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We extend the result of Lemma 4, [1] to the case that e = 0
and � = 1 which was missing in [1] but used in the proof of 
Theorem 1, [1].
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1. The correction

On page 15, [1], in Case (ii), it is claimed in the fifth display that for e ∈ {0, 1}, the 
following holds.

1
p− 1 + max

{
1

p− 1 ,
1

p− 2� ,
2 log(2n + β)

ps log p

}
>

1
k
.

This was obtained by arguing that μe(g) ≥ 1/k and that

μe(g) <
1

p− 1 + max
{

1
p− 1 ,

1
p− 2� ,

2 log(2n + β)
ps log p

}
. (1)

For the latter estimate, we had referred to Lemma 4, [1]. The bound obtained in Lemma 4, 
[1], is valid only for e ≥ �. While, according to (b), Corollary 4, if e = 0, then � = 1, i.e., 
e < �. Thus, in order for our arguments to work in case (ii), we must justify the validity 
of (1) in Lemma 4, [1], in the case that e = 0 and � = 1. In the present note, we achieve 
this.

We follow the notations of [1]. In the case under consideration, e = 0 and � = 1. By 
(b), Corollary 4 [1], this is the case if β �= −2. We let p be a prime factor of n − � = n −1
satisfying p > 2� + |β| = 2 + |β|, as required in Lemma 4, [1]. We are to establish that

μ0(g) <
1

p− 1 + max
{

1
p− 1 ,

1
p− 2 ,

2 log(2n + β)
ps log p

}
. (2)

We recall from [1] that

μe(g) = μe,p(g) = max
{
ν(b0) − ν(bj)

j
: e < j ≤ n

}

where g(x) =
∑n

j=0 bjx
j and ν(bj) is the highest power of p that divides bj . From 

Lemma 4, [1], we already have that

μ1(g) <
1

p− 1 + max
{

1
p− 1 ,

1
p− 2� ,

2 log(2n + β)
ps log p

}
.

Thus, in order to establish (2), it would suffice to show that

ν(b0) − ν(b1) ≤ 0.

Next, we recall from [1] that

bj =
(
n

j

)
(2n + β − j)!

(n + β)! .

Thus,
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b0/b1 = (2n + β)!
(n + β)!

(n + β)!
n(2n + β − 1)! = 2n + β

n
.

Therefore, ν(b0) −ν(b1) > 0 implies that p|(2n +β). Also, as per our hypothesis, p divides 
n −1. Thus, p divides 2n +β−2n +2 = β+2. Since p > 2 + |β|, it must be that β+2 = 0. 
But this is a contradiction since |β| �= −2 in this case. Our assertion now follows.
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