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ABSTRACT
Beyond �CDM, physics or systematic errors may cause subsets of a cosmological data set to appear inconsistent when analysed
assuming �CDM. We present an application of internal consistency tests to measurements from the Dark Energy Survey Year 1
(DES Y1) joint probes analysis. Our analysis relies on computing the posterior predictive distribution (PPD) for these data under
the assumption of �CDM. We find that the DES Y1 data have an acceptable goodness of fit to �CDM, with a probability of
finding a worse fit by random chance of p = 0.046. Using numerical PPD tests, supplemented by graphical checks, we show that
most of the data vector appears completely consistent with expectations, although we observe a small tension between large-
and small-scale measurements. A small part (roughly 1.5 per cent) of the data vector shows an unusually large departure from
expectations; excluding this part of the data has negligible impact on cosmological constraints, but does significantly improve
the p-value to 0.10. The methodology developed here will be applied to test the consistency of DES Year 3 joint probes data sets.

Key words: gravitational lensing: weak – methods: statistical – dark energy – large-scale structure of Universe.

1 IN T RO D U C T I O N

Several recent cosmological measurements appear to be in mild to
severe tension in the context of the standard cosmological constant
and cold dark matter (�CDM) model. For instance, the value of
H0 inferred from the cosmic microwave background (CMB; Planck
Collaboration VI 2020) and from the cosmic distance ladder (Riess
et al. 2019) are discrepant at roughly the 5σ level (e.g. Bernal,
Verde & Riess 2016; Feeney, Mortlock & Dalmasso 2018; Aylor
et al. 2019). Similarly, the value of σ 8 inferred from the CMB and
from large-scale structure, in particular weak lensing measurements,
are discrepant at roughly the 3σ level (e.g Battye, Charnock & Moss
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2015; MacCrann et al. 2015; Raveri 2016; Hildebrandt et al. 2017;
DES Collaboration 2018; Raveri & Hu 2019; Asgari et al. 2020;
Joudaki et al. 2020; Park & Rozo 2020; Heymans et al. 2021). These
tensions could be indicative either of a breakdown in the standard
cosmological model, or of systematics impacting various analyses.
Given these possibilities, identifying and quantifying cosmological
tensions is of prime importance. We make a somewhat artificial
distinction between external tensions – those between different ex-
periments – and internal tensions – those between the measurements
of a single experiment. In practice, correlations between the data are
common in the case of internal tensions, but are rarer for external
tensions.

In this work, we explore internal tensions in the Dark Energy
Survey (DES; The Dark Energy Survey Collaboration 2005) Year 1
(Y1) measurements of two-point functions of large-scale structure
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(DES Collaboration 2018). The DES is a 6-yr optical imaging survey
of 5000 square degrees of the southern sky. The analysis of DES
Collaboration (2018) derived measurements of galaxy positions and
galaxy shear from first year observations of DES and used these to
measure three two-point functions: the autocorrelations of galaxy
shear and of galaxy positions, and the cross-correlation of galaxy
position with galaxy shear. Cosmological constraints were then
obtained by fitting this so-called 3 x 2 pt combination of correlation
functions.

There are a few reasons why tests of internal consistency of the
DES data are important and timely. First, as mentioned previously,
measurements of σ 8 from surveys of large-scale structure tend to
be lower than the value inferred from primary anisotropies in the
CMB. If this tension is due to a true breakdown in �CDM – such
as a departure from the expected growth of structure – then DES
data alone might be expected to be internally inconsistent assuming
�CDM. Secondly, all weak lensing surveys necessarily suffer from
systematic errors (see e.g. Chang et al. 2019), thus introducing
uncertainties which must be accounted for. Systematic errors in the
data, such as unaccounted photometric redshift biases, are likely to
manifest as internal inconsistency. Finally, one of the aims of this
analysis is to develop the methodology and specific data tests that
will be applied to the forthcoming analysis of Year 3 (Y3) data from
DES.

We address the question of whether the DES Y1 3 x 2 pt measure-
ments are self-consistent using posterior predictive methods. The
posterior predictive distribution (PPD; see e.g. Gelman et al. 2004
for a review) is the distribution of possible new data, conditioned on
observed data, given an underlying model. By comparing the PPD
to the observed data, we can assess the degree to which the observed
data are internally consistent in the context of �CDM. Several recent
works have adopted the PPD as a means to examine consistency
of cosmological data sets (e.g. DES Collaboration 2019b; Feeney
et al. 2019). Köhlinger et al. (2019) proposed a test of internal
consistency based on three different tests, that occur at various levels
of the analysis: a global test, based on ratios of Bayesian evidences
(Marshall, Rajguru & Slosar 2006), a parameter difference test that
occurs in parameter space, and a PPD test on data space. Later,
Handley & Lemos (2019) showed that the test based on the evidence
ratio is proportional to the prior volume, and substituted it with a
test based on the suspiciousness statistic (extended to correlated data
sets in Lemos et al. 2020). Here, we focus on identifying potential
subsets of the DES Y1 data in tension with each other, for which the
PPD tests are particularly well-suited since they operate entirely in
data space.

Our approach is to split the DES Y1 3 x 2 pt data into subsets
motivated by considerations of possible systematics, as well as by
considerations of possible extensions to �CDM. We first evaluate the
goodness of fit of these subsets of data to �CDMusing the standard
PPD formalism. Next, we use the PPD to perform consistency tests
where we evaluate the goodness of fit of some subset of the data
conditioned on the observed data from another, disjoint subset. For
instance, we consider the likelihood of the measured two-point
functions at large scales, conditioned on their observed values at
small scales. This test in effect determines whether the large and
small-scale measurements are consistent.

The paper is organized as follows. In Section 2, we describe the
DES Y1 3 x 2 pt measurements; in Section 3, we give an overview
of the PPD framework and application to DES Y1 data; in Section 4,
we present the results of the application of this framework to the
DES Y1 measurements; in Section 5, we lay out our plan for the
upcoming DES Y3 analysis; we conclude in Section 6.

2 TH E D E S Y 1 3 X 2 PT ME A S U R E M E N T S

In this section, we briefly describe the 3 x 2 pt data vector from the
DES Y1 analysis; more details can be found in DES Collaboration
(2018). From the DES imaging data, galaxy positions and shears
are measured. The galaxy samples are divided into two samples:
‘lenses’ and ‘sources.’ The lens galaxies are selected using the red-
MaGiC algorithm (Rozo et al. 2016), and have tightly constrained
redshifts. The source galaxy sample, which extends to higher redshift
than the lenses, have shapes measured using METACALIBRATION
(Sheldon & Huff 2017) and Im3SHAPE, as described in Zuntz et al.
(2018). Using the galaxy position measurements and the galaxy shear
measurements (for the sources only), three two-point correlations
functions were computed: shear–shear, position–shear, and position–
position. Each two-point correlation was computed as a function
of angular separation, θ . Since cosmic shear is a spin-2 field, the
shear–shear correlation was divided into two components, ξ+(θ ),
and ξ−(θ ). For notational convenience, we refer to the position–
position correlation, or clustering, as w(θ ), and to the galaxy–
shear correlation, also referred to as galaxy–galaxy lensing, as
γ t(θ ). The lens and source samples were divided into five and
four tomographic redshift bins, respectively, and the auto and cross-
correlations between the bins were measured. While all correlation
functions were computed at 20 fixed (logarithmic) angular bins
between 2.5 and 250 arcmin, measurements at small scales were
not included in the analysis due to the presence of effects that could
make the DES Y1 model an inaccurate description of the data in the
small-scale regime (such as non-linear galaxy bias, baryonic effects
on the matter power spectrum, etc). Details of the measurements
of these correlation functions can be found in Elvin-Poole et al.
(2018), Troxel et al. (2018), and Prat et al. (2018). The full 3 x 2 pt
data vector includes all two-point measurements, in all redshift bin
combinations, across a range of angular scales.

3 POSTERI OR PREDI CTI VE D I STRI BUT IO N

In this section, we present an overview of the PPD formalism
(Section 3.1), discuss the choice of test statistic (Section 3.2), its
application to DES Y1 data for goodness-of-fit and consistency tests
(Section 3.3) and our sampling strategy (Section 3.4). In particular,
we identify a potential caveat associated with the standard choice of
χ2 statistic when testing the consistency of two experiments whose
posteriors have little overlap. We illustrate this problem with a toy
model in Section 3.2 and present a solution applicable to DES Y1
data in Section 3.3.

3.1 Overview

The posterior predictive distribution (PPD) is the distribution of
possible (unobserved) data realizations from an experiment, given
the posterior on parameters, 	, of the model, M, obtained from
the observed data. For observed data, dobs, the model posterior is
P(	|dobs, I), where I represents all prior information, such as the
form of the likelihood and priors. The PPD function for unobserved
data drep is then1

P (drep|dobs, I ) =
∫

d	P (drep|dobs, 	, I )P (	|dobs, I ). (1)

1We follow the notation of Gelman et al. (2004) in referring to the replicated,
unobserved PPD repetitions of the data as drep.
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In the case that drep and dobs are conditionally independent given
	, then P(drep|dobs, 	, I) = P(drep|	, I), i.e. the data likelihood.
We will consider both this case and the case where drep and dobs

are not conditionally independent below. Hereafter, we drop I for
conciseness.

The analytic computation of the the integral in equation (1) is
cumbersome. Furthermore, the quantity on the left is a probability
density, and therefore it requires to be normalized to provide a
meaningful statement about the statistical significance of the internal
tensions in a data set. One straightforward possibility is to take the
ratio R = P(drep|dobs)/P(drep), where we can identify the denominator
as the Bayesian evidence for drep. However, as pointed out by Lemos
et al. (2020), this is equivalent to the Bayes’ ratio (Marshall et al.
2006), which is not suitable for the case of wide and uninformative
priors. In practice, rather than compute the integral in equation (1),
one typically draws realizations of drep from P(drep|dobs, 	) at each
point 	 in a Markov chain sampling the posterior P(	|dobs, I). These
realizations of drep, i.e. samples from the PPD, can then be compared
directly to the observed data dobs to look for signs of discrepancy.

Below, we will explore graphical and numerical approaches to
comparing drep and dobs. Indeed, a powerful application of the PPD
framework is to simply plot the observed PPD realization on top of
the actual data, as done in Fig. 2 for instance. If the true data look
significantly different from the PPD realizations, that could be a sign
that the data are inconsistent with the assumed model. However, this
approach does not allow one to quantify consistency and is mainly
used here to provide insight into useful splits of the full data vector.
A common way to quantify the level of tension between drep and
dobs is to use a test statistic, T(d, 	), that can be computed for both
drep and dobs, and which may be a function of the parameters 	. A
p-value can then be associated with the comparison between drep and
dobs via

p = P (T (drep, 	) > T (dobs, 	)|dobs). (2)

In other words, p is the probability of getting a higher test statistic
for PPD realizations than T(dobs, 	) by random chance. A very
low p-value (say less that 0.01) would then be indicative that dobs

was unlikely, while a high p-value (say greater than 0.99) could
be indicative of a problem in the model, such as an overestimate
of the noise covariance. Following DES Collaboration (2018), we
will adopt a p-value threshold of p = 0.01: if p > 0.01, we will
consider the data to be in reasonable consistency. In practice, the
p-value can be computed easily from a Markov chain sampling the
posterior P(	|dobs). At each set of parameters 	i in the chain, one
draws a realization drep, i of drep using the (possibly conditional)
likelihood P(drep|dobs, 	i). Values of T(dobs, 	i) and T(drep, i, 	i) are
then computed. The p-value is simply the fraction of samples 	i for
which T(drep, i, 	i) > T(dobs, 	i). One of the challenges of a PPD
analysis is selecting an appropriate test statistic, T(d, 	), as seen in
the next section.

Compared to other tension metrics, the PPD has several advan-
tages. First, unlike evidence ratio-based tests (e.g. Marshall et al.
2006), the PPD does not require specifying an alternative model. This
is often desirable, since the choice of alternate model is not always
clear, especially in the case of cosmological analyses. Secondly, the
comparison between data and PPD realizations occurs entirely in
data space rather than in parameter space. This means that the PPD
is particularly well suited to identifying particular parts of the data
that may be unusually discrepant with the model. Finally, if the
posterior is likelihood-dominated (as opposed to prior-dominated),
the PPD realizations will not depend on the prior volume. This is not

the case for e.g. evidence ratios, for which the choice of prior outside
the likelihood-dominated region is important.

3.2 Choice of test statistic for computing p-value

As discussed above, assigning a p-value to the results of a PPD test
requires a choice of test statistic. For high-dimensional data – in
particular Gaussian data – a common choice is χ2, i.e.

T (d,	) = (d − μ(	))ᵀC−1(d − μ(	)), (3)

where μ(	) is the model evaluated at parameter values 	 and C is
the covariance matrix. The use of χ2 as the test statistic, however, can
bias the p-value low when testing the consistency of two experiments
– which can be disjoint subsets of a data vector – that constrain very
different volumes of the parameter space. In this case, the replicas
of one experiment conditioned on the other can naturally yield p-
values that are not uniformly distributed in [0,1] over (consistent)
data realizations, but are skewed towards lower values. Thus, these
should be interpreted with caution when using them for consistency
tests, as we illustrate with a toy model in the following subsection
(see also Gelman 2013, for a discussion about non-uniform posterior
predictive p-values). In Section 3.3, we show how PPD tests can
be repeated on simulated DES Y1 data to calibrate p-values and
distinguish this effect from true tensions. We will therefore rely on
calibrated p-values, denoted p̃, to test internal consistency.

3.2.1 A toy model example

For purposes of illustration, we consider two independent exper-
iments, A and B, that both make two-dimensional measurements,
respectively dA = (dA

1 , dA
2 ) and dB = (dB

1 , dB
2 ). We now suppose

both experiments to be normally distributed with means μA and
μB, unit variance per component and covariances ρA and ρB between
components, such that the covariance of dA is

CA =
(

1 ρA

ρA 1

)
, (4)

and similarly for dB. Problems with using χ2 as a test statistic emerge
when the parameter space is at least two-dimensional. We therefore
consider a two-parameter model for the data, that is specified by
parameters 	 = (θ1, θ2), with true values 	0 = (0, 0), and such that
μA = μB = 	. In other words, the expectation values of the data
points are the parameter values. Assuming flat priors over parameters,
the likelihoods and posteriors are normal distributions we can easily
sample from. Finally, we imagine having measurements for each
experiment that coincide with their fiducial values, dobs

A = dobs
B =

(0, 0), such that they are perfectly consistent.

(i) Goodness-of-fit test. In the left-hand panels of Fig. 1, we
perform a goodness-of-fit test for experiment A alone using the PPD
P (d rep

A |dobs
A ), which is the distribution of possible future replicated

measurements of dA, given dobs
A . We generate a sample of parameters

	 drawn from the posterior P (	|dobs
A ) (blue points in the upper

left-hand panel) and, at each point 	i, we draw a sample from the
PPD (green points) by sampling the likelihood P (d rep

A |	i). Here,
we assumed ρA = 0.5. Note that the PPD realizations include the
uncertainty on the posterior as well as the uncertainty from the data
likelihood; this is why the distribution of green points is broader
than that of the blue points. In the lower left-hand panel, we show
the histogram of the difference of test statistic values from this
mock analysis, T (dobs

A ,	i) − T (d rep
A ,	i), using the test statistic from

equation (3) with covariance CA. Comparing the test statistics from
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Figure 1. Illustration of the challenges of using χ2 as a test statistic for calculating a p-value from the PPD. Top panels show draws from the parameter posteriors,
while bottom panels show histograms of the difference of computed test statistics (with the probability density function of the difference of independent χ2

statistics, given by the variance-gamma distribution developed by Madan & Seneta 1990). In the panels at left-hand, we consider PPD realizations d
rep
A from the

same experiment used to generate the observed data, i.e. dobs
A . In the panels at right-hand, we consider PPD realizations of a different experiment, d

rep
B , than the

original data, dobs
A . In the latter case, we can make the p-value arbitrarily small by reducing the fractional overlap in the posteriors from A and B.

dobs
A and from d

rep
A yields p-value of p = 0.5, which is reasonable,

given that we know the data are consistent, and the PPD is working
as expected.

(ii) Consistency test. In the right-hand panel of Fig. 1, we per-
form a consistency test between experiments A and B using the
PPD P (d rep

B |dobs
A ). Since experiments A and B are independent, the

likelihood is P(dB|dA, 	) = P(dB|	), i.e. the normal distribution
with mean μB = 	 and covariance CB . The problem we highlight
here occurs when the overlap of the posteriors from experiments
A and B is small. Therefore, we set ρA = 0.99 and ρB = −0.99,
such that the posteriors of experiments A and B, shown respectively
in blue and red in the upper right-hand panel, have little overlap
around the true parameters. At each point in the posterior sample for
dobs

A , we draw realizations from the data likelihood for experiment
B in order to generate d

rep
B (orange points). This sample can be

thought of as combining the posterior uncertainty from experiment
A (i.e. the spread of the blue points), with the likelihood uncertainty
from experiment B (i.e. the spread of the red points). We see now
that, on average, the orange points are far from the red points (as
measured with χ2 using CB ), since the parameter values allowed
by the posterior of experiment A are typically far from the posterior
of experiment B. The histogram of the difference of test statistics,
T (dobs

B ,	i) − T (d rep
B , 	i), is asymmetric with a tail at higher values,

as shown in the lower right-hand panel. As a consequence, the p-
value for this comparison will be low; we find p ≈ 0.07. We can
make the p-value even lower by increasing ρA and decreasing ρB.

3.2.2 Conclusions from toy model

We have therefore shown how two experiments that we know are
consistent (they are generated from the same true parameter values)
can be made to have an arbitrarily low p-value if their posteriors

do not overlap significantly in parameter space. We emphasize that
this difficulty emerges because of the choice of test statistic, not
because of some fundamental shortcoming of the PPD. The PPD
realizations in orange in the right-hand panel of Fig. 1 are true
possible realizations of future measurements of experiment B, given
our knowledge from experiment A. The reason why p-values appear
to be biased low in the second kind of test is that T (d rep

B ,	i) is likely
to be smaller than T (dobs

B ,	i), since d
rep
B was generated assuming

the true parameter values are 	i. In principle, it may be possible to
design some test statistic that does not suffer from this complication;
we leave this to future work.

In practice, however, the fact that consistency tests between two
experiments A and B (d rep

B |dA) – as opposed to the goodness-of-fit
tests of a single experiment A (d rep

A |dA) – tend to bias the p-values
low – i.e. skew the distribution of p-values over data realizations
towards low values – means that the PPD tests measure degrees
of consistency conservatively. This can be seen as an advantage
since we want to be careful about claiming internal consistency.
Moreover, most tests we will perform in the following sections do
not suffer from this problem as much as our toy model because
posteriors are generally not as discrepant. We will, however, consider
a method to calibrate p-values in the next section in order to eliminate
confusion between this effect and real tensions, and rely on calibrated
p̃-values for all tests, in order to facilitate the interpretation of our
results.

3.3 Considerations for application to DES Y1 data

3.3.1 DES Y1 likelihood and PPD tests

The DES 3 x 2 pt analysis, described in Krause et al. (2017), adopts a
Gaussian likelihood for the 3 x 2 pt data vector (see e.g. Sellentin &
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Heavens 2018; Louca & Sellentin 2020, for a discussion of this
approximation). The Gaussian likelihood, L, is determined by the
expectation value of the data vector at parameters 	, μ(	), and by a
covariance matrix C

L(dobs|	) = N (μ(	), C) (5)

∝ exp

[
−1

2
(dobs − μ(	))ᵀC−1(dobs − μ(	))

]
, (6)

where N (μ, C) the probability distribution function of a multivariate
Gaussian variable. We now distinguish two types of tests, depending
on whether drep and dobs refer to the same subset of the data vector
(goodness-of-fit test) or different, disjoint subsets (consistency test).

(i) Goodness-of-fit test. In this case, drep is considered to
be future, independent realizations of the same observable as
dobs, in which case, drep does not depend on dobs. Therefore,
P (drep|dobs,	) = L(drep|	) and the PPD p-value in equation (2)
can be thought of as a Bayesian goodness-of-fit test, analogous to
the classical χ2 goodness-of-fit test, but including uncertainty over
model parameters.

(ii) Consistency test. In this case, drep and dobs correspond to
disjoint, but correlated subsets of the full 3 x 2 pt data vector. For
instance, dobs can consist of cosmic shear and clustering measure-
ments while drep can refer to galaxy–galaxy lensing observations, i.e.
dobs = ξ±(θ ), w(θ ), and drep = γ t(θ ). In this example, the conditional
likelihood P(drep|dobs, 	) is the distribution of possible realizations
of γ t(θ ) data, given that the measurements of ξ±(θ ) and w(θ ) are
known and that the model parameters are known to be 	. We will,
however, consider other ways of splitting the data vector. Given our
assumption of a multivariate Gaussian likelihood for the data, the
distribution P(drep|	, dobs) is also a multivariate Gaussian, the mean,
and covariance of which can be computed as follows. For a partition
of the full data vector into disjoint subsets d1 and d2, we have(

d1

d2

)
∼ N

((
μ1

μ2

)
,

(
C11 C12

C21 C22

))
, (7)

where μi is the mean of di, and Cij represents the covariance matrix
between di and dj. The distribution of d2 conditioned on d1 is then
also a multivariate Gaussian given by

P (d2|d1) = N
(
μ2 + C−1

21 C−1
11 (d1 − μ1), C22 − C21C−1

11 C12

)
. (8)

We will use this expression when computing the PPD for disjoint
subsets of the full 3 x 2 pt data vector.

3.3.2 Calibration of PPD tests applied to DES Y1

Given the potential for p-values to be biased low for consistency tests,
where dobs and drep represent different observables (or other splits of
the full data vector), we wish to be able to tell whether an observed
p-value is biased low due to the effect described in Section 3.2 or if it
is rather indicative of an actual tension in the data. To do so, we will
attempt to calibrate p-values by sampling the distribution of such
p-values for simulated data vectors which we know to be generated
consistently. Given a fiducial cosmology (taken here as the best-fit of
the full 3 x 2 pt analysis), we generate noisy data vectors by sampling
the Gaussian likelihood and measure the p-values for the same PPD
tests as those applied to real data. The comparison of the distribution
of p-values for simulated data vectors to the p-value for observed data
will provide a calibrated p̃-value, which is the fraction of simulated
data vectors yielding a lower p-value than the observed data.

It would be prohibitively expensive in computing time to run a
Markov chain for each simulated (noisy) data vector. Therefore, for

each PPD test, we instead run a single chain on the fiducial (noiseless)
data vector and use importance sampling to reweight samples in the
chain for each simulated data vector, before recomputing PPD test
statistics. The successive steps are the following:

(i) We run a standard Markov chain for the fiducial data vector, dfid,
to generate a sample of parameters 	i ∼ P(	|dfid) with weights wi

(see Section 3.4).
(ii) For each simulated data vector dsim, j, we repeat the following

steps2:

(a) We compute the importance weights, given by the ra-
tios of the posteriors for simulated and fiducial data vectors,
αij = P(dsim, j|	i)/P(dfid|	i), and multiply them by the original
weights wi to get updated weights wij = wiαij;

(b) We compute the PPD test statistics T(dsim, j, 	i);
(c) We draw samples from the PPD by generating a realiza-

tion drep, i at each parameter sample 	i (conditioned on dsim, j

if calibrating a consistency test), and compute test statistics
T(drep, i|	i);

(d) We compute the p-value, pj, given statistics T(dsim, j, 	i)
and T(drep, i|	i) with weights wij using equation (2).

(iii) We use the distribution of pj obtained from Nsim = 105

independent simulated data vectors to calculate the calibrated p̃-
value for a given test with p-value p, such that

p̃ = 1

Nsim

∑
j

1(p − pj ), (9)

where 1 is the Heaviside function.

In practice, we find that, given our sampling strategy (see Sec-
tion 3.4), the importance sampling procedure results in relatively low
errors on the estimated (raw) p-values, based on effective number of
samples (of order few hundreds), thus validating the method. We
will therefore report calibrated p̃-values for each test and replace our
consistency criterion by p̃ > 0.01.

Finally, we mention that we will consider many different tests
of the data below. By performing multiple tests, we are necessarily
more likely to obtain evidence for tension by random chance. One
method to correct for this effect is the Bonferroni correction (Dunn
1959), which scales down the p-value threshold by a factor equal
to the number of hypothesis tests. However, this correction can be
overly severe, particularly when the data are correlated (as is the case
here). Since the number of goodness-of-fit tests that we apply is fairly
small (essentially only four), we will generally ignore corrections to
our p-value threshold for multiple hypothesis tests. In some sense,
this is a conservative approach since it makes us more likely to be
worried about possible tensions. While we report many p-values for
individual redshift bins (and more) below, we will not consider the
data to be in internal tension if a few of these p-values fall below our
p-value threshold. Instead, we will take the approach of considering
subsets of the data with low p-values to warrant more exploration. In
other words, we are not worried about the possibility of type-I errors,
where a true null hypothesis is rejected, since we mainly use these
p-values as a means to investigate agreement between the model and
data.

2Note that, since the likelihood is Gaussian, these steps amount to recomput-
ing various differences of log-likelihoods, which can be easily parallelized
and performed within a few minutes for a sample of 105 simulated data
vectors.
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3.4 Sampling methodology

As described above, we generate PPD realizations from a posterior
by drawing from the (possibly conditional) likelihood at each point
in a posterior chain. The posterior chains are generated using
PolyChord (Handley, Hobson & Lasenby 2015a,b). PolyChord
uses Nested Sampling to calculate both the Bayesian evidence and the
posterior distribution. It overcomes some of the issues of ellipsoidal
nested sampling by using slice sampling (Neal 2000; Aitken 2013).
This makes it the optimal sampler for the DES likelihood, as
discussed in DES Collaboration (in preparation).

As described in DES Collaboration (2018), we sample over the
standard �CDM parameter space, combined with the parameters
describing systematic errors in the DES data. The DES-specific
parameters describe multiplicative shear biases in the shear measure-
ments, redshift biases in the assumed source and lens galaxy redshift
distributions, and linear galaxy bias parameters. We additionally
allow the neutrino mass to vary. Details of the assumed priors can be
found in DES Collaboration (2018).

Once the parameter chain for a given posterior is generated, we
re-process the chain usingCosmoSIS (Zuntz et al. 2015) to generate
the realizations from the likelihood at each step in the chain. Since
PolyChord generates weighted samples of the posterior, these
weights are also applied to all PPD realizations (and multiplied by
importance weights for calibration purposes).

4 A PPLICATION O F POSTERIOR PREDICTI VE
C H E C K S TO D E S Y 1 DATA

We now apply the PPD formalism developed above to various splits
of the DES Y1 measurements. We consider several splits, motivated
by considerations of potential systematic errors and possible beyond
�CDM physics.

For visual clarity, when plotting the data we subtract the best-
fitting 3 x 2 pt model from both the data and the PPD realizations,
and normalize relative to the diagonals of the covariance matrix. In
other words, we plot

δXi = di − μMAP
i√

Cii

, (10)

where di is either the true data or the PPD realizations of the data,
μMAP

i is the best fit to the full 3 x 2 pt data vector (with fiducial scale
cuts), and C is the covariance matrix of the 3 x 2 pt data vector. The
choice to plot δXi rather than di has no impact on the comparison
between data and realizations and makes the plots easier to visualize.

Table 1 summarizes p̃-values for the full data vector as well
as each individual probe for each test considered in the following
Sections 4.1–4.6.

4.1 Goodness of fit of the full 3 x 2 pt data vector

We first consider the PPD for the full 3 x 2 pt data vector, shown
in Fig. 2. This first test is useful to determine whether the model
favoured by the data is actually a good fit to the data. However, unlike
the classical χ2 test which only uses the best-fitting model, the PPD
goodness-of-fit test marginalizes over model parameter uncertainties.

The different insets in Fig. 2 split the datavector into the different
observables (ξ±, γ t, and w(θ )), while the different panels split the
correlation functions by redshift bin combination. The distribution of
PPD realizations is shown as the blue bands, while the actual data is
shown as the red points. The faded out points represent measurements
that were not included because of angular scale cuts.

As discussed in Section 3, the computation of a p-value using
the test statistic of equation (3) is motivated for goodness-of-fit tests
like that considered in Fig. 2. We also perform the calibration test,
repeating the same PPD goodness-of-fit test for 105 simulated, noisy
data vectors sampled at the 3 x 2 pt best-fitting cosmology, and using
importance sampling to rapidly compute corresponding p-values.
We show their distribution in Fig. C1. We then compute a calibrated
p̃-value, given by the ratio of simulated p-values below the one
measured from data. We find similar values for this specific test,
which indicates that, as expected, our choice of statistics has little
impact on goodness-of-fit tests.

We compute a calibrated p̃-value of 0.065 (p = 0.046 uncalibrated)
for the full 3 x 2 pt data vector, indicating an acceptable fit given our
criterion of p̃ > 0.01. We report calibrated p̃-values for individual
probes in Table 1. Additionally, we find calibrated p̃-values of 0.373
when considering both components of cosmic shear, and 0.111 when
considering γ t and w(θ ). Each panel of Fig. 2 also indicates the
calibrated p̃-value computed for that particular subset of the data (still
using the PPD realization from the full 3 x 2 pt data vector). Given
the potential pitfalls of multiple hypothesis testing, we use these
individual p̃-values mostly to rank the different bin combinations by
largest discrepancy with the model. The lowest p̃-value is obtained
for the (2,4) redshift bin combination of ξ−. We discuss this particular
subset of the data more in Section 4.7.

4.2 Goodness of fit of individual two-point functions

We now consider goodness-of-fit tests of the different two-point
function components of the full 3 x 2 pt data vector separately, i.e.
we test for the goodness-of-fit of cosmic shear ξ±, galaxy–galaxy
lensing γ t and clustering w, one at a time. This differs from the test
considered in Section 4.1 in that we condition on the posteriors for
each subset of the 3 x 2 pt data vector, rather than on the posterior
from the analysis of the full 3 x 2 pt vector. This allows us, first,
to test each probe separately, and then to exclude the case where
the 3 x 2 pt test p̃-value is dominated by one or two probes, which
could mask a poor fit to the third. Given the similarities between
these tests and that of Section 4.1, we relegate the associated plots to
Appendix A.

Fig. A1 shows the graphical PPD test for cosmic shear. There are
no obvious discrepancies between the PPD realizations of cosmic
shear and the actual data. We compute a calibrated p̃-value for
cosmic shear of p̃ = 0.386, indicating no evidence for tension
between the measurements and PPD realizations. As for the 3 x 2 pt
goodness-of-fit test, though, the (2,4) bin combination of ξ− shows
a low p-value with p̃ = 0.013. Fig. A2 shows the PPD realizations
for galaxy–galaxy lensing. The PPD realizations in this case look
generally consistent with the data. Considered as a whole, though,
the γ t measurements exhibit a good fit, with p̃ = 0.262. Fig. A3
shows the PPD realizations for clustering. Again, the realizations
show good agreement with the data. The p-value for w(θ ) is
p̃ = 0.057.

4.3 Testing for internal consistency between the two-point
functions

We next consider PPD realizations of the form P (d rep
1 | dobs

2 ), where
d1 represents one of ξ±, γ t, w, and d2 represents the remaining
elements of the 3 x 2 pt data vector from the two other probes.
Such tests are interesting for several reasons. First, tests of this form
can be used to split parts of the 3 x 2 pt data vector that depend
on different known systematics, such as shear calibration bias. For
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2694 C. Doux et al.

Table 1. Summary of calibrated p̃-values obtained for all tests. The ‘Test’ column specifies the test. The second and third columns show the observables
considered for sampling (drep) and conditioning (dobs). The fourth column shows the p̃-value for all observables considered in the test with the uncalibrated
p-value in parenthesis, while the rest of the columns show the p̃-value when considering individual observables.

PPD test calibrated p̃-values
Test drep dobs drep|dobs ξ+|dobs ξ−|dobs γ t|dobs w|dobs

Goodness-of-fit tests
Full 3 x 2 pt ξ+, ξ−, γ t, w ξ+, ξ−, γ t, w 0.065 (0.046) 0.537 0.182 0.238 0.071
Cosmic shear ξ+, ξ− ξ+, ξ− 0.386 (0.396) 0.533 0.192 – –
Galaxy–galaxy lensing γ t γ t 0.262 (0.245) – – 0.262 –
Clustering w w 0.057 (0.050) – – – 0.057
Consistency tests: data type splits
Cosmic shear versus galaxy–galaxy
lensing and clustering

ξ+, ξ− γ t, w 0.396 (0.299) 0.600 0.162 – –

Galaxy–galaxy lensing versus cosmic
shear and clustering

γ t ξ+, ξ−, w 0.336 (0.142) – – 0.336 –

Clustering versuscosmic shear and
galaxy–galaxy lensing

w ξ+, ξ−, γ t 0.050 (3.6 × 10−5) – – – 0.050

Consistency tests: other
Cosmic shear: bin 1 versus no bin 1 ξ+, ξ− ξ+, ξ− 0.639 (0.532) 0.648 0.543 – –
Cosmic shear: bin 2 versus no bin 2 ξ+, ξ− ξ+, ξ− 0.392 (0.344) 0.379 0.366 – –
Cosmic shear: bin 3 versus no bin 3 ξ+, ξ− ξ+, ξ− 0.547 (0.372) 0.771 0.287 – –
Cosmic shear: bin 4 versus no bin 4 ξ+, ξ− ξ+, ξ− 0.376 (0.293) 0.593 0.095 – –
3 x 2 pt: large versus small scales ξ+, ξ−, γ t, w ξ+, ξ−, γ t, w 0.034 (0.016) 0.091 0.741 0.167 0.030
Cosmic shear: ξ− versusξ+ ξ− ξ+ 0.186 (0.151) – 0.186 – –

example, additive shear systematics can impact measurement of ξ±,
but are expected to not impact γ t significantly, and have no impact
on clustering. Therefore, if we set d1 = w and d2 = ξ±, γ t, then d2 is
impacted by potential shear biases while d1 is not. Similarly, if d1 =
ξ± while d2 = γ t, w, then d2 will be impacted by potential biases
in the lens galaxy redshifts, while d1 will not. Secondly, departures
from �CDM might be expected to appear in some observables,
but not in others. For instance, a split for which d2 depends on
lensing while d1 does not would show tension in models where
lensing is impacted by beyond-�CDM physics while clustering is
not. For example, this is the case for the (, μ) parametrizations
of modified gravity that perturb the Poisson equation differently for
light and matter, as explored with DES Y1 data (DES Collaboration
2019a) and other galaxy surveys and CMB data (Simpson et al.
2013; Mueller et al. 2018; Ferté et al. 2019; Planck Collaboration VI
2020).

We note that the consistency tests considered in this section are
similar to the test of consistency between ξ± and {γ t, w} considered
in DES Collaboration (2018), where these two subsets of the 3 x 2 pt
data vector were found to be consistent. However, the test presented
in DES Collaboration (2018) used an evidence ratio to identify
consistency. Furthermore, the evidence ratio test naturally lives in
model space rather than data space. Consequently, it is difficult
to use the evidence ratio test to evaluate particularly discrepant
elements of the data vector. The PPD test on the other hand, does this
naturally.

Fig. 3 shows the PPD realizations for clustering, conditioned
on the observed cosmic shear and galaxy–galaxy lensing measure-
ments. Observational systematics, such as galactic dust, are expected
to impact clustering more than cosmic shear and galaxy–galaxy
lensing. Galactic dust would tend to obscure galaxies, modulating
the number density (and thus w(θ )), but likely not having a large
impact on inferred shears. Furthermore, as pointed out by Leauthaud
et al. (2017), gravitational lensing measurements around BOSS-
selected galaxies show a lower amplitude signal than expected

based on the clustering properties of the galaxies. If a similar
discrepancy was born out in DES data, this test would be expected to
reveal it.

The results in Fig. 3 show that w(θ ) appears generally within
the bounds of the PPD realizations. Given the large covariance
between the w(θ ) points, this appearance can be deceiving: we
find that the uncalibrated p-values for several of the w(θ ) red-
shift bins are quite low, in the range of 0.01–0.02. However, we
report a calibrated p̃-value of 0.050, revealing agreement between
clustering measurements and expectations from shear and galaxy–
galaxy lensing measurements. We therefore note that this test is
an example of the case presented in Section 3.2, where the part
of the data vector that is being tested has a different parameter
dependence than the part that is used for conditioning. Namely,
w(θ ) is more sensitive to linear galaxy bias than {γ t, ξ±} and
exhibits different parameter degeneracies. The theory data vectors
and consequently PPD realizations for w(θ ) conditioned on {γ t,
ξ±} therefore have amplitudes spread over a wide range, which
is visible in Fig. 3. Consequently, the uncalibrated p-value in this
case will be driven low as discussed in Section 3.2 and shown in
Fig. C1.

We relegate the two other PPD comparisons of this type to
Appendix B. Fig. B1 shows the PPD realizations for galaxy–galaxy
lensing, conditioned on the observed clustering and cosmic shear
measurements. In this case, we find that all of the data points
appear to be quite consistent with the PPD realizations, and the p̃-
values all appear to be reasonable, with an overall p̃-value of 0.336.
Fig. B2 shows the PPD realizations for cosmic shear, conditioned on
the observed clustering and galaxy–galaxy lensing measurements.
Nevertheless, we note that there appears to be a weak trend for
the ξ+ data points at large scales to be low relative to the PPD
realizations. Furthermore, as seen previously, the (2,4) bin of ξ−
yields a low p-value. We find in this case that most of the data appear
reasonable given the PPD realizations, with an overall p̃-value of
0.396.
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DES internal consistency with PPD 2695

Figure 2. PPD goodness-of-fit test for the 3 x 2 pt data vector. The 68 and 95 per cent confidence bands on the PPD realizations of 3 x 2 pt, conditioned on the
posterior from the analysis of the 3 x 2 pt data is shown as the blue bands. Red points represent the actual data. The bands and the data points are plotted relative
to the best-fitting 3 x 2 pt theory curve, and are normalized by the diagonal of the 3 x 2 pt covariance, such that data error bars have unit size. The different insets
split the datavector into the different observables (ξ±, γ t, and w(θ )), while the different panels split the correlation functions by redshift bin combination. The
calibrated p̃-value for each redshift bin combination of each observable is indicated in the bottom left-hand corner of the corresponding panel and calibrated
p̃-values per observable and for the entire set are reported in Table 1.
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Figure 3. PPD for clustering, conditioned on the posterior from cosmic shear and galaxy–galaxy lensing. See Fig. 2 for explanation of bands.

4.4 Testing for cosmic shear redshift-dependent inconsistency

Splits of the data by redshift bin are motivated both as a probe
of departures from �CDM and by concerns of systematic errors.
Models with an evolving dark energy equation of state, for instance,
would predict redshift-dependent departures from �CDM that could
be revealed by such tests. Similarly, shear measurements at high
redshift could be more impacted by issues such as source blending
and PSF modelling uncertainty, while low-redshift measurements are
more impacted by modelling errors of the non-linear matter power
spectrum and intrinsic alignments, which might then lead to tension
between low- and high-redshift measurements.

One complication of splitting the data on redshift bin is that
certain model parameters – such as galaxy bias or the multiplicative
shear bias parameters – impact only one of the redshift bins. These
parameters will then be unconstrained when conditioning on the other
redshift bins. For such parameters, the PPD realizations will then
involve drawing from the parameter priors. This is not problematic
for parameters like multiplicative shear bias and photometric redshift
bias, which are prior dominated anyways, but is problematic for linear
galaxy bias. If a bias parameter is unconstrained, the PPD realizations
will necessarily span a much broader range than the data, making
the graphical PPD tests difficult. We avoid this issue by focusing on
redshift splits of the cosmic shear data vector, which is unaffected
by galaxy bias.

Fig. 4 shows the PPD realizations for single bins of cosmic shear,
conditioned on the realizations from the other redshift bins. For
instance, the upper plot shows the PPD consistency test for bins
(1,1), (1,2), (1,3), and (1,4), conditioned on measurements of all
other redshift bin combinations. The PPD realizations and p̃-values
generally appear reasonable, although again the (2,4) bins of ξ−
consistently exhibits a p̃-value close to 0.01. However, all overall
calibrated p̃-values are well above 0.01, indicating no sign of tensions
between redshift bins in DES Y1 cosmic shear data.

4.5 Testing for large and small-scale systematics

Like splits of the data on redshift bin, splits of the data on angular
scale are motivated by both considerations of physics and systematic
errors. Departures of galaxy clustering from the assumed linear
bias model, for instance, could lead to tension between the small
and large-scale measurements. The measurements of clustering at
large scales are expected to be particularly susceptible to data
systematics, such as dust extinction or varying observing conditions
(fluctuations in depth, airmass, exposure time, width of the point
spread function). We therefore consider PPD realizations of the
large-scale components of the 3 x 2 pt data vector, conditioned on
the small-scale measurements. We choose θ = 100 arcmin as the
splitting point, leaving four data points for each two-point function
in the large-scale parts.

Fig. 5 shows the PPD realizations for the large-scale 3 x 2 pt,
conditioned on the small-scale measurements. We obtained an
overall p̃-value of 0.034, relatively low compared to the full 3
x 2 pt goodness of fit. Although some individual two-point func-
tions show low p-values, only the (3,4) bin of ξ+ shows a p-
value below 0.01, and we do not observe any noticeable trend
related to redshift based on p-values alone. When considering
clustering alone (still conditioned on small-scale measurements
of all observables), we obtain a p̃-value of 0.030. Individual
bins of the clustering two-point functions show lower p-values at
higher redshifts, which could point to systematic effects affect-
ing large-scale clustering measurements, such as survey observing
conditions. We note this is another example of consistency tests
where the uncalibrated p-value is indeed biased low, as shown in
Fig. C1.

4.6 Testing for cosmic shear systematics

We finally consider tension within the cosmic shear measurements
by splitting the two components ξ+ and ξ−. This test is motivated
by potential systematic effects as well as modelling considerations.
On the systematics side, PSF leakage and shear-dependent selection
biases can generate a B-mode pattern that affects each component
differently (ξ+ is related to the sum of E- and B-mode power spectra,
while ξ− is related to their difference). On the modelling side, we
note that ξ+ and ξ− receive contributions from different physical
modes at given angular separation θ . In particular, ξ− receives
contributions from smaller scales impacted by non-linear evolution
and baryonic physics, which justify stricter scale cuts for ξ− than
ξ+. Since ξ+ has a higher signal-to-noise ratio than ξ− for the scales
we consider, we will apply the test to ξ− conditioned on the ξ+
posterior.

Fig. B3 shows the PPD test in this case. We measure a p̃-value
of 0.186, indicating good agreement between both components of
cosmic shear measurements.

4.7 The impact of the (2,4) bin of ξ−

We consistently find in several tests described above that the (2,4)
redshift bin combination for ξ− yields a low p̃-value, even after
calibration. These tests are correlated (since they share parts of the
same input data), so the fact that multiple tests show similarly low p̃-
values is not surprising. Moreover, as pointed out in Section 3.2, we
have looked at many p̃-values for different redshift bin combinations,
so the fact that one of them shows a low p̃-value is not unexpected.
Given that ξ− is sensitive to smaller scales and more susceptible
to systematics than ξ+, the fact that this bin shows the largest
discrepancy between the observed data and that predicted by the
PPD motivates us to verify its impact on the DES Y1 3 x 2 pt
constraints. When measuring the goodness of fit of the full 3 x
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Figure 4. PPD for cosmic shear where one redshift bin is tested at a time, conditional to the posterior obtained from cosmic shear by removing auto and
cross-correlations with that bin. See Fig. 2 for explanation of bands.

2 pt vector, removing this bin increases the agreement between
the model and the data, yielding a p̃-value of 0.13 (p = 0.10
uncalibrated), compared to 0.065 for the full data vector. Fig. 6
shows the impact on the DES Y1 3 x 2 pt cosmological constraints

of removing the (2,4) redshift bin combination of ξ−. We find that
the impact on the cosmological constraints is negligible, essentially
within the uncertainty of the sampling algorithm. We conclude that,
while it may be the case that the (2,4) bin combination of ξ−
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Figure 5. PPD for all 3 x 2 pt correlation functions at large scales (θ > 100 arcmin) conditioned on observed correlation functions at small scales (i.e. data
points at separation angle θ within scale cuts and θ < 100 arcmin). See Fig. 2 for explanation of bands.

Figure 6. Impact on cosmological constraints of removing the (2, 4) ξ− bin
from 3 x 2 pt.

yields a bad fit to �CDM, this measurement alone has little impact
on the DES Y1 cosmological results. We also note that this bin
combination makes up only about 1.5 per cent of the total DES Y1
data vector.

5 INTERNA L C ONSI STENCY TESTS FOR DES
Y E A R 3

In addition to testing the internal consistency of the DES Y1 joint
probes analysis, one of the goals of this paper is to lay out the set
of consistency tests that will be applied to the DES Y3 joint probes
analysis. We plan on performing the same tests as those that were
applied here to DES Y1 (summarized in Table 1), supplemented
by additional probe-specific tests, such as testing large versus small
scales in cosmic shear alone. Importantly, we select the few most
relevant tests to be performed on the unblinded data vector prior
to any other comparison with our model. If these tests pass, we
will allow comparing the data with the best-fitting prediction and
move forward to the parameter-level unblinding stage (the blinding
methodology is described in Muir et al. 2020). We keep the number
of tests small in order to avoid redundancy and look-elsewhere effects
(discussed in Section 3.3.2). We therefore decide to fix a threshold
at p = 0.01 for each test used as part of the unblinding process and
to select the following:

(i) Goodness-of-fit tests: (1) full 3 x 2 pt, (2) cosmic shear, (3)
galaxy–galaxy lensing and clustering (referred to as 2 x 2 pt);

(ii) Consistency test: (4) cosmic shear versus galaxy–galaxy
lensing and clustering (2 x 2 pt).

The three goodness-of-fit tests allow us to verify that the baseline
model used in the analysis – including the cosmological model,
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but also models for intrinsic alignments, photometric redshifts,
multiplicative bias and galaxy bias – is a good fit to the full data set as
well as each individual probe. The consistency test allows us to verify
that cosmic shear measurements are compatible with galaxy–galaxy
lensing and clustering measurements (2 x 2 pt) given the baseline
model, indicating that it is sensible to combine them into the full 3 x
2 pt analysis. Because we a priori do not expect Y3 data to be sensitive
enough to rule out both �CDM and wCDM, we have chosen to allow
revisiting the potential for bugs or flaws with non-cosmological parts
of the modelling pipeline if we find the data incompatible even in
wCDM, before seeing the final parameter values in any model. Once
the data have passed all unblinding criteria including those four tests,
we will perform all other internal consistency tests, for which we will
report calibrated p̃-values as well.

6 C O N C L U S I O N

In the context of mild to severe tensions between cosmological
constraints on the �CDM model reported by multiple experiments,
it is crucial to assess the internal consistency of individual data sets.
In this paper, we have performed a series of internal consistency tests
of the DES Y1 3 x 2 pt data using the PPD. The PPD represents the
distribution of possible (unobserved) data, conditioned on observed
data, under a shared model. The PPD tests have the advantage of
performing comparisons directly in data space and are not impacted
by prior volume effects, making it a particularly useful consistency
test. By comparing the PPD realizations to the true data, both with
a χ2 test statistic and graphically, we assess the consistency of the
DES data. We perform two kinds of tests: goodness-of-fit tests to
assess whether the model favoured by the data is actually a good fit
to DES Y1 3 x 2 pt measurements, and consistency tests between
disjoint subsets of the full data vector. In particular, we split the
data vector into subvectors corresponding to different observables
(cosmic shear, galaxy–galaxy lensing and clustering), measurements
at small and large scales, and different redshift bins of cosmic shear
data. The choice of χ2 test statistic yields conservative measures
of consistency and we propose a calibration method to overcome
exceedingly conservative p-values that may occur when the data
splits result in too different posterior distributions. This method is
applied consistently to all tests and we report such calibrated p̃-values
throughout this analysis.

In general, we find that the DES Y1 3 x 2 pt data are self-
consistent, and have an acceptable fit to �CDM. A direct graphical
comparison of the PPD realizations to the true data yields no obvious
discrepancies. These results provides a strong validation of the DES
Y1 measurements and cosmological constraints, as well as �CDM.
However, there are a few peculiarities of the data. First, we find
a somewhat low goodness-of-fit statistic for the full data set of
p̃ = 0.065 (p = 0.046 uncalibrated). Secondly, we find a low p-
value for the consistency test comparing large-scale to small-scale
data elements (with a split at separation angle θ = 100 arcmin) which
suggests a small tension close to the 2σ level. This indicates either
insufficient accuracy of the modelling of small-scale measurements
or some observational systematic effect likely to impact large-
scale measurements, potentially explaining the overall low p̃-value.
Finally, we find that the (2,4) bin combination of ξ− consistently
yields a low p̃-value. When this bin of ξ− is excluded, the p̃-value
for the full 3 x 2 pt data vector improves to p̃ = 0.13. However,
excluding this bin from the analysis has negligible impact on the
DES Y1 cosmological constraints.

The methodology developed here will be applied to the forth-
coming analysis of the 3 x 2 pt data vector measured from DES Y3

data. The improvements in statistical noise with Y3 data make such
tests even more interesting. In particular, these tests will be essential
to test the consistency with the cosmological model and look for
unmodelled systematic effects. This would be even more relevant if
the data were to show any sign of a real departure from the predictions
of �CDM.
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e Inovação, the Deutsche Forschungsgemeinschaft and the Collabo-
rating Institutions in the DES.

The Collaborating Institutions are Argonne National Laboratory,
the University of California at Santa Cruz, the University of Cam-
bridge, Centro de Investigaciones Energéticas, Medioambientales y
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APPENDI X A : GOODNESS-OF-FI T TESTS O F
I NDI VI DUAL OBSERVABLES

In this section, we present PPD goodness-of-fit tests for individual
DES Y1 3 x 2 pt probes – cosmic shear in Fig. A1, galaxy–galaxy
lensing in Fig. A2 and clustering in Fig. A3.
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Figure A1. PPD goodness-of-fit test for cosmic shear alone. See Fig. 2 for explanation of bands.

Figure A2. PPD goodness-of-fit test for galaxy–galaxy lensing alone. See Fig. 2 for explanation of bands.
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Figure A3. PPD goodness-of-fit test for clustering alone. See Fig. 2 for explanation of bands.

A P P E N D I X B: A D D I T I O NA L C O N D I T I O NA L
TESTS

In this section, we present additional results of PPD consistency tests.
Figs B1 and B2 show, respectively, tests of galaxy–galaxy lensing

and cosmic shear, conditioned on the two other probes. Fig. B3 shows
the PPD test for cosmic shear ξ− conditioned on ξ+ measurements.

Figure B1. PPD for galaxy–galaxy lensing, conditioned on the posterior from cosmic shear and clustering. See Fig. 2 for explanation of bands.
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Figure B2. PPD for cosmic shear, conditioned on the posterior from galaxy–galaxy lensing and clustering. See Fig. 2 for explanation of bands.

Figure B3. PPD for ξ−, conditioned on the posterior from ξ+. See Fig. 2
for explanation of bands.
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APPENDIX C : CALIBRATION O F PPD TESTS

In this section, we present the distributions of uncalibrated p-
values obtained for simulated data vectors generated at the 3 x
2 pt best-fitting cosmology, for five relevant PPD tests. Fig. C1
shows histograms these p-values – computed with importance
sampling as explained Section 3.3.2 – for five cases: the 3 x 2 pt
goodness-of-fit test (Section 4.1), the 3 x 2 pt large versus small
scales consistency test (Section 4.5), and the three consistency tests

between the two-point functions (Section 4.3). We compare these
values to those obtained from the actual DES Y1 data (shown
by the vertical red lines) and obtain calibrated p̃-values given
by the fraction of simulated p-values below the observed ones.
As expected, the goodness-of-fit test presents a distribution very
close to uniform, while those for consistency tests depart from
uniformity, with a concentration of simulated p-values at low values
that depends on the constraining power of the data splits on one
another.

Figure C1. Histograms of uncalibrated p-values (blue histograms) for simulated data vectors (DV) at the 3 x 2 pt best-fitting cosmology, compared to observed
uncalibrated p-values from DES Y1 data (in red). Note the last panel uses a logarithmic scale as uncalibrated p-values are found to be very small, which is
expected for the comparison of clustering versus cosmic shear and galaxy–galaxy lensing.
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20921-400, Brazil
38Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
39Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India
40Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029
Blindern, NO-0315 Oslo, Norway
41Institut d’Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona,
Spain
42Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can
Magrans, s/n, E-08193 Barcelona, Spain
43Department of Astronomy, University of Michigan, Ann Arbor, MI 48109,
USA
44Kavli Institute for Cosmology, University of Cambridge, Madingley Road,
Cambridge CB3 0HA, UK
45School of Mathematics and Physics, University of Queensland, Brisbane,
QLD 4072, Australia
46Department of Physics, The Ohio State University, Columbus, OH 43210,
USA
47Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak
Grove Dr., Pasadena, CA 91109, USA
48Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street,
Cambridge, MA 02138, USA
49Department of Astronomy/Steward Observatory, University of Arizona, 933
North Cherry Avenue, Tucson, AZ 85721-0065, USA
50Australian Astronomical Optics, Macquarie University, North Ryde, NSW
2113, Australia
51Lowell Observatory, 1400 Mars Hill Rd, Flagstaff, AZ 86001, USA
52Centre for Gravitational Astrophysics, College of Science, The Australian
National University, ACT 2601, Australia
53The Research School of Astronomy and Astrophysics, Australian National
University, ACT 2601, Australia
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56Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas
(CIEMAT), E-28040 Madrid, Spain
57School of Physics and Astronomy, University of Southampton, Southampton
SO17 1BJ, UK
58Computer Science and Mathematics Division, Oak Ridge National Labo-
ratory, Oak Ridge, TN 37831, USA

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 503, 2688–2705 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/2/2688/6149169 by guest on 10 August 2022


