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ABSTRACT
We present new wide-field weak lensing mass maps for the Year 1 Dark Energy Survey (DES)
data, generated via a forward fitting approach. This method of producing maps does not impose
any prior constraints on the mass distribution to be reconstructed. The technique is found to
improve the map reconstruction on the edges of the field compared to the conventional Kaiser–
Squires method, which applies a direct inversion on the data; our approach is in good agreement
with the previous direct approach in the central regions of the footprint. The mapping technique
is assessed and verified with tests on simulations; together with the Kaiser–Squires method,
the technique is then applied to data from the DES Year 1 data and the differences between the
two methods are compared. We also produce the first DES measurements of the convergence
Minkowski functionals and compare them to those measured in simulations.

Key words: gravitational lensing: weak – dark matter – large-scale structure of Universe.

1 IN T RO D U C T I O N

The presence of a gravitational potential influences light trajectories
so that, to an observer, the apparent position and shape of objects
is altered via an effect known as gravitational lensing. As this
gravitational potential is related to the matter distribution, there
is a relationship between the strength of the lensing effect and
the density contrast from which it arises. The arrangement of

� E-mail: ben.mawdsley@port.ac.uk

a source of light, a mass distribution acting as a lens, and an
observer can produce a range of magnitudes of lensing effects. This
paper pertains to weak lensing, which produces small �1 per cent
changes in the source objects’ apparent ellipticities. Measurements
of galaxy ellipticities can therefore be used to estimate lensing
shear, and hence constrain the integrated gravitational potential
and the integrated matter distribution between the observer and a
lensed galaxy. Shear can be related to the matter surface density,
or convergence distribution κ , through a technique known as the
Kaiser–Squires inversion (Kaiser & Squires 1993) to produce large-
scale maps.
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As the perturbations to the underlying metric of the Universe
from matter concentrations are solely caused by gravitation, lensing
is only sensitive to the total density contrast and not to any further
properties of the matter. Lensing therefore probes the dark Universe
as well as luminous matter. This is in marked contrast to using
other probes, such as galaxy clustering, where luminous matter
is a proxy for the location of dark matter and we must introduce
a bias parameter. Lensing, and the matter distributions inferred
from it, are powerful tools to constrain cosmological parameters
– and this is not just true of the two-point statistics of shear or
convergence; the κ maps contain further information on the phase of
the matter distribution. Additional non-Gaussian information in the
fields has been examined through peak statistics of the convergence
field (Dietrich & Hartlap 2010; Kratochvil, Haiman & May 2010;
Yang et al. 2011; Kacprzak et al. 2016), Minkowski Functionals
(Petri et al. 2013, 2015), three point statistics (Dodelson & Zhang
2005), and through examination of the full distribution of values in
the convergence map, or Probability Density Function (Clerkin et al.
2015; Patton et al. 2017). Maps are also useful for cross-correlating
with other observations, for example by correlating with galaxy
positions (Utsumi et al. 2016) and for constraining bias as in Chang
et al. (2016).

With the next generation of surveys covering significant fractions
of the sky and measuring large numbers of galaxy shapes to high
precision, weak lensing promises to be a leading cosmological
probe in coming years, and will map the large-scale structure of
the Universe to an unprecedented scale. Wide-field mass maps
have been produced using weak lensing measurements in a number
of recent surveys: the Canada-France Hawaii Telescope Lensing
Survey (Erben et al. 2013), the Cosmic Evolution Survey (Massey
et al. 2007), and the Kilo-Degree Survey (de Jong et al. 2015).
The Dark Energy Survey (DES; Flaugher 2005) has produced mass
maps through the Kaiser–Squires inversion, on an approximately
flat-field in their Science Verification data (Vikram et al. 2015)
and on the sphere for the larger Year 1 footprint (Chang et al.
2018). The Hyper Suprime-Cam survey (Aihara et al. 2018a,b)
has produced mass maps (Miyazaki et al. 2018) using their shear
catalogues (Mandelbaum et al. 2018) over a 167 deg2 area of the sky.
Maps were also produced tomographically across several redshift
bins (Oguri et al. 2018), resolving structure at a finer level than
DES due to its high galaxy density, allowing for smaller scale shear
measurements.

In this paper, we produce updated mass maps using the DES Year
1 data. Previously, maps were made through directly transforming
shear fields into convergence maps, which introduces errors around
the edges of the survey footprint; our alternative method avoids
directly transforming data and prevents the introduction of these
edge effects, by fitting hypothesis full-sky maps to the data. We
examine how this method compares to the previous approach, and
analyse its potential for further applications to wide-field mass
mapping.

This paper is arranged into five sections. Section 2 describes
the weak lensing formalism, before introducing the forward fitting
approach in Section 3. Section 4 provides details of the tests
undertaken to examine the resultant maps, and Section 5 presents the
maps produced using the DES Y1 data. We conclude in Section 6.

2 LENSING FORMALISM

Here we briefly describe the relevant weak lensing formalism for
our work. A comprehensive review of weak lensing can be found
in Bartelmann & Schneider (2001); in the following Section we

shall follow the spherical harmonics approach described in Castro,
Heavens & Kitching (2005). The large footprint of modern surveys
mean that a full sky treatment is required, which is achieved
with techniques commonly used in CMB analyses (Heavens 2003;
Kitching et al. 2014; Leistedt et al. 2017)

We can define a lensing potential φ at a given spatial coordinate
r = (r, θ , ψ) by

φ(r, θ, ψ) = 2

c2

∫ r

0
dr ′ fK (r − r ′)

fK (r)fK (r ′)
�(r ′, θ, ψ), (1)

where � is the Newtonian potential and fk is a comoving angular
diameter distance, taking values of (sin r, r, or sinh r) for a Universe
with curvature described by k = 1 (closed), 0 (flat), or −1 (open),
(Castro et al. 2005). The coordinate r is a radial distance and (θ , φ)
refer to angular positions on the sky. This potential can be related
to the matter density through Poisson’s equation

∇2
r �(r) = 3�mH 2

0

2a(t)
δ(r), (2)

where �m is the present day total matter density parameter, H0 is
the Hubble constant at the present time, a(t) is the scale factor, and
δ(r) is the density contrast at position r.

We shall consider the case of a scalar field φ(r) in a flat
background geometry, which can be transformed into the basis of
spherical harmonics and spherical Bessel functions via

φ
m(k) =
√

2

π

∫
d3rφ(r)kj
(kr)Y ∗


m(θ, ϕ). (3)

Through the introduction of a geometrical differential operator ð(ð̄),
which raises (lowers) the spin of the field, ψ can be related to the
shear γ and convergence κ through the following relations:

κ(r) = 1

4
(ðð̄ + ð̄ð)φ(r), (4)

γ (r) = 1

2
ððφ(r), (5)

where γ (r) is composed of two orthogonal components

γ1(r) = 1

4
(ðð + ð̄ð̄)φ(r)

γ2(r) = − i

4
(ðð − ð̄ð̄)φ(r). (6)

Furthermore, as shear is a spin-2 field, it will decompose into spin-2
weight spherical harmonics (2γ 
m), known as E and B modes, that
are free of curl and divergence, respectively. In the single thin lens
plane case, it can be shown that the lensing information is contained
within the E mode coefficients (Castro et al. 2005), and that the B
mode coefficients should only be non-zero in the presence of noise.
Multiple lenses can give rise to a small B mode, but these will be
negligible given our signal-to-noise. Because of the ð operator rules
for spherical harmonics, the equations relating coefficients for φ, κ ,
γ , and lensing deflection α are:

2γ
m(k) = −AE,
m = 1

2

√
(
 + 2)!

(
 − 2)!
φ
m(k), (7)

κ
m(k) = −
(
 + 1)

2
φ
m(k), (8)

α
m =
√


(
 + 1)φ
m(k), (9)

where φ
m(k) are the coefficients of the lensing potential in spherical
harmonics. Using these quantities in harmonic space, we can
transform an observed sky shear signal to maps of the quantities
κ , α, and φ.
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Figure 1. Comparison of reconstructions performed using κ t, γ 1, and γ 2 on maps of nside = 256, using the Kaiser Squires direct inversion technique.
These pixels have a width of ∼0.23 deg and the maps are smoothed with a Gaussian kernel with σ = 20 deg. Upper left shows a true κ distribution, and upper
right shows the residuals for a reconstruction of this field when using the full sky of γ 1 and γ 2 values, without shape noise added. Lower left shows the
reconstruction of the map using shear values from only the survey region, and the lower right the residuals for this approach. Comparing the two right hand
plots shows clearly that considerable residuals can arise in the edge pixels of the survey footprint, even before the addition of shape noise, and the scale of this
error can be of a similar size to the κ field that we are attempting to reconstruct.

Shear is estimated using galaxy ellipticities ε; by averaging over
a significant number of galaxies and in the absence of intrinsic
alignments, ellipticities not due to lensing should average to give a
(noisy) mean ellipticity of zero; any remaining signal is due to the
lensing shear γ , i.e

ε = γ + εint + εs, (10)

where εs is the noise associated with estimating a galaxy shape, εint

is the intrinsic shape of the galaxy, and ε is the observed distortion.
Averaging this estimator for a large number of galaxies will reduce
the noise, so it is desirable to have the densest possible background
field of lensed galaxies.

3 ME T H O D O L O G Y

There are two methods used in this paper – the Kaiser–Squires
reconstruction applied directly to the data, and our forward-fitting
method utilizing hypothesized full-sky shear fields. Both are ex-
pressed in spherical harmonics, and use the same γ to κ pipeline.
However, they do differ through the shear fields used, as the forward
fitting model uses hypothesis full-sky shear fields, while the direct
inversion uses shear data from the survey footprint.

In order to produce maps on the scales covered by DES Y1, a
package that utilizes the spherical approach is needed. We use the
HEALPY suite which is a python wrapper for HEALPIX,1 software
which is designed to handle data on the sphere and initially
developed for use with the cosmic microwave background. The spin-
2 γ observations are analogous to the polarization Stokes parameters
Q and U. Estimated maps of γ 1 and γ 2 are entered as arguments in
the function MAP2ALM to produce their spherical harmonics coef-
ficients in the form of the divergence free B
m and the curl free E
m.

3.1 Direct inversion

Kaiser–Squires on the sphere uses the E modes found from a
spherical transform of a shear field with equation (7) to produce

1http://healpix.sf.net/

convergence coefficients; the B mode coefficients B
m serve as a
useful null test for possible systematics and noise. Final maps are
produced via the reverse transform ALM2MAP, with κ and φ using the
spin-0 case of the transform and α the spin-1 case (equations 8 and
9). The output is a HEALPY map, pixelized to a chosen resolution,
and then smoothed using the Smoothing function. Producing
maps at a higher resolution reduces the magnitude of the edge
effects, and smoothing improves the signal to noise. All maps in
this paper are displayed using the Albers Equal Area projection and
using SKYMAPPER.2

Fig. 1 shows simulated skies reconstructed with the direct
inversion. Using a full sky of known γ (right top), the reconstruction
from γ to κ has negligible residuals. However, when an area of
limited shear data is used, the reconstruction introduces significant
errors along the edges of the data footprint (right bottom). These
arise due to the assumption that the complete field is sampled,
when in reality it is not; unobserved regions of the sky are treated as
having zero shear and some bias in the true harmonic coefficients
is introduced. These errors are significant fractions of the typical κ

values, which is apparent when comparing the size of residuals in
Fig. 1 to the true κ field. This can result in significant contamination
of the recovered map. In this paper, we will refer to making
maps this way, from a finite survey area, as the direct inversion
method.

3.2 Forward fitting approach

We have developed a forward fitting approach with the aim of
mitigating some of the limitations of the direct inversion. The direct
inversion method was initially developed with two assumptions –
that the field is uniform in its noise, and that the shear field is
completely observed. Creating mass maps with a field that has been
observed over a fraction of the sky and with a non-uniform noise
distribution will violate these assumptions and therefore introduce
errors in the reconstructed map (Seitz & Schneider 1995, 2001). The

2https://github.com/pmelchior/skymapper
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Figure 2. Graphical representation of the forward fitting routine, describing the iterative nature of the process. Hypotheses are produced in the harmonic space
and compared to the data in real space, gradually increasing the likelihood through subsequent selection of improved hypotheses. B modes are set to zero, and
only E modes are hypothesized.

motivation for the forward-fitting technique is therefore to produce
maps using the usual relationship between γ and κ fields, but to
do so in such a way that they are made without transforming the
limited shear measurements directly into spherical harmonics.

Our technique instead hypothesizes a full sky of shear values,
and then compares this hypothesis to the observations. Thus, the
masked data do not directly enter the transform and the edge effects
introduced by the direct inversion are avoided. Comparing a region
of the hypothesized sky γ values to the observed γ , with well
estimated errors, allows these realizations to become constrained
by the data.

The method was written inpython and made use of the packages
HEALPY and NUMPY.3 The whole procedure is shown graphically in
Fig. 2, and described below:

(i) An initial shear hypothesis, A
hyp

m , is made for the E modes

in harmonic space (up to an 
 of 2 nside −1), and transformed
to give its corresponding full sky shear fields γ through use of
the HEALPY function ALM2MAP. We choose to make our initial
hypothesis through generating an E mode harmonic corresponding
to a Gaussian random sky with variance typical of the observed
galaxy overdensity field. We do not use the actual overdensity field
to inform this initial hypothesis, beyond using it as an estimate of
the size of fluctuations in the field. This initial guess is far from the
minimum, but early iterations from this guess take large steps down
the likelihood surface.

(ii) The hypothesized shear field is compared to observed data on
the sphere γ obs with known errors σγ by calculating its likelihood.
The quantity σγ is an estimate of the error on the shear measurement
in a pixel, and is found by taking the standard error on the mean,
using the galaxy shape measurements in that pixel. Assuming
Gaussian errors and independent measurements, the log-likelihood
is proportional to

χ2 =
∑

i∈footprintpix

(γhyp,i − γobs,i)2

σ 2
γ,i

, (11)

where footprintpix is the set of pixels contained in the survey
footprint. We find that the diagonal terms of the covariance are dom-

3https://docs.scipy.org/doc/

inant, and a full pixel-by-pixel covariance matrix is prohibitively
computationally expensive. As we will be using maps of an nside =
256 in this paper, we tested the reliability of assuming a diagonal
covariance matrix by using maps at this resolution with 600 galaxies
in a pixel, mimicking the Buzzard footprint that will be more fully
introduced in Section 4.3. When we investigated the covariance of
a pixel with its neighbour across simulated maps, we found that the
covariance with respect to the immediately neighbouring pixel is at
a value approximately 4.5 per cent of the variance within the pixel;
the corresponding inverse covariance matrix is well approximated
as diagonal with elements equal to the reciprocal of the variance.
This off-diagonal contribution to the covariance matrix comes from
the cosmic shear signal, where large-scale structure introduces
coherent distortions across the sky. The amplitude of the off-
diagonal contributions is therefore dependent upon the cosmology
and resolution of the map. Further, we wish to identify a confidence
region for convergence pixel values; since equation (11) follows a
χ2

n distribution where n is the number of pixels, and we are fitting
n parameters (i.e. pixel values), the 68 per cent confidence region is
bounded by χ2/n � 1.

(iii) A
hyp

m serves as the basis for a series of similar E mode

harmonics, A
j

lm, produced through randomly perturbing the co-
efficients of the m modes of a particular randomly chosen 
, by
adding a contribution to each m drawn randomly from a Gaussian
with standard deviation (s.d) determined by the power in the
current best hypothesis at that 
 mode. We choose to produce 10
perturbed hypotheses, each differing from each other by altering the
coefficients at a single 
 mode.

(iv) Each of these altered hypotheses A
j

lm are transformed to
produce shear maps γ j which are then compared to the data and the
corresponding likelihood calculated.

(v) The hypothesis with the greatest likelihood is adopted as the
new A

hyp
lm for the next iteration of the routine.

(vi) The cycle repeats until consistency with the data is found
(χ2/n < 1), or a plateau reached from which no improvements to
the fit are made after a threshold number of attempts. For the results
in this paper, we chose 500 generations without improvement as the
exit condition. In practice no runs required this exit condition.

The final Alm can be used directly as Elm in equations (8) and
(9) to produce a convergence map. Repeated runs of the fitting
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algorithm produce a sampling of the maps consistent with the data.
We produce a final map from the average of 40 fitted maps; we will
show in later tests that this map provides an unbiased reconstruction
of the mass distribution, and assess the errors associated with it in
Appendix A.

We can carry out a full sampling of the likelihood using the
Metropolis–Hastings MCMC algorithm (Metropolis et al. 1953;
Hastings 1970), which we have tested for one of our synfast all
sky simulations (see Section 4.1), with 10 walkers starting from
randomly generated starting points and each storing a sample every
100 steps. We let these walkers run for ∼106 steps and all reached
χ2/n � 1, but few outputted maps were at a χ2 value much lower
than this. As we have a high number of pixels, the volume of possible
solutions rapidly decreases as χ2 is lowered and subsequent steps in
the direction of an increased likelihood fit become less and less prob-
able. Due to the 786 432 convergence values stored for a full sky map
atnside= 256, this approach requires Terabytes of storage, which
is prohibitive if used for many simulations, as for instance needed
in Appendix A. Our approach, averaging only 40 final outcomes of
χ2 descent, allows us to find a point consistent with the mean found
from MCMC in an efficient fashion; the mean difference in a pixel
between the MCMC output and our approach is �0.24σ , (where σ

is the standard deviation of κ pixels found in the MCMC run) and
there is a Pearson correlation coefficient of 0.92 between the maps
made with each method. In addition, we note that via MCMC or
direct descent, the maximum-likelihood solution takes a prohibitive
time to reach; we do not require this solution as our average
reconstruction is fully consistent with the true field (see Section 4.1).

The runtime of the routine is predominantly affected by two
variables – the size of the perturbations given to the coefficients
and the nside resolution of the field being fitted. To optimize
the fitting time, we need to minimize the number of steps taken
to maximize the likelihood. We find that our routine can perform
�20 000 generations of 10 hypothesis fields at annside= 256 and
return an output map in �24 h, using 8 cores on the SCIAMA HPC
cluster. The direct inversion is much quicker, taking a maximum
of 1 min for a field of the same resolution. Due to the nature of
the fitting routine, the direct inversion will always be significantly
quicker than the forward fit.

Note that other techniques exist using forward fitting, some
with more constraining priors. For example, Jeffrey et al. (2018)
used DES data with Gaussian and sparsity priors to examine how
these affected the reconstructions, and found both to improve on
the maps made by the direct inversion. Alsing, Heavens & Jaffe
(2017) have used Bayesian Hierarchical Models to simultaneously
infer cosmological parameters, power spectrum, and shear maps
for CFHTLenS. This sophisticated approach will be very promising
for curved sky maps in the future; our method can be considered
to be a step towards this approach for wide areas, focusing on the
map-making element only.

3.3 Examining the reconstructions

3.3.1 F statistics

There are several statistics that we will use to quantify the success
of reconstructions, the first of which are:

F1 =
√

〈κ2
rec〉

〈κ2
t 〉 ; F2 = 〈κtκrec〉

〈κ2
t 〉 . (12)

F1 measures the consistency with which the amplitude information
of the maps is preserved, whereas F2 is sensitive to how well

phase information is recovered. A result of unity for both statistics
would mean that the reconstruction is managing to perfectly capture
both the phase and amplitude information in the map,. Once the
behaviour of our fields’ F1 is understood, we may be able to account
for any changes in amplitude by applying a corrective multiplicative
factor across the map, but if F2 is significantly degraded then this
indicates that phase information is lost in the final result. Therefore,
we want F2 to be as high quality as possible, and F1 to be well
understood.

Furthermore, when we measure these statistics in maps including
shape noise, it becomes important to correct for the effect of
this noise contribution, which we call ‘denoising’ of the statistics.
Consider a reconstructed κ map, composed of two parts:

κrec = ακsig + κn, (13)

where κ sig is the reconstruction of the true convergence from the true
shear, and the κn term encapsulates all other noise effects that alter
the convergence from its true value, such as edge effects and noise
in the measurement of the shear in pixels. If we can successfully
model the noise on the κ maps, then we can correct for this noise in
F1; our denoised F1 therefore becomes

F1 =
√

F 2
1,N − F 2

1,n, (14)

where F1, n is the statistic found when producing a map that consists
solely of noise, and F1, N is the statistic found from the initial noisy
data. Construction of a field consisting solely of noise depends
upon the mass reconstruction method being examined due to the
different residuals introduced in each approach. We will describe
the methodology to achieve this in Section 4.2. We assume that
there is no correlation between the convergence κ and the noise
in that pixel. The denoising procedure serves as an important test
of how well we can model the noise across the map, which is of
particular importance when we later attempt to reconstruct moments
of the true κ distribution. A denoising procedure that recovers F1

statistics close to unity indicates that both the reconstruction and
the noise are behaving as expected. The F2 statistic does not require
any denoising, under the assumption of no correlation between
κ true and the noise contribution. However, introducing multiplicative
systematics into the maps (i.e. α in equation 13) will change the F2

statistic.

3.3.2 Minkowski functionals

Another set of statistics of interest are the Minkowski Functionals,
which encode the topological information of a map (Mecke,
Buchert & Wagner 1994) and are therefore useful to constrain
cosmological models (Kerscher, Schmalzing & Buchert 1996;
Schmalzing, Kerscher & Buchert 1996; Petri et al. 2015). Following
the notation of Hikage, Komatsu & Matsubara (2006) and Munshi
et al. (2012), the three Minkowski Functionals (V0, V1, V2) for a 2D
surface are defined as

V0 =
∫

�

da,

V1 = 1

4

∫
∂�

dl,

V2 = 1

2π

∫
∂�

Kdl,

and represent integrals across the total area, length, and curvature
characteristic of a given excursion set of the map, respectively. We
calculate these quantities through the use of angular derivatives on
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the sky (Schmalzing & Górski 1997), using the formulae listed in
Appendix A of Hikage et al. (2006). Each are normalized by the
area of the complete map. We estimate derivatives through finite
differences between neighbouring pixels in a similar way to Petri
et al. (2015) but implemented on the spherical pixel scheme used
in these maps. Appendix B gives details of the formulae used to
calculate the functionals from a given HEALPIX map.

3.3.3 Pearson correlation

Finally, we will also use the Pearson Correlation coefficient defined
as

ρX,Y = (X − X̂)(Y − Ŷ )

σxσy

. (15)

For a perfect correlation of X and Y fields, this will be exactly unity,
and deviations from this value provide a measure of the level to
which noise can dominate the signal. This statistic does not need a
denoising approach. In our analysis, we will be using a reconstructed
field and a true κ field as X and Y.

4 SIMULATIONS AND INITIAL TESTS

In this Section we will use simulations of observed γ fields with
known κ fields to compare the two reconstruction methods, using
the metrics introduced in Section 3.3. In all further maps in this
paper, results are for final fitted maps of nside = 256, with a
pixel separation of 0.22 deg unless otherwise stated. We use a
maximum 
 mode of 2 nside − 1 = 511, for sufficient resolution
and speed. Maps are then smoothed with a Gaussian with standard
deviation of 20 arcmin. We find that the forward fitting routine
consistently performs better than the direct inversion, across a
variety of metrics used in this Section. Chang et al. (2018) produced
maps to a resolution of nside = 1024, and results found here are
not necessarily directly comparable due to the different resolutions.

4.1 Gaussian map tests

The precision and accuracy of each reconstruction technique needs
to be carefully assessed, for both the forward fitting approach and for
the direct inversion. There are two main effects that will immediately
degrade the reconstruction: the limited survey footprint, and the fact
that we observe a shear estimate using a varying number of galaxy
ellipticities, which introduces a pixel-by-pixel variation in the noise
properties.

To examine these effects, we produced a series of full sky shear
and convergence maps using the HEALPY routine synfast. This
routine produces Gaussian random fields from an input power
spectrum, which for these tests was that of a flat �CDM Universe
characterized by the parameters �m = 0.3, �b = 0.047, h = 0.7,
σ 8 = 0.82, w = −1. The power spectrum was calculated using
COSMOSIS (Zuntz et al. 2015) which utilizes the camb code
(Lewis & Bridle 2002). A ‘true’ sky convergence distribution is
given by the output of synfast, with matching true shears. We fit
to 25 different true skies with different noise fields, drawn from the
same map of pixel uncertainties matching those of the leading DES
simulation effort, the Buzzard simulations, which are described
more thoroughly in Section 4.3. For a fairer comparison with our
other simulation tests, these uncertainties are calculated for a shear
field with an error on γ components of ≈0.27 and galaxy number in
each pixel obtained from the Buzzard catalogue (mean pixel galaxy
count of ≈600).

The forward fitting approach was applied to this simulated data
and produced converged fits. Maps were also made by the direct
inversion, in order to compare the two approaches.

4.1.1 Fidelity metrics

Fig. 3 shows how the F statistics behave for these simulations, with
the filled region showing the Gaussian field 1-σ spread of results
when these are evaluated across the 25 maps. The F1 statistic has
been denoized in this plot and is found to be consistent with 1;
this implies that our method of modelling noise is consistent with
the true noise within that pixel. For the Kaiser–Squires technique
applied to the data, the large errors in outer pixels cause more scatter
in the denoised statistic.

Considering the F2 statistic, we see the direct inversion clearly
differs from unity, with the reconstruction becoming worse nearer to
the edges. By contrast, the forward fitted map consistently preserves
the phase information significantly better across the survey area.
This can also be seen in the Pearson correlation coefficient in
Fig. 4, where the edge effects mean that the coefficient for the
direct inversion is ≈0.1 lower than our method when evaluated over
the 22 830 pixels in the footprint.

4.2 Quantifying noise

The Gaussian maps just introduced in Section 4.1 were also used
to estimate the uncertainties on each pixel of the final fitted
convergence maps. Appendix A describes our examination of the
noise properties of the final fitted maps.

In order to estimate the error in any given pixel, we simulate many
Gaussian maps and take the difference between the fitted maps
and a known truth. Many such difference maps give a sampling
of the error distribution in each pixel, with the standard deviation
of residuals in a pixel across these mock maps used as the pixel
uncertainty estimate. These simulations use the appropriate shear
errors in each pixel for the data we are attempting to simulate.
We use 25 simulations of noisy skies to produce our errors. This
approach was used to calculate errors for all simulation tests and on
the Y1 data. The exact footprint used differs for each application
as it is designed to mimic the observational properties of the field
being simulated, such as galaxy density and sky coverage, but the
methodology involves the same techniques across each use. In this
paper, error refers to the standard deviation of the residuals found
in this way, and noise refers to a single map realization with values
drawn from this distribution for each pixel. All error fields are
produced in this fashion unless stated otherwise, including for the
denoising procedures of later statistics. An estimate of the noise
in a pixel can therefore be produced by sampling from a Gaussian
with a standard deviation (s.d) corresponding to the error in a pixel.
Full maps can be made by sampling in every pixel of the map,
and then smoothing to a desired scale. More typically in this paper,
unless specified that more maps are required, we use the residual
maps themselves as estimated noise fields for the unknown true κ

map, to preserve the correlation between neighbouring pixels. For
the direct inversion approach, noise fields are produced by creating
shear maps consisting of only shape noise and producing mass maps.
Repeating the process many times and taking the s.d of values in a
pixel produces an estimate of the error.

In previous studies (Van Waerbeke et al. 2013; Chang et al. 2018;
Oguri et al. 2018), noise maps have been generated by shuffling the
galaxy shear measurements and keeping their positions constant.
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Figure 3. The F statistics for the two reconstruction methods in multiple simulation tests. The solid filled regions are for the Gaussian simulations with known
noise properties, and the scatter points are for the Buzzard simulations. The horizontal axis represents the width of the pixel range around the edge of the
surveyed area which is removed before calculating F for the remaining areas of the footprint. Noise estimates for the Buzzard simulations were found by using
the residuals from a fitted sky and a known, Gaussian simulated truth using synfast. The F1 statistic has been denoised, but the F2 statistic does not require
this procedure.

Figure 4. The Pearson correlation coefficient between the different recon-
struction techniques and the true convergence κ t, excluding pixels that fall
within a given distance of the edge of the survey. The results for both the
simulations using synfast (filled region) and those using the Buzzard
simulation are shown. The deterioration of the reconstructions as the edge
pixels are included in the measurement of the statistic can be interpreted
as the contribution from these more noisy pixels reducing the correlation.
Significant improvement in correlation can be seen as the noisier exterior
pixels for κKS are excluded, but for κFF the variation due to excluding these
pixels is much less pronounced.

This is an alternative but equivalent method to that used in this paper,
as it also removes any signal present from cosmic shear and produces
mass maps consisting only of noise. Both techniques model shape
noise, mask effects, and variations in the galaxy number density,

and produce similar noise estimates. As our forward fitted maps
require the error on a shear measurement in a pixel in order to fit to
the data, we chose to use this same error field to produce our noise
maps.

4.3 Galaxy survey simulations

Further to the Gaussian simulations, we also test the reconstructions
using the Buzzard simulations (DeRose et al. 2019), specifically the
‘Buzzard v1.3’ mock galaxy catalogues. These catalogues are for
six simulations resembling the DES Y1 data set, with accompanying
galaxy shears, ellipticities and κ .

These were produced via N-body simulations consisting of
only dark matter, in a flat �CDM Universe, through the use of
LGADGET-2 (Springel 2005) with initial conditions from 2LPTIC
(Crocce, Pueblas & Scoccimarro 2006) and using outputs from
CAMB (Lewis & Bridle 2002). Three boxes sized 10503, 26003,
and 40003 Mpc3h−3 were simulated using 14003, 20483, and 20483

particles respectively, assuming a background cosmology of �m =
0.286, �b = 0.047, σ 8 = 0.82, h = 0.7, ns = 0.96, and w = −1.
The coarser simulations were used to produce sufficient volume for
DES, and the higher resolution output was used to tune smaller
scale modelling. It is worth noting that all of these parameters
are consistent with the results found in the DES Y1 3 × 2-pt
results (DES Collaboration 2017) even though perfect modelling
of cosmological parameters is not necessary to test the mass
reconstruction.

Using the outputs of these simulations, the empirical addgals
algorithm (DeRose et al. 2019) populated the haloes with galax-
ies, replicating results found with subhalo abundance matching
(SHAM) (Conroy, Wechsler & Kravtsov 2006; Reddick et al. 2013)
by fitting a model to a smaller, higher resolution simulation and
applying this model to the larger simulation. addgals simulta-
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Figure 5. Reconstructions of the convergence field for the Buzzard simulation for both the direct inversion (left-hand column) and the fitting method (right-hand
column). Smaller errors are present in the edge pixels of the fitted map. The fitting method also has a much more uniform residual map inside the footprint,
whereas the direct inversion has a large portion of the survey with slightly larger residuals.

neously fits both the distribution of galaxy overdensities and the
distribution of r-band absolute magnitudes of galaxies, through
matching a luminosity function to observed galaxy counts. These
galaxies are further provided with full SEDs from SDSS DR6
(Adelman-McCarthy et al. 2008) to produce the grizY magnitudes.

Lensing parameters are also computed for the catalogues, in the
form of γ and κ for each galaxy. This is done through the use of
the multiple plane ray-tracing algorithm Curved-sky-grAvitational
Lensing for Cosmological Light conE simulatioNS (CALCLENS;
Becker 2013). The routine uses projected density fields to produce
weak lensing maps, with a resolution of �6.4 arcsec. The effects of
adding photometric noise, shape noise, and imposing cuts similar
to those in the data catalogue, as described in Section 5.1, are also
accounted for to produce an output similar to that of DES Y1. The
simulated region is smaller than the full DES Y1 observed region
by ≈600 deg, and its galaxy density count is lower by �20 per cent.

We apply the forward fitting method to the Buzzard data and
output a final map, which is an average of many fitted maps

consistent with the data. We estimate the pixel error distributions
using further simulated SYNFAST(Górski et al. 2005) skies with the
same footprint as the Buzzard map, and examine the residuals across
an ensemble of final fitted maps and the true κ map in each case.
These simulations serve as a simple model of the lensed Universe
that we are observing: a uniform source plane of galaxies which
undergo a lensing effect, on to which a shape noise component is
added. In reality, the broad redshift bins that we use to produce
sufficiently large galaxy counts on the source plane mean that this
model is a simplification, but we will see that it provides a sufficient
estimate of errors for our purposes.

The maps produced for the Buzzard simulation are shown in
Fig. 5 and the residuals for the forward fitting method can be seen
to be much lower in the outer edge regions, similar to that found
for the Gaussian simulations, although the errors are now slightly
larger. This may be due to non-Gaussianities in κ t, or due to the
extra noise inherent in all of the Buzzard simulated maps, where
we do not have an exact value for the true κ and shear in a pixel but
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Figure 6. Reconstruction of the second moment of the κ field from
equation (16) for the forward fitting and direct inversion methods, together
with true values, for a Buzzard simulation.

instead estimate it from the measured quantities for galaxies within
that pixel.

4.3.1 F statistics

The F statistics for Buzzard are plotted as the scatter points on Fig. 3.
In the case of F1, the denoised statistic can be seen to be consistent
with that found for the Gaussian maps, meaning that our estimate
of the noise for these Buzzard simulations is reliable. For F2 both
techniques appear to behave slightly worse than in the previous
simulations, due to additional noise in Buzzard. The slightly lower
F2 and slightly high F1 indicate that this map has larger residuals
than that typically found for the Gaussian maps, but these are still
consistent with our expectations.

4.3.2 Pearson correlation

The Pearson correlation coefficient measurements can be seen in
Fig. 4 for both reconstructions and for both methods of simulating
the data. The synfast simulations have a higher coefficient for
both techniques, and each simulation shows a similar shape when
comparing the same reconstruction methods. It is apparent that the
statistics found for the fitted maps are significantly less affected by
removing outer pixels than for the direct inversion, suggesting the
presence of excess noise in the edge pixels of the direct inversion.

4.4 Moments

Summary statistics such as moments can be very useful probes
to test the accuracy of our final maps. Beyond characterizing the
distribution, the moments as a function of the smoothing scale
have also been shown to be useful for constraining the underlying
cosmology.

When measuring these moments, we are measuring a combina-
tion of the true convergence moment and a noise term. We correct

for the noise following the technique used in Van Waerbeke et al.
(2013) and the methodology introduced in equation (14), such that
for the second moment the denoising procedure is:

〈(μdn)2〉 = 〈(μN )2〉 − 〈(μn)2〉, (16)

where μn is the κ field found for the noise exclusively, μdn is the
denoised κ , and μN is the moment found from the noisy field.

Fig. 6 shows the reconstruction of these denoised moments for
both methodologies on one of the Buzzard simulations. At large
smoothing scales, the edge effects from the direct inversion become
more and more significant such that the moments become increas-
ingly biased away from the truth. The forward fitting approach does
not have this level of significant error localized around the edge of
the map, so it can reconstruct the moment more reliably to higher
smoothing scales. At higher pixel resolution, these edge effects will
become less significant as edge pixels account for a smaller fraction
of the total pixel count.

4.5 PDF

The PDFs of the convergence distributions serve as a further probe
of the reconstruction, and these are shown in Fig. 7. The large
contribution of the noise added to the data can be seen to cause the
final PDF to differ significantly from the underlying, non-Gaussian
true κ PDF. The PDF of our estimated noise distribution is also
shown, as well as the PDF of the exact differences between the
reconstructions and the truth. These estimates of the noise and the
true residuals can be seen to be in good agreement, indicating a good
understanding of the noise properties of both methods. Further, the
PDF of the κ distribution in the forward fitting method manages
to retain more of the non-Gaussian shape and does not find an
excess of high κ values in edge pixels. The forward fitting method
finds fewer of the large, negative convergence values which are
introduced by the direct inversion but reconstructs a similar number
of higher positive κ peaks to the direct inversion. Some overdense
regions will be real density contrasts, for which both techniques
should agree, and some will be the large edge effects that are only
present in the direct inversion.

We also examine the agreement of these two distributions using
the Jensen–Shannon divergence DJS, a quantity designed for such
a comparison in an information theory context. This is defined, for
two distributions A(x) and B(x) as

DJS(A, B) = 1

2
(DKL(A||M) + DKL(B||M)), (17)

where

M = 1

2
(A + B), (18)

and DKL is the Kullback–Leibler divergence, defined for discrete
bins as

DKL(A||B) =
∑

x

A(x) log
A(x)

B(x)
. (19)

We work in logarithms of base 2, which means that the Jensen–
Shannon divergence can be in the range 0–1, with 0 indicating iden-
tical distributions and 1 meaning completely different distributions.
This provides a way to quantify the similarity between the PDFs of
each reconstruction and the known, true κ PDF. In the unsmoothed κ

fields, we find that for the direct inversion DJS = 0.349, whereas for
the forward fitted map DJS = 0.308. In the smoothed maps shown in
Fig. 5, the result for the direct inversion is DJS = 0.115, compared
to DJS = 0.103 for the forward fitted maps. These values show that
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Figure 7. PDFs of the reconstruction techniques’ convergence fields compared to the true distribution for the smoothed Buzzard simulation shown in Fig. 5.
The left-hand panel shows the distribution of the κ in pixels (solid lines), together with the estimated noise distribution (filled region). The solid black line is
the true PDF that both reconstructions are attempting to recover. The right-hand panel examines the reliability of the estimates used for the noise distribution,
with solid fill areas denoting the true residuals and the solid lines denoting the noise estimates used in the left-hand panel.

Figure 8. The Minkowski functionals for a Buzzard simulation used to test the κ map reconstructions. In this case, σ indicates the number of standard
deviations of the final κ map and not the error in a pixel. The black line shows the functionals for the true κ field and the yellow field region shows the
68 per cent confidence region for functionals expected when a simple Gaussian noise field is added to this. The Minkowski functionals measure the topology
of the maps and perfect agreement between truth and reconstruction across all three statistics would mean that all topological information is being retained by
the reconstruction.

while both methods are finding rather similar distributions to the
desired, true PDF, the forward fitted maps are performing slightly
better. We can interpret this result as showing that the forward fitted
map has a reduced noise component. From inspection of the PDFs, it
can be seen that this is indeed the case in the tails of the distribution.

4.6 Minkowski functionals

Fig. 8 shows the Minkowski functionals reconstructed for the
Buzzard simulation. The solid black line shows the functionals
for the κ t field, and the yellow region shows those that we would
expect to construct for this field in the presence of noise. The
deviations between the functionals for κ t and those in the presence
of noise are greatest within a few standard deviations from the
mean; this standard deviation approximately coincides with the
noise level of these maps. This is expected, as the noise adds
artificial peaks of this amplitude which will change the functionals;
reducing the noise level would make it easier to distinguish between
cosmologies. Particularly in the direct inversion, the edge effects
will introduce some large κ values into the distribution and this will

alter the standard deviation of the map and consequentially bias
the functional measurement. This means that when we attempt to
constrain cosmology with these measurements, the reconstruction
technique used needs to be taken into account and adequately
modelled.

We now assess the significance of the agreement between the
functionals measured for the reconstructions, and the expectation
from the true field with added Gaussian noise. We calculate

χ2 = (d − t)Cov−1(d − t)T , (20)

where d is the vector of functionals calculated for a reconstruction,
t is the vector of functionals for the true κ field, and Cov is the
covariance matrix calculated by examining the covariance between
these functional bins when noise is added to the true κ . This noise
is created by generating maps of ellipticity noise, i.e for a pixel i,
noise is found by randomly sampling from a Gaussian with width
according to the error on shear in that pixel. For empty regions
of the sky, we fill these areas with noise with the average shear
standard deviation of the observed region. These shear maps are
then used to produce full sky κ maps through the direct inversion.
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Figure 9. The difference between κ maps found for both reconstruction techniques on one of the Buzzard simulations. As each map technique has different
errors in each pixel, the level of tension in terms of standard deviations in a pixel depends upon which map is used as a reference. Disagreements between
the direct inversion and the forward fit around the survey edge are of larger significance in terms of σFF, indicating that the forward fit is highlighting these
particular pixels in the Kaiser–Squires map as being due to edge effects and not caused by the shear signal in the observed region.

Edge effects are absent from these maps, as the γ noise fields are
on the full sky, and as such provide a best case scenario for the
noise on our final κ maps. We are only considering shape noise
in our covariance, although we anticipate other contributions to be
subdominant. Initial tests using Gaussian simulated fields supported
this assumption.

For binning functionals into n bins, we produce 4n of these
noise maps. Each noise field is then added to the true κ t field and
the functionals calculated. We use this ensemble of functionals to
measure covariances between bins for our χ2 calculation, through
repeatedly producing new noisy versions of κ t fields.

This approach gives us a way to compare both techniques’
abilities to reconstruct the functionals, taking into account the level
of shape noise in the data. For the Buzzard simulation results shown
in Fig. 8, the reduced χ2 results for (v0, v1, v2) give (75/19, 120/19,
73/19) for the direct inversion and (48/19, 38/19, 38/19) for the
forward fitting routine. This significant improvement shows the
impact that edge effects can have on final results for direct inversion;
accounting for this is important, as it can bias the final result.

4.7 Comparing residuals

The two reconstruction techniques produce different κ maps for the
same data, so an interesting comparison is to examine the regions
in which they disagree and see what can be learned in these areas.
We examine the differences between two maps in ratio to the error
in each map in Fig. 9. First, by visual inspection, the κKS map can
be seen to be in much more significant disagreement with the κFF

map when differences are taken in terms of σ FF than σ KS. This
inconsistency is another illustration of the noise introduced by the
Kaiser–Squires technique when directly applied to the data. Further
to this, considering the signal to noise of these differences in each
pixel can highlight tensions between the maps. The two methods
are in agreement across large areas of the centre of the footprint,
but the edge effects present in the direct inversion κKS map mean

that there is a tension with the forward fitted map. In the 750 pixels
where there is a disagreement of 2σ FF or more, the forwards fitting
method has a smaller residual with κ t than the direct inversion in
81 per cent of pixels.

5 D ES Y1 RESULTS

Following the successful reconstructions of the convergence maps
on simulations, we apply the technique to real data from the DES
(Flaugher 2005).

5.1 Data

The DES is a photometric survey using the Dark Energy Camera
(Flaugher et al. 2015) on the Blanco telescope, a 4 m telescope at the
Cerro Tololo Inter-American Observatory in Chile. Observations
are taken in five bands (grizY). This work makes use of the data
from the first full year of observations, also known as the DES Y1
cosmology data set, or Y1A1 GOLD (Drlica-Wagner et al. 2018).
This footprint is the one best suited to the application of the mass
mapping techniques to date, as it spans a substantial survey area of
≈1800 deg2 and contains sources up to a redshift of � 1.3.

5.2 Weak lensing catalogues

We use the METACALIBRATION catalogue, which is described in
Huff & Mandelbaum (2018) and Sheldon & Huff (2017). This
method for calibrating lensing measurements uses the data itself,
as opposed to simulations of galaxies, by applying a known shear
to deconvolved galaxy images. These galaxy shapes are measured
using a Gaussian profile, fit with NGMIX (Sheldon 2015) and a
comparison between the measurement of the change in galaxy shape
and the known applied shear gives the response. There are three
biases associated with this technique: a multiplicative bias m, an
additive bias α from the PSF ellipticity, and an additive bias β from
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Figure 10. The final fitted maps for the DES Y1 data for both the direct inversion and the forward fitting method, using nside= 256. The area of complicated
masking on the right-hand side of the mask, at greater than 300 deg and less than < 5 deg on the Figure, was not used in our previous wide-field mass map
paper due to the footprint introducing significant edge effects. Despite this, a large quadrupole pattern is still present in an inner region of the mask due to a
small area of missing shear data. This is more visible in this analysis that previous higher nside maps due to the larger contribution of edge effects.

the error on the PSF ellipticity. Zuntz et al. (2018) found these to be
m = 1.2 ± 1.3 per cent, α ≈ 0 and β ≈ −1. metacalibration
in DES uses images from r, i, and z bands and the code is available
publicly with the ngmix routines.4

The DES also used the IM3SHAPE routine for producing the weak
lensing catalogues and both catalogues were examined in Zuntz
et al. (2018). The κ maps produced from both catalogues were
compared in Chang et al. (2018) and found to be consistent with each
other. We choose to produce maps solely on the METACALIBRATION

catalogue, as this has reduced systematics and a larger galaxy count;
there are ≈ 34 800 000 galaxies in the METACALIBRATION catalogue,
compared to ≈ 21 900 000 in IM3SHAPE , due to the latter only fitting
objects in the r band.

5.3 Redshift binning

Redshift information in the DES Y1 data catalogue is found by
implementing a Bayesian Photometric Redshift (BPZ) algorithm

4https://github.com/esheldon/ngmix

as used in Benı́tez (2000) and Coe et al. (2006), making use of
galaxy templates from Bruzual & Charlot (2003), Kinney et al.
(1996), Coleman, Wu & Weedman (1980) to produce a posterior
distribution of the redshift of the observed galaxy. We use the mean
of this distribution in selecting the galaxies in a redshift range of
0.3 to 1.2, which are chosen as our source galaxies. We use the
redshifts calculated using the METACALIBRATION photometry. The
full routine is described in Hoyle et al. (2018), and the use of cross-
correlation redshifts was tested in Gatti et al. (2018) and Davis
et al. (2017). REDMAGIC (Rozo et al. 2016) galaxies were used as
a reference sample for the redshifts, which were in turn calibrated
through comparison with BOSS galaxies (Cawthon et al. 2018).

5.4 The DES Y1 fitted maps

The fitted maps for the DES Y1 data are shown in Fig. 10 for
the forwards fitting and the Kaiser–Squires methods, applied to
the full area of the metacalibration catalogue. The maps
presented here are for the redshift range 0.2 < z < 1.3, for the
highest density of source galaxy shapes, to reduce shape noise to
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Figure 11. The residuals between the two reconstruction techniques, scaled in terms of the error on the forward fitting method in each pixel, and smoothed
with a Gaussian of σ = 20 arcmin. As expected, the most significant differences arise in the areas around the edges and in areas of complicated masking.

Figure 12. A section of the reconstructed maps, with REDMAPPER clusters plotted in black circles, with a radius scaling as the cluster richness λ. λ is an
estimate of the number of red-sequence cluster member galaxies and is an indicator of cluster mass. Larger circles indicate clusters with higher richnesses.
Clusters were selected in the redshift range 0.1 < z < 0.4, and only clusters with a richness greater than 25 are included in this plot.

a minimum (Chang et al. 2018). These maps are visually very
similar in the inner regions of the map, where peaks in one map
frequently coincide with peaks in the other map. The edge effects
are apparent in the reconstruction of the direct inversion in the area
of complicated masking (below 5 deg in right ascension) whereas
such high κ pixels are not produced in the fitted version of the map.
This behaviour is similar to that seen in the previous simulations in
Section 4.

Fig. 11 shows residuals between the reconstructions. The direct
inversion performs well for κ reconstructions well inside the survey
footprint, and we see that both methods are working in a similar
way in this area as they were in the simulations. In the outer pixels,
the differences are typical of those that we would expect from the
edge effects, where large κ noises and biases are introduced. The
smaller errors of the fitting routine in these edge pixels means that
these noisy pixels in the direct inversion are in tension with the fitted
results. In more complicated regions of the mask, there are more
frequent disagreements between the two methods, and our tests in
Section 4 imply that the forwards fitting method is more suited to
these areas.

Fig. 12 shows an area of both reconstructed fields with REDMAP-
PER clusters (Rykoff et al. 2016) plotted on top. This region is on
the southern edge of the survey area. Both maps produce fields of
similar morphology, but the forward fitted map has higher peaks
due to lacking the edge biases introduced by the direct inversion.
Some clusters follow the structure picked out by the maps, with
areas of overdensity being more frequently populated by clusters.

5.5 Systematics

It is important to correlate these maps with other quantities that are
expected to be uncorrelated with the shear in a pixel, to test whether
our measurements are free from systematic effects. A significant
correlation between our maps and another quantity would indicate
how we are not solely inferring mass associated with weak lensing
shear, but have a signal contaminated by another source.

We will examine the correlation between the observed shear
measurements and other observed quantities which could plausibly
cause systematic effects, such as the PSF, the airmass, the sky noise
and background, across the griz filters. Using maps Ms of these
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Figure 13. The distribution of the magnitude of systematics correlations
found for both the Y1 data and for random maps generated using the Buzzard
simulations. The latter give an indication of the level of correlation that can
arise from random, uncorrelated maps, and therefore give an estimate of an
acceptable level of correlation to be found with the Y1 maps.

observed parameters (Leistedt et al. 2016), we follow the approach
used in Chang et al. (2018). Each pixel in the map is assigned a
value n between 1 and 10, determined by which decile in the range
for that systematic that it belongs to. We then take the average shear
value of all pixels of a given n, γ̂n. A first degree polynomial is fitted
between n and γ̂n, with y intercept a and gradient b. The gradient
found in this way will therefore indicate a correlation between the
shear estimate and the systematic, and a lack of correlation will be
indicated by a gradient consistent with 0. Errors on the gradient are
found by jackknife resampling.

Fig. 13 shows the extent of these correlations found for the Y1
data; we see that the correlation between the Y1 data and systematics
is no stronger than that found between the systematics maps and a
completely uncorrelated map (the Buzzard map). Comparison with
the level of correlation found with the Buzzard map serves to show
the expected level of spurious correlation that can arise.

5.6 DES Y1 Minkowski functionals

Following the examination of whether the two reconstruction
methods can produce reliable Minkowski functionals in Section 4,
we can also examine the functionals that describe our final Y1
mass maps. We measure V0, V1, and V2 (using the methodology
in Appendix B) for the final Y1 convergence maps shown in
Fig. 10. We present these measurements in Fig. 14, also showing
the measurements and uncertainties found for these quantities in the
Buzzard simulation.

As we are only comparing one particular realization of the Buz-
zard simulations with the Y1 results, we cannot infer cosmological
information from this plot, as we do not know how representative
the (finite footprint) Buzzard measurements are of the functionals
expected for the Buzzard cosmology, or indeed of the real Universe.
However, we see that observed Y1 Minkowski functionals appear
similar to those in Buzzard. We will engage in a cosmological
analysis of these results in a further paper, where noise will require
careful treatment depending on the method used (i.e. direct inversion
or fitting), as shown in our earlier analysis in Section 4.6.

6 C O N C L U S I O N

Weak lensing is one of the leading probes in cosmology. Using
lensing measurements across large fractions of the sky, it is possible
to map the matter distribution on increasingly large scales. We
have presented an alternative approach to using the Kaiser–Squires
formalism to produce wide-field mass maps with weak lensing,
through producing hypothesis all-sky shear fields which we fit to
the data, aggregating over compatible maps.

We have tested the forwards fitting approach with simulations,
and have found that in each case the resulting maps have reduced
residuals compared to the direct inversion method, as well as
exhibiting better agreement for the second moment as a function
of smoothing scale. We have also quantified how well the methods
reconstruct the topology of the maps through the use of Minkowski
functionals, and found that the noise properties of the forward fitted
maps avoid introducing a bias present in the direct inversion which
would influence the inference of cosmological constraints.

Our approach has been applied to the DES Year 1 data and
compared to the maps produced through direct inversion. This
comparison finds broad agreement in central regions of the footprint,
but disagreement at its edges. Our simulation tests indicate that

Figure 14. The Minkowski functionals for DES Y1 mass maps, found through both the direct inversion and the forward fitting approach. The solid yellow
region shows the expected functionals for a Buzzard field with DES Y1-like noise.
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these differences are symptomatic of errors introduced in the
direct inversion at map edges, and that these areas of the sky are
more reliably reconstructed in the forward fitted map. Our method
provides a new opportunity to produce larger weak lensing mass
maps to higher accuracy. Further work using this approach is worth
pursuing, including producing maps to a higher resolution, use of
priors on the fits, and comparison of cosmological constraints found
using both the direct inversion and the fitted maps.
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APPENDIX A : N OISE MODELLING

Accurate quantification of the uncertainties for pixels in the fitted
convergence maps is integral to understanding their reliability.

Figure A1. The average χ2 for a set of pixels, as a function of the distance
of these pixels to the edge of the fitted region, is shown for an ensemble
of fits. This highlights how the routine preferentially constrains γ values in
the centre of the map at the expense of producing worse γ estimates in the
outer areas of the map. The overall fit to all pixels has χ2/n = 1, but as can
be seen this does not force the variance for an outer pixel to be the same as
that in the central region of the map.

A final fitted map is produced through averaging 40 maps
resulting from our method pipeline. However, the error on the
claimed convergence in each pixel of this final map is difficult
to quantify. It might be thought that this could be well estimated
from the standard deviation of the convergence across these 40 fits
in a given pixel, but this is found, for edge pixels, to be much
larger than the typical residuals between the final map and the true
convergence. This can be understood by noting that a good overall
fit to the data can be obtained even if the relatively small number of
edge pixel values are a poorer fit. Fig. A1 shows how the mean χ2 of
the fitted shear changes as a function of the distance from the edge
of the map; edge pixels are consistently further from χ2/npix = 1 in
all of our fitted maps. This produces a larger spread of realizations
of κ in these pixels, and its standard deviation therefore has a larger
range than the residuals between mean maps and the truth, as shown
in Fig. A2.
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Figure A2. Left-hand panel: Distribution of convergence and associated noise for the Buzzard simulation and reconstruction. The solid lines represent
reconstructed κ distributions for Buzzard. The dashed lines show expected noise, if we estimate error in each pixel from the standard deviation of κ values
in an ensemble of reconstructions. Note that the dashed estimated noise distributions appear much wider than the solid reconstructed distributions (see the
text for explanation). Right-hand panel: Distribution of noise estimated in two ways. The solid lines show the estimate from s.d. on κ from an ensemble of
reconstructions. The filled regions show residuals directly measured between our mean reconstruction and the true convergence field.

A P P E N D I X B: C A L C U L AT I O N O F MI N KOW S K I
FUNCTIONA LS

We follow the approach used in Hikage et al. (2006) Appendix A to
measure the Minkowski Functionals on the sphere. This approach
considers the curvature of the sky and a pixelized surface. The three
functionals for an excursion of size ν in a field u normalized by its
standard deviation, are described by

V0 = H(u − ν), (B1)

V1 = 1

4
F (u − ν)

√
u2

;θ + u2
;φ, (B2)

V2 = 1

2π
F (u − ν)

2u;θu;φu;θφ − u2
;θu;φφ − u2

;φu;θθ

u2
;θ + u2

;φ

. (B3)

The coordinates θ , φ refer to angular positions on the sky and a
semicolon denotes a partial derivative. We use this formalism in a
python code to calculate the functionals from HEALPIX maps.
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