Corrigendum

Corrigendum to "On a generalization of a conjecture of Grosswald" [J. Number Theory 216 (2020) 216-241]

Pradipto Banerjee*, Ranjan Bera

Indian Institute of Technology - Hyderabad, Department of Mathematics, Kandi, Sangareddy, Medak, Telangana 502285, India

A R T I C L E I N F O

Article history:

Received 15 November 2020
Received in revised form 17
November 2020
Accepted 18 November 2020
Available online 23 December 2020
Communicated by S.J. Miller

MSC:

11R32
1 C 08
33 C 45
Keywords:
Bessel Polynomials
Generalized Laguerre polynomials
Irreducibility
Galois group

A B S T R A C T

We extend the result of Lemma 4, [1] to the case that $e=0$ and $\ell=1$ which was missing in [1] but used in the proof of Theorem 1, [1].
© 2020 Elsevier Inc. All rights reserved.

[^0]
1. The correction

On page 15, [1], in Case (ii), it is claimed in the fifth display that for $e \in\{0,1\}$, the following holds.

$$
\frac{1}{p-1}+\max \left\{\frac{1}{p-1}, \frac{1}{p-2 \ell}, \frac{2 \log (2 n+\beta)}{p^{s} \log p}\right\}>\frac{1}{k}
$$

This was obtained by arguing that $\mu_{e}(g) \geq 1 / k$ and that

$$
\begin{equation*}
\mu_{e}(g)<\frac{1}{p-1}+\max \left\{\frac{1}{p-1}, \frac{1}{p-2 \ell}, \frac{2 \log (2 n+\beta)}{p^{s} \log p}\right\} \tag{1}
\end{equation*}
$$

For the latter estimate, we had referred to Lemma 4, [1]. The bound obtained in Lemma 4, [1], is valid only for $e \geq \ell$. While, according to (b), Corollary 4, if $e=0$, then $\ell=1$, i.e., $e<\ell$. Thus, in order for our arguments to work in case (ii), we must justify the validity of (1) in Lemma 4, [1], in the case that $e=0$ and $\ell=1$. In the present note, we achieve this.

We follow the notations of [1]. In the case under consideration, $e=0$ and $\ell=1$. By (b), Corollary 4 [1], this is the case if $\beta \neq-2$. We let p be a prime factor of $n-\ell=n-1$ satisfying $p>2 \ell+|\beta|=2+|\beta|$, as required in Lemma 4, [1]. We are to establish that

$$
\begin{equation*}
\mu_{0}(g)<\frac{1}{p-1}+\max \left\{\frac{1}{p-1}, \frac{1}{p-2}, \frac{2 \log (2 n+\beta)}{p^{s} \log p}\right\} \tag{2}
\end{equation*}
$$

We recall from [1] that

$$
\mu_{e}(g)=\mu_{e, p}(g)=\max \left\{\frac{\nu\left(b_{0}\right)-\nu\left(b_{j}\right)}{j}: e<j \leq n\right\}
$$

where $g(x)=\sum_{j=0}^{n} b_{j} x^{j}$ and $\nu\left(b_{j}\right)$ is the highest power of p that divides b_{j}. From Lemma 4, [1], we already have that

$$
\mu_{1}(g)<\frac{1}{p-1}+\max \left\{\frac{1}{p-1}, \frac{1}{p-2 \ell}, \frac{2 \log (2 n+\beta)}{p^{s} \log p}\right\}
$$

Thus, in order to establish (2), it would suffice to show that

$$
\nu\left(b_{0}\right)-\nu\left(b_{1}\right) \leq 0
$$

Next, we recall from [1] that

$$
b_{j}=\binom{n}{j} \frac{(2 n+\beta-j)!}{(n+\beta)!}
$$

Thus,

$$
b_{0} / b_{1}=\frac{(2 n+\beta)!}{(n+\beta)!} \frac{(n+\beta)!}{n(2 n+\beta-1)!}=\frac{2 n+\beta}{n}
$$

Therefore, $\nu\left(b_{0}\right)-\nu\left(b_{1}\right)>0$ implies that $p \mid(2 n+\beta)$. Also, as per our hypothesis, p divides $n-1$. Thus, p divides $2 n+\beta-2 n+2=\beta+2$. Since $p>2+|\beta|$, it must be that $\beta+2=0$. But this is a contradiction since $|\beta| \neq-2$ in this case. Our assertion now follows.

References

[1] P. Banerjee, R. Bera, On a generalization of a conjecture of Grosswald, J. Number Theory 216 (2020) 216-241.

[^0]: DOI of original article: https://doi.org/10.1016/j.jnt.2020.02.013.

 * Corresponding author.

 E-mail addresses: pradipto.banerjee7@gmail.com (P. Banerjee), ma16resch11002@iith.ac.in (R. Bera).

