
tion of SOMPZ:

B1 SOM training

We note a few details about the SOM training algorithm here and
refer the reader to Buchs et al. (2019) for a full treatment. We use
the magnitude scale defined by Lupton, Gunn & Szalay (1999) for
our SOM training, which we call ‘luptitude’. The input vector of the
Deep SOM is chosen to be a list of lupticolours with respect to the
luptitude in the i band:

x = (μx1−μi, ..., μx7−μi),

where the bands x1–x7 are ugrzJHK. For the input vector of the Wide
SOM, we also use lupticolours with respect to the luptitude in i band,
and we add the luptitude in the i band:

x̂ = (μi, μr−μi, μz−μi).

In the case of the wide field, where only few colours are measured,
Buchs et al. (2019) find empirically that addition of the luptitude
improves the performance of the scheme.

B2 Deep SOM training sample

We find that training the deep SOM only on deep galaxies whose
BALROG realizations are detected and selected by the weak lensing
source selection function leads to a SOM with more precise p(z).

B3 High-redshift pile-up

The redshift samples used contain galaxies with p(3 < z < 6) >

0. Although the resulting SOMPZ n(z) with probability density at
redshifts greater than three accurately reflect our estimate of the n(z),
given the information available, the relatively small probability in this
high-redshift region inconveniently increases the computation time
needed to integrate over the n(z) in cosmological likelihood Markov
chains. To mitigate this effect, we shift all probability greater than
a cut-off value of 3 to the final redshift bin at 3. The amount of

probability beyond redshift 2 is less than 1 per cent in all cases:
[0.0096, 0.0062, 0.0021, 0.0077].

B4 Ramping

The DES Y3 3 × 2pt. cosmological analyses sample over this
ensemble in cosmological likelihood inference Markov chains.
Importantly, we find that non-zero probability density near zero
redshift (p(z ≈ 0) > 0) significantly increases the computation
time necessary to efficiently sample parameter space due to high
sensitivity of the intrinsic galaxy alignment (IA) model. This effect
is most pronounced for the lowest redshift bin because this bin has
the greatest p(z ≈ 0). We alter the ensemble of redshift distributions
post hoc to manually reduce p(z ≈ 0) by multiplying the p(z) up to z

= 0.055 with a linear function. This choice is justified on the grounds
of definitive prior knowledge that the source galaxy number density
approaches zero as redshift approaches zero. Given that our analytic
sample variance model does not account for this prior knowledge,
we enforce this prior on the output n(z). We additionally note that
the ramping procedure is verified to preserve the mean redshift in the
tomographic bin.

B5 Deep field noise differentiation

We note a test run on simulations in which the deep-field photometric
noise is set to different levels in COSMOS and the other DES
deep fields. As for all runs in simulations, we set the noise levels
by measuring the median noise levels in the corresponding data
catalogues. We find no measurable difference on the mean redshift
with this added realism relative to previous work.

APPENDI X C : PI T I MPLEMENTATI ON

This subsection (5.3) is dedicated to describing this novel method
for transferring the variation in n(z) as a result of our photometric
calibration uncertainty and how we implement this method in
practice.

The conceptual procedure for achieving this is described below
and described in greater detail in Myles et al. in prep. We begin by
computing the inverse cumulative distribution function (i.e. quantile
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Figure C1. Impact of the deep-field photometric zero-point offset on
estimated n(z). The spread in values of n(z) for any given histogram bin
here reflect the propagated impact of the photometric zero-point uncertainty
on n(z). We determine the offset used in each band for each realization by
sampling a multivariate Normal distribution with standard deviations set to
the zero-point uncertainty in each band. As shown here, some redshifts have
much larger spread in n(z) than others. The uncertain region in the interval
0 < z < 0.2 corresponds to a redshifted 4000-Å break between 400 and
480 nm, which is in the DES g-band filter. Likewise, the interval 0.4 < z

< 0.6 corresponds to a redshifted 4000-Å break between 560 and 640 nm,
which is in the DES r-band filter, and the transition to the i-band filter occurs
at z ∼ 0.75.

function) F−1
i for each simulated realization ni(z) in the ensemble

labelled A. For a tomographic bin b̂, this can be written as

F−1
i,b̂

(p) = {z : Fi,b̂(z) = p} with Fi,b̂(z) =
∫ z

−∞
ni,b̂(z′)dz′.

(C1)

We construct each PIT by computing the difference of the inverse
CDF of a given realization F−1

i,b̂
with the average inverse CDF of the

ensemble:

PITi,b̂ = F−1
i,b̂

− 〈
F−1

b̂

〉
. (C2)

Subtracting the average inverse CDF ensures that the mean redshift
is not changed by the PIT. This is necessary because each realization,
in addition to having some zero-point offset introduced, is drawn
from a noisy distribution due to (i) deep-field photometric noise and
(ii) mock-BALROG realization noise in simulations. As a result of (i)
and (ii), there would be a non-zero mean shift of the mean z shifts of
the ensemble of PITs if not for subtracting 〈F −1

b̂
〉.

We apply these transformations to the data by simply adding each
PIT to the inverse CDF of the fiducial data n(z), F−1

data, fiducial. The
PIT due to one draw of zero-point offsets is determined and applied
jointly to all tomographic bins:

F−1
i,b̂,data

= F−1
b̂,data, fiducial

+ PITi,b̂. (C3)

Given this ensemble of inverse CDFs of the data n(z), we construct
the corresponding ensemble of data n(z) by taking the inverse to
yield CDFs, then differentiating

ni,b̂(z) = d

dz

(
Fi,b̂,data

)
. (C4)

Implementing the PIT offers two insights into our calibration
uncertainty: First, our uncertainty is driven by the u-band calibration,
and secondly, we find n(z) uncertainty increases at wavelengths

corresponding to photometric filter transitions of the 4000-Å break,
as shown in Fig. C1.

APPENDI X D : 3SDI R M O D E L

Here we describe the formalism we use to model shot noise and
sample variance in the redshift–colour probability from the deep
fields to propagate it through to the redshift distribution of a
tomographic bin.

Regarding the notation for the probability of redshift and colour
space, note that c and ĉ are discrete variables, denoting regions
in a partitioning of colour space. Following Leistedt et al. (2016,
see equations 1–2 and Section 2), we will also adopt a piece-wise
constant representation of probabilities in redshift space (essentially
a probability histogram). In other words, we define any probability
of a galaxy in our sample having redshift z, p(z), with a finite set of
coefficients fi of step functions �,

p(z) ≡
∑

i

fi

zi − zi−1
× �(z − zi−1)�(zi − z). (D1)

In the remainder of the work, we will use the symbol z to represent
the discrete index of redshift bins divided at the zi bin edge values.
Given this notation, we can represent the joint probability of colour
and redshift with the set of coefficients {fzc}.

We denote each data set D as W for Wide, D for Deep, B for
BALROG, and R for Redshift. Note that R ⊂ D, and that B contains
several mock realizations of galaxies from D that have been injected
and measured as in W using BALROG (see Section 3). We denote a
set of coefficients f that has been inferred from a data set D as fD. For
example, the coefficients of the joint redshift and colour distribution
inferred from the redshift sample is denoted by f R

zc .

D1 Shot Noise

We begin by rewriting equation (14) using the f coefficients notation,
indicating which sample is used to infer each of the coefficients:

p(z|b̂, ŝ) ≈
∑
ĉ∈b̂

∑
c

f R
zc

f R
c

f D
c

f B
cĉ

f B
c f B

ĉ

f W
ĉ , (D2)

where f R
c = ∑

z f R
zc , f B

c = ∑
ĉ f B

cĉ , and f B
ĉ = ∑

c f B
cĉ . Following

Leistedt et al. (2016, see Section 3.1), we want to infer the parameters
({f R

zc }, {f B
ĉc }, {f D

c }) from the following sets of galaxy data :

(i) DR = {zg, cg}R for g = 1 . . . NR,
(ii) DB = {ĉg, cg}B for g = 1 . . . NB,
(iii) DD = {cg}D for g = 1 . . . ND , and
(iv) DW = {ĉg}W for g = 1 . . . NW .

Let us start by assuming that the properties of these galaxies
are known (i.e. they are noiseless). Consider a scenario in which
we ignore line-of-sight density variance, redshift errors, zero-point
errors, and other systematic uncertainties. In this scenario, a sufficient
statistic for inferring the coefficients ({f R

zc }, {f B
ĉc }, {f D

c }), is the
count of galaxies in each of the joint bins of redshift and SOM
cells. Let us take for example the redshift sample, which we can
reduce to the counts DR → {NR

zc } of galaxies detected in redshift
bin z and deep SOM cell c.
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From Bayes’ theorem, the probability of these coefficients f R ≡
{f R

zc } given the observed galaxy counts can be written as

p( f R|DR) ∝ p(DR| f R) p( f R)

= p({NR
zc }| f R)p( f R)

= p( f R)
∏
zc

(
f R

zc

)NR
zc , (D3)

and similarly for the other two sets of coefficients. The likelihood
function of the binned data p({NR

zc }| f R) is a multinomial distri-
bution by definition, under the assumption of independent selection
of each galaxy. The conjugate prior for a multinomial likelihood
function is a Dirichlet distribution, so if we choose our prior p( f R)
to be a Dirichlet distribution with rate parameters αR

zc = ε, then
the posterior is also a Dirichlet distribution which depends only on
the galaxy number counts (which makes the posterior analytical
and easy to sample from). The Dirichlet distribution is also a
natural prior because it enforces the constraints that f R

zc > 0 for
all zc,

∑
f R

zc = 1 (required for any probability), and is invariant
under any rearrangement of the f’s (it is agnostic to the meaning of
the bins). The posterior Dirichlet distribution is

p( f R|{NR
zc }) = Dir

(
f R; {αzc}

)
= Dir

(
f R;

{
αzc = NR

zc + ε
})

∝ δ

(∑
zc

f R
zc − 1

)∏
zc

(f R
zc )N

R
zc −1+ε, (D4)

where ε is a positive, small number to ensure that the Dirichlet
distribution cannot get zero or negative counts as input (some of the
z, c counts will be zero).

For a large number of galaxies, the marginalized mean and
variance of f R

zc reduce to NR
zc /NR, which is the classical ap-

proximate histogram estimator (note that Dirichlet is the correct
posterior distribution for a histogram, but a Gaussian distribution
with NR

zc /NR mean and variance become a good approximation).
Equivalent expressions arise for the f B and f D coefficients. We note
that, for the wide sample, we can consider f W

ĉ = NW
ĉ /NW to be an

exact result (not stochastic) because we are interested in the p(z) for
the realization of the wide-field survey that we have, not the redshift
distribution for a hypothetical infinite survey.

D2 Sample variance

Both deep and redshift samples span a much smaller area than
that of the DES Y3 wide source sample. Therefore, the underlying
redshift distribution measured in the deep fields – and since they are
correlated, the measured colour distribution – contain random large-
scale structure fluctuations particular to that volume, commonly
referred to as sample variance. We can describe the observed redshift
distribution in the deep field as

ND
z = Poisson

[
NDf W

z

(
1 + �D

z

)]
, (D5)

with f W
z as the underlying redshift distribution in the wide field, and

�D
z the particular redshift fluctuation found in the deep field with

respect to the wide field, with Var(�D
z ) the sample variance.

The Dirichlet sampling (equation D4, Dir( f R; αzc = NR
zc + ε))

described in Section D1 only reproduces the variance expected from
Poisson noise, but does not account of the additional uncertainty due
to sample variance. In order to increase the variance of the Dirichlet
sample, one can perform the transformation αi → αi/λ, which does
not change the expected value of fi in the Dirichlet distribution, but
does change its variance roughly as Var(fi) → λVar(fi), for those

coefficient indices i for which αi � ∑
iαi. When the value of λ is

the ratio between total noise (sample variance and shot noise) over
shot noise, we obtain samples of fi with the larger, correct variance.
However, for equally spaced redshift bins, Var(�D

z ) is a function
of redshift (i.e. sample variance becomes larger at lower redshift
where the volume is smaller). A constant value λ cannot increase the
variance as a function of redshift as needed, but a value of λ that
changes as a function of redshift would bias the expected value of fi.

However, we do not sample in the fz space, but in fzc space. Two
phenotypes (different deep SOM cells c) that overlap in redshift have
correlations due to the same underlying large-scale structure fluctua-
tions. We will work under the assumption that different phenotypes at
the same redshift have the same sample variance. As phenotypes are
defined in observed colour space, we do not expect large differences
in their galaxy bias when they overlap in redshift, and we defer a more
detailed study to future work. Sánchez et al. (2020, S20 hereafter)
introduced a three-step Dirichlet sampling method (3SDIR), which
produces samples of fzc that can incorporate the correct level of
sample variance as a function of redshift and correlate phenotypes
that overlap in redshift. S20 validated in simulations that 3SDIR

correctly reproduces the amount of sample variance expected in both
the mean redshift and width of the redshift distribution of a wide
field estimated from a smaller patch of the sky.

D2.1 3SDIR method

The 3SDIR method from S20 assumes the coefficients fzc are inferred
from a single redshift sample, f R

zc . The 3SDIR method introduces the
concept of a superphenotype T as a group of deep SOM cells that
are close in redshift, such that the superphenotypes become nearly
disjoint in redshift space. This allows us to introduce a redshift-
dependent parameter λ (one λ for each T) and correlate phenotypes
that are close in redshift (different c in the same T are correlated).
Following S20, we can write the probability of redshift and colour,
with the superphenotypes T, as

p(z, c) =
∑

T

p(c|z, T )p(z|T )p(T ), (D6)

fzc =
∑

T

f zT
c f T

z fT . (D7)

To produce a sample of the coefficients {fzc} we need to produce
a sample of the coefficients ({f zT

c }, {f T
z }, {fT }), which we infer

from the observed redshift sample number counts in each zcT bin,
NR

zcT . Note that {f T
z } are independent from {fT}, since the former is

conditioned on T (indicated by the superscript). Similarly, {f zT
c } are

independent from both {f T
z } and {fT}). Therefore, we can sample

them separately from the observed counts. 3SDIR consists of drawing,
in sequence, values of {fT} , {f T

z } , and {f zT
c } with individual

Dirichlet distributions from the appropriate galaxy counts, {NR
T },

{NR
zT }, and and {NR

zcT }, respectively. However, we will rescale the
counts used to infer the samples of both {fT} and {f T

z }. This process
increases the variance of the final {fzc} sample to the level expected
for the sum of shot noise and sample variance, while keeping
its expected value. In other words, we draw from the following
distributions:

p({fT }|{NR
T

}
) ∼ Dir

(
{fT };

{
αT = NR

T

λ̄
+ ε

})
, (D8a)

p
({

f T
z

}|{NR
zT

}) ∼ Dir

({
f T

z

}
;
{
αz = NR

zT

λT

+ ε
})

for each T ,

(D8b)
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p
({

f zT
c

}|{NR
zcT

}) ∼ Dir
({

f zT
c

}
×{

αc = NR
zcT + ε

})
for each z, T , (D8c)

where

λ̄ ≡
∑

z

λz

NR
z

NR , (D9)

λT ≡
∑

z

λz

NR
zT

NR
T

, (D10)

λz ≡ Var
(
NR

z

)
NR

z

= 1 + NR
z Var

(
�R

z

)
. (D11)

Equation (D11), λz, is the ratio of the total variance (shot noise
and sample variance) to only the shot noise variance. When we
infer {f T

z }, the redshift counts for each superphenotype, {NR
zT }, are

rescaled by a constant value equal to the average λz ratio weighted
by the superphenotype’s redshift distribution: λT (equation D10).
When we infer {fT}, the counts {NR

T } get rescaled by the average
λz weighted by the sample redshift distribution, λ̄ (equation D9).
Overall, this noise-inflated Dirichlet sampling scheme (equation D8)
is an approximate model of how sample variance affects the joint
redshift and colour redshift distribution, which allows one to increase
the variance as a function of redshift without introducing any bias
(as noted in S20).

Finally, we estimate the sample variance term, Var(�R
z ) (equa-

tion D11), from theory following the same assumptions as in S20,
which assumed a circular footprint of the same area as the redshift
sample, which gives a prediction which is good at the 10–20 per
cent level, mostly due to the galaxy bias modeling (see S20 for more
details, including small dependence of the prediction on cosmology).
S20 validated the method in simulations, and then applied 3SDIR to
the COSMOS field, which is the field of our redshift sample, so we
directly use the sample variance prediction from S20.

D2.2 Sample variance in the deep sample

In this analysis the redshift sample spans a smaller area than the
whole deep-field area, which carries additional information of the
marginal distribution of colours, p(c). We have four deep fields, F =
{COSMOS = COS, C3, E2, X3}, so we can write the probability of
fz conditioned on the counts from the four fields as

p
(
fz|NCOS

z , NC3
z , NE2

z , NX3
z

) ∝ p
(
NCOS

z , NC3
z , NE2

z , NX3
z |fz

)
p(fz)

≈ p
(
NCOS

z |fz

)
p
(
NC3

z |fz

)
×p

(
NE2

z |fz

)
p
(
NX3

z |fz

)
p(fz)

∝ Dir

(
αz =

∑
F

NF
z + ε

1 + NF
z Var

(
�F

z

)) ,

(D12)

where in the second line of equation (D12), we approximate that the
observed redshift number counts of each field NF

z are independent of
each other. However we do not have complete redshift information
in all fields: we have complete high-quality photometric redshift
information in the COSMOS field, while we have incomplete and
inhomogeneous spectroscopic coverage in all fields. For the purpose
of modeling sample variance, one limit is to ignore the redshift
information in the C3, E2, and X3 fields, and assume that the redshift
sample is self-contained in the COSMOS field. Then, one can define
the redshift number counts in any field by re-weighting the redshift

information in the COSMOS field. In other words, we use

NF
z ≡

∑
c

(
NCOS

zc∑
z′ NCOS

z′c
NF

c

)
for F ∈ {COS, C3, E2, X3}. (D13)

The NF
z are independent from each other in the limit where there is a

tight relation between redshift and deep colour (i.e. p(z|c) is narrow)
that is well determined in the redshift sample, and when the noise is
dominated by the sample variance in the colour distribution in each
field, NF

c .
We define the effective ratio of the total variance to only the shot

noise in all the deep fields, λeff
z , from equation (D12) as∑

F NF
z

λeff
z

≡
∑

F∈{COS,C3,E2,X3}

NF
z

1 + NF
z Var

(
�F

z

) , (D14)

where Var(�F
z ) is defined by using the correct area of each field. We

define λ̄eff as

λ̄eff ≡
∑

z

λeff
z

∑
F NF

z∑
F NF

. (D15)

In practice, the value of λ̄ and λ̄eff is similar, since the decrease in
sample variance (roughly inversely proportional to the area) is in part
compensated by the increase in number counts (proportional to the
area).

D2.3 Application of 3SDIR to DES Y3

From equation (D2), we want to sample the following coefficients :

fzc ≡ f R
zc∑

z f R
zc

f D
c . (D16)

First, we sample the coefficients {f R
zc } using only the redshift

sample with the same 3SDIR formalism from Section D2.1. Then, we
separately sample the coefficients {f D

c } using only the deep sample
with the formalism that we now describe. Finally, we can compute
the sample of coefficients {fzc} using equation (D16), which replaces
the sample from equation (D7).

To sample the coefficients {f D
c }, we write the probability of colour

with the superphenotypes T as

p(c) =
∑

T

p(c|T )p(T ), (D17)

fc =
∑

T

f T
c fT , (D18)

similar to equation (D7). Then, we sample the coefficients {f T
c } and

{fT} with

p
({fT }|{ND

T

}) ∼ Dir

(
{fT }; αT = ND

T

λ̄eff
+ ε

)
, (D19a)

p
({

f T
c

}|{ND
cT

}) ∼ Dir
({

f T
c

}
; αc = ND

cT + ε
)

for each T .

(D19b)

with λ̄eff from equation (D15).

D3 Bin conditionalization

The sampling process described so far consists of drawing values for
fzc (equation D16), which represents the term fzc = (f R

zc /f R
c )f D

c

from equation (D2) because it includes information from both the
deep and redshift samples. We already include the probablity that
a galaxy is selected into the weak lensing sample in the counts
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NR
zc and ND

c that we input to the 3SDIR method (i.e. each galaxy
counts as a fraction equal to its BALROG detection probability). We
draw one sample of fzc for all four tomographic bins, and we add
the bin conditionalization (equation 5) by multiplying the fractional
probability gzc that each (z, c) bin is assigned to a tomographic bin b̂

as measured from the counts:

f R,b̂
zc ≡ gR,b̂

zc × f R
zc , (D20)

where gR,b̂
zc is the fractional probability that galaxies from the

Redshift sample end up in each tomographic bin according to
BALROG,

gR,b̂
zc ≡

∑
sĉ∈b̂N

R
z,c,ĉ∑

sĉN
R
z,c,ĉ

and
∑

b̂

f R,b̂
zc = f R

zc . (D21)

Similarly, we can also define for the deep sample,

f D,b̂
c ≡ gD,b̂

c × f D
c ; gD,b̂

c ≡
∑

sĉ∈b̂N
D
c,ĉ∑

sĉN
D
c,ĉ

;
∑

b̂

f D,b̂
c = f D

c .(D22)

We define an effective tomographic bin weight that we can apply to
our sample fzc, gb̂

zc, as

gb̂
zc ≡ gR,b̂

zc∑
z g

R,b̂
zc

gD,b̂
c and then f b̂

zc = gb̂
zc × fzc. (D23)

Whenever there are no Redshift galaxies measured in a bin and cell,
we set the redshift distribution to the non-tomographic one (following
equation 6 and the discussion in Section 4.1). To summarize, we
draw one sample of fzc and use the weight gb̂

zc to compute the four

tomographic bin samples f b̂
zc (equation D23).

D4 Lensing weights

Similarly, to include the lensing and response weights from Sec-
tion 4.2, we define an averaged weight for each (z, c) pair in the
redshift sample:

〈
wR

zc

〉 ∝ gR,b̂
zc

∑
i∈(z,c)

⎛
⎝ 1

Mi

∑
j

wij

⎞
⎠ , (D24)

where wij is the lensing weight for the jth detection that passes
METACALIBRATION selection of the ith deep-field galaxy with redshift
information; Mi is the number of times galaxy i has been injected into
BALROG; and gR,b̂

zc is the conditioned probability of each tomographic
bin (equation D21). We are also interested in the lensing averaged
weight for each deep cell in the redshift sample:

〈
wR

c

〉 ∝
(∑

z

gR,b̂
zc

)∑
i∈(c)

⎛
⎝ 1

Mi

∑
j

wij

⎞
⎠ . (D25)

Analogously, we define an averaged lensing weight for the deep
sample:

〈
wD

c

〉 ∝ gD,b̂
c

∑
i∈(c)

⎛
⎝ 1

Mi

∑
j

wij

⎞
⎠ , (D26)

with gD,b̂
c from equation (D22). Finally, we define the effective

weight as

〈wzc〉 ≡
〈
wR

zc

〉〈
wR

c

〉〈wD
c

〉
, so that f b̂

zc → 〈wzc〉f b̂
zc, (D27)

with f b̂
zc from equation (D23).

In summary, we obtain a sample of fzc from equation (D16) from
BALROG-weighted counts of the redshift and deep fields, to which we
apply a tomographic bin selection probability weight to obtain the
coefficients for each tomographic bin, f b̂

zc (equation D23) and finally
apply the lensing and response weight (equation D27).

D5 3SDIR modified for WZ (MFWZ)

To jointly sample from the 3SDIR likelihood from photometry from
this paper and the clustering redshifts (WZ) likelihood from Gatti
et al. (2020) we have implemented a Hamiltonian Monte Carlo
(HMC) algorithm, which is far more efficient than importance
sampling 3SDIR samples with the WZ likelihood (see Gatti et al. 2020
for details). However, we have implemented a modified version of the
3SDIR likelihood (MFWZ) for the HMC algorithm that we describe
here.

The 3SDIR MFWZ likelihood samples using the equations for
the redshift sample (equations D7 and D8), and only incorporates
the information from the deep-field colour counts during step 1
(equation D8a). Accordingly, we also update the value of λ̄ in
equation (D9) with λ̄eff from equation (D15). We sample {fT} from
the colour counts from the deep field {ND

T } with

p
({fT }|{ND

T

}) ∼ Dir

(
{fT }; αT = ND

T

λ̄eff
+ ε

)
. (D28)

The samples of {f zT
c } and {f T

z } are obtained from equa-
tions (D8b) and (D8c). Finally one obtains the {fzc} sample from
({f zT

c }, {f T
z }, {fT }) using equation (D7).

Although 3SDIR MFWZ is using less information from the deep
fields, we find it easier to implement in an HMC together with the
WZ likelihood.

D6 Known errors

During the processing of the 3SDIR and 3SDIR-MFWZ samples, the
following error was made. In bin conditionalization, when there is no
Redshift galaxy that satisfies both c and b̂, we instead use the redshift
information from any tomographic bin in that cell. In other words, we
use equation (6) instead of equation (5) as discussed in Section 4.1.
When implementing the lensing responses in 3SDIR, we did not
properly implement this last change, and, in practice, we always used
equation (5). This produces a shift in the n(z) average mean redshift
equal to �z = [0.003, 0.003, ∼0, −0.004] (difference between the
correct implementation minus the actual implementation). We note
that the effect of this error is small compared to all other uncertainties
included in the analysis.

APPENDI X E: VALI DATI ON O F SOMPZ AND
3SDI R

In order to validate the methodology of SOMPZ and 3SDIR we
use the suite of BUZZARD simulations. We note that the BUZZARD

simulations do not include simulated images, so we cannot test the
lensing and response weight methods from Section 4.2 in SOMPZ,
nor Section D4 in 3SDIR. The validation of such weights is explored
in MacCrann et al. (2020), and we have verified that both the SOMPZ
and 3SDIR weight implementations are consistent: The SOMPZ
weights are applied individually to galaxies, while in 3SDIR, they
are applied as averaged quantities to fzc. We have verified this change
does not introduce biases larger than 10−3 in the mean redshift in
any of the tomographic bins.
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Figure E1. Distribution of mean redshift, z̄, values in each of the 300
realizations of the deep fields in BUZZARD compared to the truth (cross-
hatches). In each deep-field realization, we run the SOMPZ code, obtain
an n(z) by fixing the probabilities to the number count measurements, and
calculate the mean redshift of each tomographic bin. Similarly, we draw 104

samples of fzc with the 3SDIR and 3SDIR-ALT method, compute the redshift
distribution of each tomographic bin for each sample, their mean redshift,
and we finally compute the average z̄ value. The z̄ distribution from 3SDIR is
wider because it is not using all the colour information from the deep fields.

We generate 300 versions of the four DES deep samples (where
one of the four has perfect redshift information) at different random
line-of-sight positions in the BUZZARD simulations. For each of the
300 realizations of the deep fields, we run the SOMPZ algorithm
and estimate the different simulated number counts, ND

c , NR
zc , and

NB
cĉ , while the wide field remains constant. Then we obtain an n(z)

estimate for each tomographic bin by fixing the probabilities to the
observed number counts.

To test the performance of the 3SDIR method, we perform the
following procedure in each of the 300 BUZZARD realizations of the
deep fields. We draw 104 samples from equation (D16), {f i

zc; i =
1, . . . , 104} to which we apply the bin conditionalization using
equation (D23), and use equation (D2) to obtain the 104 {f i

z ; i =
1, . . . , 104} samples for each tomographic bin. From it, we estimate
the mean redshift of each f i

z sample, z̄i = ∑
z zf i

z , and its average
value z̄3SDIR ≡ 〈z̄i〉 in each BUZZARD realization. We also compute
the z̄SOMPZ value of the single n(z) from SOMPZ in each realization,
which we obtain by fixing the probabilities to the number counts. In
summary, we have 300 values of z̄SOMPZ and z̄3SDIR, and a total of
300 × 104 values of z̄i whose variance reflects the uncertainty on the
mean redshift per tomographic bin as estimated from 3SDIR.

Fig. E1 shows the distribution of the 300 values of z̄SOMPZ, z̄3SDIR,
and z̄3SDIR-MFWZ compared to the true z̄true (shown as dotted lines).
First, we find the z̄SOMPZ distribution to be centred offset from the
truth by �z = [0.0051, 0.0024, −0.0013, −0.0024] in each bin, where
�z ≡ 〈z̄SOMPZ〉 − z̄true. As discussed in Section 5.1.1, we expect a
non-zero offset due to the bin conditionalization approximation, and
we include this non-zero offset as an intrinsic systematic error to
the mean redshift (see Section 5.5). On the other hand, we find the
averages over 300 realizations, 〈z̄3SDIR〉 and 〈z̄SOMPZ〉, to be within

Figure E2. Distribution of residual 3SDIR or 3SDIR-ALT samples across 300
realizations of the deep fields on BUZZARD. A residual sample is defined as
�i

z = (z̄i − z̄SOMPZ)/σ (z̄i ), with σ (z̄i ) being the standard deviation of the z̄i

values from 3SDIR in each realization. The distributions agree with a Gaussian
distribution with zero mean and unit variance (shown as dashed lines), which
shows that the mean redshifts from 3SDIR and 3SDIR-ALT are statistically in
agreement with z̄SOMPZ across the 300 BUZZARD realizations.

0.001 of each other in redshift in Fig. E1, meaning that 3SDIR is,
on average, unbiased with respect to the SOMPZ mean redshift. We
also find the width of both distributions to agree. However, we find
the distribution of z̄3SDIR-MFWZ to have more scatter than the z̄SOMPZ

and z̄3SDIR distributions. This is a consequence of 3SDIR-MFWZ
not fully exploiting the information available in the deep sample
on the colour abundance p(c), since we only use it to inform the
superphenotype distribution p(T) (Section D5). The 3SDIR-MFWZ
likelihood is more suitable to be sampled efficiently together with
the clustering redshifts likelihood using an HMC (Gatti et al. 2020).

To test if the predicted distribution on z̄ values from 3SDIR is
consistent with z̄SOMPZ, we compute in each BUZZARD realization
the pull distribution as �i

z = (z̄i − z̄SOMPZ)/σ (z̄i), with σ (z̄i) being
the standard deviation of the z̄i values from 3SDIR. Fig. E2 presents
the stacked pull distributions from all 300 BUZZARD realizations.
We find this distribution to be centred at zero and very similar to a
Gaussian distribution with zero mean and unit variance, illustrating
more rigorously that 3SDIR predicts samples of z̄ which are fully
compatible with the SOMPZ mean redshift. We also do the same test
with 3SDIR-MFWZ, finding the same conclusion.

Fig. E3 addresses the width predicted by 3SDIR or 3SDIR-MFWZ
in each BUZZARD realization, compared to the scatter in z̄ from
SOMPZ across the 300 BUZZARD realizations. The vertical line in
each panel shows the spread of z̄SOMPZ across the 300 BUZZARD

realizations (i.e. the spread of SOMPZ in Fig. E1). While SOMPZ
only produces one estimate of z̄ in each realization, the 3SDIR and
3SDIR-MFWZ models produce a distribution of z̄ values in each
BUZZARD realization. In each realization, we compute the standard
deviation of z̄ for both 3SDIR and 3SDIR-MFWZ, and we show the
histogram of these 300 values. As expected, the predicted σ (z̄) values
from 3SDIR-MFWZ are [78, 31, 23, 39] per cent larger than 3SDIR

in each bin, since the former is using less information from the deep
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Figure E3. Vertical line: standard deviation of z̄SOMPZ across the 300
realizations. Histograms: standard deviation of individual z̄ values drawn
with 3SDIR or 3SDIR-ALT in each of the 300 realizations.

fields. We find the σ (z̄) from 3SDIR to be in reasonable agreement
with SOMPZ, although we find them to be slightly underestimated
at lower redshift and overestimated at higher redshift, finding [ −
11, 4, 8, 53] per cent difference in each bin. This is in agreement
with S20 (see their fig. 12), which shows that 3SDIR tends to
underpredict the variance at low redshift, and the opposite at high
redshift.
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