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Abstract: 

 
Steel is the most important material and it has several applications, and positions second to cement in its 

consumption in the world. The mechanical properties of steels are very important and vary significantly due to heat 

treatment, mechanical treatment, processing and alloying elements. The relationships between these parameters are 

complex, and nonlinear in nature. An artificial neural networks (ANN) model has been used for the prediction of 

mechanical properties of low alloy steels. The input parameters of the model consist of alloy composition (Al, Al 

soluble, C, Cr, Cu, Mn, Mo, Nb, Ni, P, S, Si, Ti, V and Nitrogen in ppm) and process parameters (coil target 

temperature, finish rolling temperature) and the outputs are ultimate tensile strength, yield strength, and percentage 

elongation. The model can be used to calculate properties of low alloy steels as a function of alloy composition and 

process parameters at new instances. The influence of inputs on properties of steels is simulated using the model. 

The results are in agreement with existing experimental knowledge. The developed model can be used as a guide for 

further alloy development.  
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1 Introduction 
Microstructure of steels determines the properties of steels and the microstructural features depend on 

alloying elements, process parameters, and heat treatment variables. As the relationships between these are nonlinear 

and complex in nature, it is difficult to develop them in the form of conventional mathematical equations [1-3]. 

Linear regression techniques are not suitable for accurate modelling of steels data with noise which is typically the 

case. Regression analysis to model non-linear data necessitates the use of an equation to attempt to transform the 

data into a linear form. This represents an approximation that inevitably introduces a significant degree of error. 

Similarly, it is not easy to use statistical methods to relate multiple inputs to multiple outputs. The method using 

Artificial Neural Networks (ANN), on the other hand, has been identified as a suitable way for overcoming these 

difficulties [4-7]. ANN is mathematical models and algorithms that imitate certain aspects of the information-
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processing and knowledge-gathering methods of the human nervous system. Although several network architectures 

and training algorithms are available, the feed-forward neural network with the back-propagation (BP) learning 

algorithm is more commonly used. Therefore, within the last decade, the application of neural networks in the 

materials science research has steadily increased. A number of reviews carried out recently have identified the 

application of neural networks to a diverse range of materials science applications[4]. The objectives of the present 

work are to investigate its suitability for modeling complex hot rolled steel system, to predict properties for unseen 

data, and to examine the effect of individual input variables on the output parameters while keeping other variables 

constant. 

 

 Several ANN architectures and training algorithms are available; the feed-forward neural network (FFNN) 

with the back-propagation (BP) learning algorithm is more commonly used. The conceptual basis of back-

propagation was first presented in 1974 by Paul Werbos  then independently reinvented by David Parker in 1982, 

and presented to a wide readership in 1986 by Rumelhart and McClelland [8-12]. Back propagation is a tremendous 

step forward compared to its predecessor, the perceptron. The power of back-propagation lies in its ability to train 

hidden layers and their bye escape the restricted capabilities of single layer networks. When two or more layers of 

weights are adjusted, the network has hidden layers of processing units. Each hidden layer acts as a layer of �feature 

detectors�-units that responds to specific features in the input pattern. These feature detectors organize as learning 

takes place, and are developed in such a way that they accomplish the specific learning task presented to the 

network[10]. Thus, a fundamental step toward solving pattern recognition problems has been taken with back-

propagation. At present, the most common type of ANN used in materials science is FFNN with back propagation 

learning algorithm. 

 

2 Experimental data details: 
Finish rolling temperature and coil target temperature apart from chemical composition play an important 

role in the mechanical properties hot rolled steel strip. The hot rolled steel strip data of three days has been collected 

from an industry and modelled to study the effect of the said temperatures on mechanical properties. The data 

consists of chemical composition (Al, Al soluble, C, Cr, Cu, Mn, Mo, Nb, Ni, P, S, Si, Ti, V and Nitrogen in ppm, 

i.e. 15 inputs), finish rolling temperature (FRT), coil target temperature (CTT), and respective mechanical properties, 

namely, YS, UTS and EL. The range of the hot rolled steel strip data used for the present study is shown in the 

Table 1. Total 435 data sets with 17 input parameters were available and 335 sets were used for training. The best 

results were achieved at a learning rate of 0.7 and momentum rate of 0.6 with 2 hidden layers consisting of 34 

hidden neurons in each layer. The predicted results of optimum trained NN model are within 4% of experimental 

values in most of the cases. 

 

 

 

 



Table 1 The range of the Hot rolled steel strip data  

 

Comp. Al ALS C Cr Cu Mn Mo N Nb Ni 

Min. 0.021 0.02 0.02 0.014 0.005 0.17 0.001 26 0 0.008 

Max. 0.065 0.063 0.06 0.039 0.012 0.38 0.003 58 0.004 0.0179 

 

Comp. P S Si Ti V FRT CTT 
Mechanical Properties 

LYS UTS EL 

Min. 0.007 0.003 0.004 0 0.001 850.23 570 242 317 34 

Max. 0.024 0.02 0.028 0.003 0.002 901.14 650 338 397 46 

 

 

 

3 Model development and Graphical user interface design  
 A graphical model plays a crucial role in easy understanding and analysis of any complex systems. The 

present model development involves in two phases, training phase and representation of results phase. Object 

oriented programming language Java has been used to develop the training and representation of results phases. 

Training phase consists of collection of the training data, normalizing the data, selection of inputs and outputs, 

selection of neural networks parameters. In the training phase each of the systems are trained with various 

configurations and an optimum configuration is chosen which, satisfies the permissible error and minimal usage of 

the system resources. The final configuration is saved to files. Thus generated data is passed on to the representation 

phase for the further processing. The training phase takes a considerable amount of time for each process and often 

requires a trial and error mode of selection of hidden layers and the number of hidden neurons and the choice of 

learning rate, momentum rate and permissible error level is dependent on the complexity as well as the precision 

requirements of the system. The training phase is coded in such a manner, that the application module can be used in 

various technical applications and hence requires no knowledge of metallurgy to understand the software source. 

 Considering the time constraints and the added uncertainty in the choice of the configuration, the content 

generation phase is separated from the content representation. In addition, the representation phase includes the 

analysis of the system, which forces extensive knowledge in metallurgy; henceforth the layered structure of the 

isolation of the content generation and the representation is an objectified approach satisfies the principles of 

software development.  

 The required models are trained during the training phase and the network description files, the weight file 

along with the other required files are placed in a proper location accessible by the model. The representation phase 

is where model is tested for its precision, sensitivity of various inputs and outputs are determined and some inputs 

are plotted against the outputs and to determine outputs for the custom inputs. The model is represented as an 

application where each of the plots or the features is presented in separate tabs. Whenever the basic model is 



changed the new serialized model, which has the trained weights, is read as the current model and this will update 

all the plots in the tabs in turn. For the Sensitivity analysis of the input/output parameters of the lower end is send to 

the model to retrieve the outputs and again the inputs/output parameters of the upper end is passed onto the model to 

retrieve the upper limits of the outputs. From these the slope is determined and plotted in the form of blocks.   

 Various systems are currently under study, while these can be categorized, there are primarily two types of 

categories, and one is based on the type of metal being studied and other by the type of the process being used to 

study the system. Hence the representation is done in an application frame, which constitutes a menu bar, tool bar, 

status bar in addition to the actual plots for switching between various models and to have inline status help.  The 

use of technical terms is discouraged to make the model understandable even for non-metallurgists who are not 

experts in process concepts or the domain knowledge. On the base of the designed FFNN model, various graphical 

user interfaces were created for a better and easy understanding of the system.  

 

4   Results and Discussions 

4.1 FFNN model Predictions with Test data 

 

 
 Fig. 1. FFNN model prediction for test data of Hot rolled steel strip  

Total data sets available for FFNN Model training are 435. First 335 data sets have been used for training and 

remaining 100 data sets, which are randomly chosen from the total data sets, is used for testing. As it is difficult to 

represent the complete predictions, the predictions of randomly selected fifteen test data sets are shown in Fig.1. The 

comparison between actual and predicted properties for the 15 testing data sets of hot rolled steel strips is shown in 
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Fig. 1. It was observed that most of the outputs predicted by the model are within 5% of the error band (indicated in 

(b), (d) & (f)). For the testing data never seen by the model, the FFNN Model gives a reasonably accurate prediction. 

The mean percentage error in the case of YS, EL and hardness are 4.44, 3.54 and 4.84 respectively. In most of the 

cases the deviations are less than 5%. 

 

4.2  Hypothetical Alloys for FRT and CTT 
 Sensitivity analysis studies the effects of parameter variations on the behavior of complex systems. The 

concept of sensitivity analysis can be extended to all essential parameters of continuous, discrete, or continuous-

discrete systems. The sensitivity analysis of the trained FFNN models evolved and its application is explained in the 

earlier [1-3, 13-15]. The effect of chemical composition and two process parameters namely coil target temperature, 

finish rolling temperature individually and together on mechanical properties has been presented in the case of low 

carbon hot rolled steel strip.  In the steels studied so far the chemical composition and heat treatment variable on 

properties are considered [1-3, 16-18]. However, the mechanical properties also depend on the process parameters 

like coil target temperature, finish rolling temperature and the forces applied during rolling of the hot rolled steel 

strip. In the present section, the effect of coil target temperature and finish rolling temperature variations on 

mechanical properties of hot roll steel strip are studied. Fig. 2 shows the variations of coil target temperature and 

finish rolling temperature simultaneously and their effect on mechanical properties. The figure indicates that the 

influence of finish roll temperature on the mechanical properties is more complex than that with coil target 

temperature. This is expected as the finish roll temperature (ranging between 850-910oC) influences a number of 

parameters such as volume fraction of proeutectoid ferrite, grain size of ferrite and the texture developed during 

rolling, precipitation of various carbides, etc. While the coil target temperature being in the range of 570-650oC, is 

much below the eutectoid temperature and hence only brings in smaller variation in microstructure and hence 

smaller variation in the properties. The effect of combined variation of finish rolling temperature and coil target 

temperature on mechanical properties is presented in Fig. 3. Table 2 shows the two temperatures for one data set and 

the respective properties and the model predicted properties with different input variations. The model predictions of 

test data are well within 5%.  

 

 Increase in coil target temperature increases strength around 605oC and then the grain size increases with 

further increase in temperature and the corresponding strength decreases and the respective rise in ductility. The 

grain growth restriction will takes place at higher coil target temperature and there-by-there is no change in the 

strength and ductility. The model predicted this phenomenon very well.  As finish rolling temperature increases 

initially strength increases owing to plastic deformation and very little amount of precipitation. At the same time 

elongation falls drastically. This happens for increase in precipitate later with increase in temperature grain growth 

will takes place, which increases ductility and decreases strength. And at 890oC, strength decreases at lower value 

for larger grain size. Then ductility falls due to the starting of precipitation again. Thereafter precipitation and grain 

growth takes place simultaneously increase at a same time which results increase in strength and ductility. Table 2 

shows the model predictions are well in agreement with the actual values.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig 2 Effect of the variation of Finish Rolling Temperature and coil target temperature on Mechanical properties 

 

Table 2 Comparison of actual and predicted properties of hot rolled steel strip with respective hypothetical alloys 

 

System LYS UTS EL 

Actual 302 356 42 

HA based on Finish Rolling  

Temperature (867.95oC) 313 365 41.8 

HA based on Coil Target  

Temperature (570oC) 303 358 42.5 
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Fig 3 Combined effect of the variation of coil target temperature (a) and finish rolling temperature (b) on 

Mechanical properties 

 

5   CONCLUSIONS 
 

Neural networks model for prediction and analysis of the hot rolled steel strip data has been developed. The 

results demonstrated that the model can be used to examine the effects of individual inputs (Coil target 

temperature and finish rolling temperature) on the output parameters (mechanical properties), which is incredibly 

difficult to do experimentally.  The present model will be helpful in reducing the experiments required for new 

alloys with desired properties. The user-friendly screens of the present model can make even a layman use it 

conveniently without the knowledge of any programming. 
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