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Canonical Saliency Maps: Decoding
Deep Face Models
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Abstract—As Deep Neural Network models for face process-
ing tasks approach human-like performance, their deployment in
critical applications such as law enforcement and access control
has seen an upswing, where any failure may have far-reaching
consequences. We need methods to build trust in deployed
systems by making their working as transparent as possible.
Existing visualization algorithms are designed for object recog-
nition and do not give insightful results when applied‘ to the face
domain. In this work, we present ‘Canonical Saliency Maps’, a
new method which highlights relevant facial areas by projecting
saliency maps onto a canonical face model. We present two kinds
of Canonical Saliency Maps: image-level maps and model-level
maps. Image-level maps highlight facial features responsible for
the decision made by a deep face model on a given image, thus
helping to understand how a DNN made a prediction on the
image. Model-level maps provide an understanding of what the
entire DNN model focuses on in each task, and thus can be used
to detect biases in the model. Our qualitative and quantitative
results show the usefulness of the proposed canonical saliency
maps, which can be used on any deep face model regardless of
the architecture.

Index Terms—Deep neural networks, face understanding,
explainability/accountability/transparency, canonical model.

I. INTRODUCTION

DEEP learning achieves state-of-the-art performance in
most computer vision tasks, surpassing earlier methods

by a large margin. The performance of deep neural networks
is improving in leaps and bounds for face processing tasks
such as face recognition and detection. In 2014, DeepFace [1]
approached human-like performance for the first time on the
LFW benchmark [2], a dataset of face images in unconstrained
settings (DeepFace: 97.35% vs. Human: 97.53%), using a
training dataset of 4 million images. In recent years, the accu-
racy has increased up to 99.8% [3], thereby surpassing human
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performance on the benchmark. Deep face models are now
deemed to be real-world ready. They are used in many critical
areas by government agencies including law enforcement and
access control. Currently, models for face tasks are available
from major companies like Microsoft, IBM and Amazon who
claim that their models are highly accurate. In this scenario,
two crucial questions arise: Do pre-trained models perform
as well as they claim, and how do we find the weaknesses
existing in these models and improve them.

Failures of face models in critical areas have far-reaching
and devastating consequences. Inaccuracies in facial recog-
nition technology can result in an innocent person being
misidentified as a criminal and subjected to unwarranted
police scrutiny. Big Brother Watch U.K. released the Face-Off
report [4] highlighting false positive match rates of over
90% for the facial recognition technology deployed by the
Metropolitan police. A recent study [5] demonstrated that
although commercial software solutions report high accura-
cies (Amazon’s Rekognition reports an accuracy of 97%), they
demonstrate skin-type and gender biases that go unreported as
the benchmarks themselves are skewed. When performance is
reported on public or private databases, they are always subject
to the biases inherent in these databases. The algorithms may
be then used in the real world in conditions that differ wildly
from the ones that they are tested in, causing the algorithms
to produce erroneous results. How do we catch such issues at
an early stage? High reported accuracy is not enough to deter-
mine how an algorithm will perform under real-life conditions.
We need to be able to peek inside the algorithms and under-
stand how they work. The opaqueness of deep models restricts
its usefulness in highly regulated environments (e.g., health-
care, autonomous driving), which may require the reasoning
of the decisions taken by the deep models to be provided.
To build trust in deployed intelligent systems, they need to
be transparent, i.e., they should be able to explain why they
predict what they predict [6]. Interpretable algorithms allow us
to responsibly deploy deep face models in the real world, as
they help end users be aware of these models’ characteristics
and shortcomings.

Several visualization methods have been proposed to
increase the interpretability and transparency of deep neural
networks. So far, most neural network visualization methods
have been created with the task of object recognition in mind.
There have been very few works that applied these algo-
rithms exclusively to the face domain [7], [8]. The saliency
methods of object recognition do not readily translate to
the face domain, as the images used for face tasks have
different properties from those used for generic object recog-
nition. Face images are highly structured forms of input. The
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Fig. 1. Are all parts of the face of equal importance for different face classification tasks? In this work, we show that deep models do not give equal
importance to the entire face. Canonical Model Saliency (CMS) maps show parts of the face that play a significant role in decisions made by the deep model.
CMS maps reveal how deep face models work and allow us to detect and diagnose problems inherent to the models, such as biases. For heatmaps, red
indicates a high value while blue indicates a low value (Best viewed in color).

intra-class difference is very small and face tasks are a form of
fine-grained classification. Input images to face classification
models are usually pre-processed so that they are centered
around the face of interest and there is only one face per
image. Examples of current saliency methods applied to faces
are given in Figure 2. We observe that most methods highlight
a large area in the center of the face. This type of heatmap
may be useful for object recognition when there are multiple
objects in a single image, but shows only trivial information
for face images. Since faces are centered in the input image,
the question ‘where in the image’ is not as relevant as ‘where
on the face’. In this work, we introduce a simple yet effec-
tive ‘standardization’ process for visualization of deep learning
models for face processing, that converts image coordinates to
face coordinates and thus makes the resultant saliency maps
more effective in practice. We utilize the structure of faces
and project the saliency maps onto a standard frontal face
to obtain ‘Canonical Saliency Maps’ that are independent
of image coordinates. These canonical saliency maps can be
further processed to compare images or observe trends.

To this end, we propose two types of canonical maps:
Canonical Image Saliency (CIS) maps and Canonical Model
Saliency (CMS) maps. CIS maps are detailed attention maps of
input faces projected onto a standard frontal face. CMS maps, on
the other hand, globally visualize the characteristic heatmap of
an entire face network, as opposed to an input image. This shows
the general trend of facial features a network fixates on while
making decisions. Such a model-level saliency map can only
be generated using a canonical approach, and not by currently
available saliency maps. CMS maps highlight areas that are of
most significance for a given face task across a dataset. Since
we need only the confidence of the classifier for this purpose,
these can be generated for any available model or architecture,
even if the implementation details are not available. Thus, this
approach may even be used for analyzing commercial models
that may not reveal their architecture designs.

In order to validate our contributions comprehensively, we
study our canonical maps on five different face process-
ing tasks: face recognition, gender recognition, age recogni-
tion, head pose estimation and facial expression recognition
(Figure 1). We use well-known architectures in our studies
and also compare the fixation patterns of the models for
human recognition of faces. We also show that our visual-
ization method helps discovers a bias in gender recognition
models which rely on eye make-up to make decisions.

Our key contributions can be summarized as follows.
• We present a method to standardize face saliency images

and project them from image coordinates to face coor-
dinates. This ‘standardization’ produces canonical heat-
maps that show the relevance of different facial parts to
a deep face task. The new maps are more insightful than
the saliency maps produced by current methods and can
be used for comparison and observation of trends.

• We introduce two types of canonical heatmaps:
(i) Canonical Image Saliency maps which highlight the
significant facial areas of a specific input image perti-
nent to a prediction; and (ii) Canonical Model Saliency
maps, which capture global characteristics of an entire
deep face model while making predictions across data
points, which allows us to understand the network and
potentially diagnose problems.

• Our algorithms can be performed on any face model even
if the implementation is not available. We demonstrate the
superior performance of our method using extensive suite
of experiments.

• We explore the working of deep face models trained for
various face tasks having different architectures. We illus-
trate how to interpret the canonical maps and demonstrate
their diagnostic utility by detecting a bias that arises from
using a celebrity face dataset to train a deep network to
classify gender.

II. RELATED WORK

There has been extensive research dedicated to saliency
visualization methods in recent years. One of the first efforts
to obtain image saliency was by Simonyan et al. [10]
which used the magnitude of the gradients to obtain a noisy
and scattered saliency map. Zeiler and Fergus [15] and
Springernberg et al. [12] subsequently introduced methods
to highlight the important details of the image. These visu-
alizations were not class-sensitive. Zeiler and Fergus [15] also
proposed a method to obtain coarse class-specific saliency
maps by occluding parts of the input image and mon-
itoring the output of the classifier. Recent works such
as CAM [16], GradCAM [6], GradCAM++ [13] and
ScoreCAM [14] proposed gradient-based methods to produce
coarse, class-sensitive saliency maps that highlights areas of
the input image that were influential in the classifier output.
Smilkov et al. proposed a technique called ‘SmoothGrad’ [11]
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Fig. 2. A comparison of various saliency visualization methods on the VGG-Face model [9] for the task of face recognition. For each image, the target
class of the visualization is the ground truth class. (a) Original image; (b) Vanilla gradients [10]; (c) Smooth-grad [11]; (d) Guided Backpropagation [12];
(e) Guided GradCAM++ [13]; (f) GradCAM [6]; (g) GradCAM++ [13]; (h) ScoreCAM [14]; (i) Occlusion map [15]. Images are taken from the VGG-Face
dataset [9]. Rows (1, 2), (3, 4), (5, 6) and (7, 8) have the same identity. (Best viewed in color).

which produced a smooth version of such maps by averaging
gradient maps after perturbing the input image with noise.

Although there have been many methods introduced for
saliency visualization for general image classification settings,
such methods do not explicitly address non-trivial fine-grained
details when used on face images, as shown in Figure 2.
Columns (b) and (c) in the figure show results of methods
that use the magnitude of gradients to produce a heatmap.
These heatmaps are scattered and it is difficult to see the
details and interpret classification results using them. Guided
backpropagation, shown in column (d), shows the finer details
of the face, but is not class-sensitive, thus reducing their utility
for interpretation. Columns (f), (g) and (h), corresponding
to GradCAM [6], GradCAM++ [13] and ScoreCAM [14],
are class-specific, but most commonly highlight the central
area of a face making them uninformative across different

face processing tasks. Column (e) represents the results of
Guided GradCAM++, obtained by multiplying the output
of guided backpropagation with the GradCAM++ heatmap,
shows fine details while highlighting the class-discriminative
area of the face. Occlusion maps in column (i) of Figure 2
seem to give the most informative results for our use case. This
method maps the impact that each region of the image has on
the classification, in effect mapping out how representative of
the class each region is. It produces a more non-trivial heatmap
showing finer details than the other heatmaps. The heatmap
resolution can also be adjusted by changing the size of the
occlusion and the stride, and the method can be used with
any architecture and loss function. Our visualization method
is hence built on occlusion maps given this inference from our
studies on face images. The closest method to ours is [8], which
uses occlusion maps generated between pairs of similar-looking
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face images to assist humans in telling them apart. They do
this by aligning two faces using keypoints and systematically
occluding patches of both faces and recording the change in
cosine similarity between the faces on a heatmap. The resulting
heatmaps reflect the degree of difference between the face pairs.
Unlike this work, our method works on multi-class classification
tasks and introduces the face canonicalization procedure.

Our proposed Canonical Model Saliency Maps visualize
saliency of face networks w.r.t. different regions of the face for
different face processing tasks. These maps allow us to con-
duct useful analysis by comparing the facial areas important
to the network to the areas that are expected to be impor-
tant to classify the task. However, the challenge herein is -
how do we obtain the ‘correct’ expectations to compare the
network’s saliency map to? One may look at human cognition
as a benchmark for what a deep network should see.

Extensive research exists on how humans recognize faces;
important results have been presented recently in [17]. For,
e.g., humans are known to be good at recognizing low-
resolution and degraded faces, when compared to machines.
There is a marked difference in the recognition rate of humans
when seeing familiar faces when compared to unknown faces.
The face’s top part, especially the eyebrows, is known to be
an important cue for human face recognition [17]. Comparing
our face saliency maps with such insights can tell us when the
obtained saliency maps of trained networks point to wrong
cues for classification (see Section V-B for examples.). Our
results on gender and age agree with some of the earlier con-
clusions [18], [19], [20], [21] on the usefulness of eyes and
lips for gender or the eyes and mouth corners for age, but also
provide new insights such as the importance of eye corners for
gender due to make-up, in addition to providing a methodology
for such analysis. We now describe our methodology.

III. CANONICAL SALIENCY MAPS: METHODOLOGY

The key aim of our methodology is to create a visualiza-
tion which highlights the discriminative parts of a face for a
given task. Our method is based on the assumption that the
discriminative importance of a part of an input image is pro-
portional to the drop in confidence of the classifier when the
part is occluded [15], however on a canonical face representa-
tion. Like other occlusion-based saliency map methods, given
an image I ∈ R

WI×HI and the coordinates (i, j), the importance
of a patch (|i − x| < sz

2 ∀x < WI , |j − y| < sz
2 ∀y < HI) is

given as follows:

Si,j = φ(I, c)− φ
(
I � Bi,j, c

)
(1)

where φ(I, c) is the confidence of class c for image I and
Bi,j ∈ {0, 1}WI×HI

is a mask such that:

Bi,j[x]
[
y
] = 0 if |i− x| < sz

2
and |j− y| < sz

2
(2)

= 1 otherwise (3)

and sz is the size of the patch, which is a hyperparameter.

A. Alignment to a ‘Canonical’ Face

In order to capture the finer details of the parts of an image
a trained DNN model looks at, we compute our saliency map
on a standard neutral frontal face image F ∈ R

WF×HF called

Fig. 3. Procedure of computing Canonical Image Saliency (CIS) map. First,
the input face is densely aligned. Each part of the input face is occluded
with a small patch and the classification confidence is obtained. The drop in
confidence is plotted on the same face location on a neutral face image to
obtain the Canonical Image Saliency map.

the canonical face, which helps compare saliency maps on a
standardized platform.

We find an one-to-one mapping between the input face
image and the canonical face image by fitting a 3D modular
morphable model (3DMMM) [22] using the procedure used
by PR-Net [23]. In particular, we use a convolutional neu-
ral network to regress a UV positional map from the input
image, which gives the depth for a set of fixed points on
the UV map of the face. For details of this procedure, please
see [23]. Let M ∈ R

N×3 be a set of N 3D points representing
the 3DMMM. We fit it on the input image I and the canon-
ical image F to obtain the set of 2D points MI ∈ R

N×2 and
MF ∈ R

N×2 as the projection of M on I and F respectively.
Thus, we have a 1:1 dense mapping of points from I to F such
that I[MI[n, 1]][MI[n, 2]] refers to the same facial feature as
F[MF[n, 1]][MF[n, 2]] ∀n ∈ {1.2, . . . , N}.

B. Mapping Discriminative Areas

The Canonical Image Saliency (CIS) map is generated by
accumulating the drop in confidence at each point of the dense
alignment matrix MI and recording it on the corresponding
location of F on an intermediate matrix P∗ ∈ R

WF×HF as
follows:

P∗MF[n,1],MF[n,2] = P∗MF[n,1],MF[n,2]

+SMI [n,1],MI [n,2]

∀n < N (4)

where P∗MF[n,1],MF[n,2] is the patch around the point
(MF[n, 1], MF[n, 2]) on the heatmap P, and SMI [n,1],MI [n,2] is the
drop in confidence in the patch around point (MI[n, 1], MI[n, 2])
calculated according to Equation (1). Note that self-occluded
areas cannot be mapped to the canonical faces. This is accept-
able however, as self-occluded regions of a face are not
class-discriminative for a given image and face task.

C. Density Normalization

Note that an equi-spaced grid on a 3-dimensional face may
not correspond to equi-spaced grid on a 2D projection of the
face. For example, on a frontal face image, the points on the
sides of the face may be more spatially concentrated due to
the curvature of the face. The heatmap values in these regions
will hence be higher due to the concentration. We hence intro-
duce a normalization step that keeps track of the number of
times a pixel on an image is occluded, when performing the
occlusion heatmap on the mesh. Let N ∈ R

WF×HF be a matrix
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Fig. 4. Effect of applying density normalization to the heatmap. Without den-
sity normalization, the nose is not highlighted despite it being a discriminative
feature, mainly because the density of points on the nose is low.

which stores the count of times each pixel of P∗ was updated.
The final CIS map is calculated as follows:

P = P∗ � N (5)

where � represents element-wise division. Figure 4 shows the
effect of density normalization on the CIS map.

D. From Image Saliency to Model Saliency

We now discuss how the CIS maps are used to under-
stand facial features that are important across all images for
a given model trained for a specific task (for, e.g., the part
of the face that may be important for gender recognition vs
another part that may be important for age recognition). We
call these Canonical Model Saliency (CMS) Maps, which are
model-level saliency visualizations to highlight facial areas
that influence the model across all test images.

Given a test set D consisting of images {I1, I2, I3, . . .} with
variations in factors such as pose, lighting, or expressions, we
consider the average CIS map across these test images as the
CMS map, i.e.,

V = 1

N

∑

i

Pi ∀I ∈ D (6)

where Pi is the CIS map of Ii ∈ D. It is possible to combine
the CIS maps in other ways, but we found that simple averag-
ing worked well in practice for model-level analysis. Learning
CMS maps in other ways could be an interesting direction
of future work. Furthermore, in practice, we observe that it
requires only a few images to generate a stable CMS map for
a complete trained model. This suggests that face networks
consistently rely on a few facial features and the canoni-
cal visualizations are stable across images. This is shown in
Figure 5 where we see that the trends become obvious from
the first random 100 images. After 1000 images, the CMS is
practically unchanged with the addition of more images.

Figure 6 shows a comparison between occlusion heatmaps
of [15] and our CIS maps. Our methodology is summarized
as follows.

E. Model Saliency for Non-Classification Tasks

CMS maps can be generated for any face model which
has a measure of confidence associated with each input
image. Our method can be adapted to non-classification mod-
els by defining an appropriate confidence function. Here, we

Algorithm 1 Canonical Image Saliency Map
Input: nosep,leftmargin=0.5in,topsep=0pt

• input image I of size WI × HI
• input mesh MI of size N × 3
• frontal image F of size WF × HF
• frontal mesh MF of size N × 3
• model φ: deep model to find saliency where φ(I, c) gives

the confidence of I for class c
• target class C of the input image I
• sz: size of occlusion square

Output: heatmap P of size WF × HF

1: procedure CIS(I, MI, F, MF, φ, C, sz)
2: P← {0}WF×HF

3: N ← {0}WF×HF

4: fsz← fsz× HF
HI

5: for i← 0 to n do
6: I∗ ← I
7: I∗[MI[i, 0] − sz

2 : MI[i, 0] + sz
2 ][MI[i, 1] −

sz
2 : MI[i, 1]+ sz

2 ]← 0
8: xF, yF ← MF[i, 0], MF[i, 1]
9:

10: P[xF − fsz
2 : xF + fsz

2 ][yF − fsz
2 : yF + fsz

2 ]+ =
φ(I, C)− φ(I∗, C)

11: N[xF − fsz
2 : xF + fsz

2 ][yF − fsz
2 : yF + fsz

2 ]+ = 1

12: P[N = 0]← 0
13: N[N = 0]← 1
14: P← P� N
15: return P

define the confidence function for two commonly-used face
tasks: zero-shot recognition using nearest neighbor and face
verification.

1) Zero-Shot Face Recognition: Here, the query image q is
assigned the label of the image from the training set whose fea-
tures have the highest cosine similarity with the features of the
query image [24]. We define the confidence of classification
in this setting as follows:

Sq,c = A.Q

‖A‖‖Q‖ (7)

where c is the ground truth label of q, Q is the feature of q
and A is the feature of the closest training set image with label
c. This new confidence function can be used in place of the
class confidence φ in Equation (1).

2) Face Verification: Here, a pair of face images is con-
sidered to have the same identity if the cosine similarity
between their features is more than a threshold calculated on
the training set [24]. We define the confidence in this setting
as follows:

Sq1,q2,c = c×
(

τ − Q1.Q2

‖Q1‖‖Q2‖
)

(8)

where c ∈ {−1, 1} is the verification ground truth label, τ is
the verification threshold, and Q1 and Q2 are the features of
the image pair q1 and q2. Using this function, we generate an
IMS map for each pair of images and calculate the CMS map
using Equation 6.
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Fig. 5. Ablation study to study the effect of the number of images used to create a CMS map. CMS maps for recognition using 100, 500, 1000, 2000, 5000
and 10000 random CIS maps.

Fig. 6. Column (a) shows Occlusion Maps used for saliency visualiza-
tion (see Section II); Column (b) shows Canonical Image Saliency (CIS)
maps. CIS maps are a projection of occlusion maps onto a canonical frontal
face; Column (c) shows Canonical Model Saliency (CMS) maps. These maps
are generated for a model as a whole and hence do not vary with input;
Column (d) shows the CMS maps reprojected back onto the input face.

IV. EXPERIMENTS AND RESULTS

We now present our comprehensive experimental results,
that analyze the effectiveness of canonicalizing saliency maps
for face processing tasks. First, we explore our saliency
maps through visual examples in Section IV-A. Second, we
objectively assess the ability of our visualization to highlight
discriminative parts of the face in Section IV-B. Third, we
present the results of a user survey which shows that the
parts of the face highlighted by our algorithm are important
for the human perception of facial attributes in Section IV-C.
Finally, we present extensive ablation experiments and dis-
cussions on our method in Section V. Unless otherwise men-
tioned, our experiments are conducted using the VGG-Face
pre-trained model [9] based on the VGG-16 architecture [25].
We use a random subset of the CelebA dataset [26] consist-
ing of 22,000 images (henceforth called CelebA-subset) for
all our experiments. (Note that these images are only used

in the model’s test phase, the model by itself is trained on
all the training images in the CelebA benchmark). See the
Supplementary Section for more details.

A. Qualitative Results

We compare the saliency maps produced by various meth-
ods in Figure 2. As in Section II, most visualizations are not
practically useful, and highlight a vague central portion of the
face. In Figure 6, we display the visualization methods intro-
duced in this work. From simple occlusion maps in column (a),
we obtain Canonical Image Saliency (CIS) maps by project-
ing the occlusion maps onto a neutral frontal face, as shown
in column (b). This ‘canonicalizing’ allows us to collate the
CIS maps to create Canonical Model Saliency (CMS) maps as
shown in column (c). In column (d), we show that when the
CMS maps are reprojected onto the input images, the saliency
maps become meaningful for analysis.

1) Evaluation of Canonical Model Saliency Maps on
Various Face Tasks: For this experiment, we used our algo-
rithm on five models trained for the tasks of classifica-
tion, expression, head pose, age and gender. We used the
VGG-Face [9] pre-trained model, and finetuned it for each
of the aforementioned tasks on the CelebA [26] dataset. The
ground truth labels for gender are provided with the CelebA
dataset. The head pose ground truth was obtained by using
PRNet [23], and the age ground truth was obtained using
the DEX method [27]. For expression, the ground truth for
CelebA was obtained from a model trained on the FER 2013
data set [28]. Since both head pose and age are real-valued,
we grouped the values into discrete bins to convert them
into classification tasks. For pose, the yaw and pitch values
were binned into 9 bins ranging from top-left to bottom-
right (see Figure 19). Similarly, the real-valued ages obtained
from the DEX model were grouped into 10 bins, each hav-
ing 10 years. More details of the networks used are given
in the Supplementary Section S1. The generated CMS maps
are shown in Figure 1. We notice how models of the same
architecture trained on different tasks focus on different face
areas. For recognition, the eye-nose triangle is important and
there is less focus on the mouth or the chin. Gender models
surprisingly find the corners of the eyes to be the most dis-
criminative facial features. We discuss the implications of this
in Section V-B. The nose is a crucial feature for the head pose
model and the area between the eyebrows for the expression
model. The age model looks at many different facial features.
We see that CMS maps are a valuable asset to understand
the nature of face tasks and the characteristics of various deep
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Fig. 7. Calculating CMS maps for non-classification tasks on the LFW
dataset: (a) CMS map for zero-shot learning of identity using nearest neighbor;
(b) CMS map for face verification.

Fig. 8. Sanity check on our visualization method. We progressively random-
ized the layers of the VGG-16 face model starting with the output layer as
described in [29]. We observe that the CMS map gets progressively random-
ized; our method passes the sanity check. (a) Last layer randomized; (b) Last
two layers randomized; (c) Last three layers randomized; (d) Last four layers
randomized.

models when addressing these tasks. We discuss some of these
results in more detail in Section V.

2) Canonical Model Saliency Maps on Non-Classification
Tasks: In this experiment, we show that CMS maps can be
generated for non-classification face tasks. We generated CMS
maps for zero-shot learning of face identities using nearest
neighbor and face verification of VGG-Face fc1 features on the
LFW [2] dataset. For the zero-shot learning task, we occluded
parts of the query image while using Equation (7) as the con-
fidence function. For the verification task, we occluded the
same region of both images in a verification pair and used
Equation (8) as the confidence function. The results are shown
in Figure 7. In both cases, we see the highlighted facial areas
are similar to the classification task of recognition in Figure 1.

3) Sanity Check Using Randomization: Reference [29]
proposed a sanity check for saliency maps, where the layers
of a trained model are progressively randomized starting from
the output layer, and the changes in generated saliency maps
are observed. A method is said to pass the sanity check if
progressive randomization increases the randomization of the
corresponding visualization. We perform a sanity check on our
visualization using the same procedure, and reports the results
of this experiment in Figure 8. We observe that as more lay-
ers get randomized, the visualization gets more randomized.
Thus, our method passes the sanity check.

B. Quantitative Results

We conduct an objective evaluation of the faithfulness of our
method on two datasets: CelebA and LFW [2] and compare
it with three popular saliency visualizations: GradCAM [6],
GradCAM++ [13] and ScoreCAM [14]. Similar to [13], [14],
we measure the confidence drop of explanation images pro-
duced by pixel-wise multiplication of the saliency heatmap

Fig. 9. Since face models are trained to look holistically at the face, they
have more confidence in figure (a) than in figure (b), even though figure (b)
highlights more relevant features. Thus, we use negative saliency maps where
darkening relevant features should cause a larger drop in confidence. This
also ensures that there is enough context for the model to interpret the face
holistically. Another reason for using negative saliency maps is to take care
of cases where a visualization method does not interpret the face correctly,
as in figure (d). Here, the heatmap completely misses the face and is focused
on disparate parts of the image. Using normal explanation maps will result in
almost the original image, which will give a high score in the metrics used.
This is avoided by using negative explanation maps and normalizing the sum
of pixels.

with the base image. In particular, we utilize a ‘negative expla-
nation image’ by darkening the relevant areas of the base
image. Unlike the task of object recognition, face images have
a single object at the center of the image, and models trained
on face images focus on different parts of the face image.
In this process, saliency maps at times fail to detect the face
completely (see Figure 9). Using negative explanation maps
addresses such concerns. The negative explanation image E is
given by:

E = (1− H)⊗ I (9)

where H is the heatmap, I is the base image and ⊗ represents
pixel-wise multiplication. The heatmaps are first normalized
to a range of [0, 1] and the heatmaps for all the methods are
standardized to have the same sum of pixels for each image:

H′ = h−min(h)

max(h)−min(h)
;H = s

�H′
H′ (10)

where h is the original heatmap, s is a scalar which is the
same for all heatmaps of the same image, and H is the final
heatmap which is used to create negative explanation maps.
Normalizing the heatmaps in this way ensures that no visual-
ization method gets an advantage of highlighting a large area
of the input image, as only the discriminative parts should be
highlighted.

We adopt the three metrics used in [13] with negative
explanation images.

Average Drop %: The confidence of an image when passed
through a model is expected to decrease when the most
discriminative parts are covered. We measure the drop of
confidence when compared to the unmodified image as:

1

N

N∑

n=1

max

(
0,

M(In)−M(En)

M(IN)

)
× 100 (11)

where M(En) and M(In) are the confidence values of the nth

explanation image and original image respectively. A high
value of Average Drop % indicates that the heatmap accurately
highlights the most discriminative parts of the image.

% Increase in confidence: In some images, covering the
highlighted parts may result in an undesired increase in con-
fidence with respect to the original image. We measure the
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number of such images using this measure as follows:

1

N

N∑

i=1

IM(En)>M(In) × 100 (12)

where I is the indicator function which returns 1 if M(En) >

M(In) and 0 otherwise. A low score in this metric is better.
Win %: Here, we compare all the four methods and measure

which method produces the greatest drop in confidence for a
given test image. For example, Win % of CMS is calculated
as follows:

1

N

N∑

i=1

IM

(
ECMS

n

)
<

(
M

(
EGradCAM

n

)
,

M
(

EGradCAM++
n

)
, M

(
EScoreCAM

n

))
× 100 (13)

where the indicator returns 1 if the explanation map produced
by CMS has the lowest confidence. The sum of Win % across
all the visualization methods for a single task should add up
to 100.

We conduct three experiments for quantitative evaluation.
First, we calculate the above metrics on VGG-16 for the
tasks of recognition, gender, age, head pose and expression
on the CelebA dataset. For fair comparison, we use our maps
projected back onto the input image (Col (d) of Figure 6).
Figure 10 shows our results and a comparison with other
visualization methods. Our method outperforms all other meth-
ods in all metrics. The Win % shows that for most images,
removing the explanation map given by our method causes the
highest drop in confidence (higher the better).

Secondly, we repeat the experiment on the LFW [2] dataset
using the VGG-Face network, using the same experimental
settings as above. We show the results in Figure 11. Here too,
our method outperforms all other methods by a large margin in
all quantitative metrics, showing that our method generalizes
across datasets.

We also compare our saliency methods on various
off-the-shelf gender models. We use pretrained models
from [27], [30], [31] and evaluate our metrics on CelebA-
subset. More details about these models are given in
the Supplementary Section S1. Our results are shown in
Figures 12. Once again, we see that our method outperforms
all other methods on all metrics. We show the CMS maps
obtained using the various networks in Figure 13.

C. User Survey on Perception of Facial Attributes

We conducted a user survey to evaluate the human inter-
pretability of our saliency maps as compared to other visu-
alization methods. In particular, we explored whether the
discriminative facial areas found by Canonical Model Saliency
Maps are vital for human perception of facial attributes. We
focused on the tasks of gender and expression for this study.
The survey used a total of 96 images, each of which were eval-
uated by 154 participants not involved in this work. Twelve
base images for each task were used, for which we gen-
erated four negative explanation maps corresponding to the
four saliency visualization methods GradCAM, GradCAM++,
ScoreCAM and reprojected CMS maps using the Gender
and Expression models mentioned in Section IV-B. We also

Fig. 10. Results for Average Drop %, % Increase in Confidence and Win %
of VGG-16 on Celeb-A for the tasks of recognition, gender, age, head pose
and expression.

applied a vignette to each of the explanation images to hide
the context information (see Figure 15 for sample images).
Each participant was given a binary choice for each image
(male-female or happy-sad, depending on the task). Since a
better visualization algorithm hides crucial information and
makes it more difficult to interpret an image, we use the per-
centage of wrong answers as a measure of the goodness of the
visualization method. We show some sample survey images in
Figure 14. See the Supplementary section for more examples.

The results of our survey are given in Figure 15. We see that
the percentage of wrong answers marked by the respondents
is higher for our method than other methods, indicating that
our method performed better at hiding the most crucial and
discriminative facial areas.

V. ANALYSIS AND DISCUSSION

In this section, we present analysis of the proposed method
including ablation studies and discussions.
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Fig. 11. Results for Average Drop %, % Increase in Confidence and Win % of the explanations generated by Grad-CAM, Grad-CAM++, ScoreCAM and
CMS on LFW for the VGG-16 model.

Fig. 12. Results for Average Drop %, % Increase in Confidence and Win %
of the explanations generated by Grad-CAM, Grad-CAM++, ScoreCAM and
CMS on CelebA for various deep face gender models.

A. Why Model-Level Saliency Maps?

Canonical Model Saliency (CMS) maps allow us to observe
patterns and trends in the functioning of deep face models by
adding the simple yet powerful step of alignment of occlusion-
based saliency maps to a canonical face model. For example,
using CMS maps, we observed that the corners of the eyes are
important for gender classification (Section V-B). This is not

Fig. 13. We compare CMS maps obtained from various off-the-shelf deep
gender models.

Fig. 14. Samples of figures used in our survey (see Section IV-C.

Fig. 15. Results for user survey on the perception of gender and emotion
on explanation maps. We used 12 base images modified using GradCAM,
GradCAM++, ScoreCAM and CMS. The users had to pick binary labels
for each image (male-female, happy-sad). Each question was answered by
143 people who were not involved in this project.

directly apparent by observing individual, unaligned occlusion
maps, as seen in Figure 16. The advantage of this alignment
process is in allowing comparison and aggregation of saliency
maps. A single occlusion map may contain variations caused
by differences in the image setting such as pose, occlusion
and lighting, thus not allowing us to understand the whole
picture. The process of aggregation averages out the effects
of variations in individual images, showing us the parts of the
face that are truly important.
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Fig. 16. In this figure, we compare individual occlusion maps of gender
(first row) and recognition (second row) to the respective cumulative model
saliency maps on the right. Individual occlusion maps vary widely and may
have slightly different areas highlighted due to differences in pose, occlusion
and lighting. Thus, it is hard to compare these images and get the big picture
from them. Aggregating heatmaps gets rid of tiny differences caused due
to the conditions in which the photo is taken, allowing us to gain valuable
insights.

B. Effect of Make-Up on Gender Classification

The CMS maps for the gender model provided interesting
insights using our method (Figure 1E). We expected the
heatmap to highlight the areas around the mouth, jaw and
cheeks, as they contain facial hair cues and different bone
structure for different genders. However, the map showed that
the model fixated mostly on eye corners. We hypothesize
that this is because the model was finetuned on the CelebA
dataset [26], which consists of images of celebrities who use
make-up extensively. The model picked up on the cue of eye
make-up to classify gender. We presume that such a model
will not work well for a different demographic distribution.
This may be the reason why many commercial face models
fail in detecting gender for females and different races [5].
This indicates the importance of detecting dataset biases as
they can have a significant impact on the performance of deep
models. We test our hypothesis with the following qualitative
experiment. We collect a few images of people with and with-
out eye make-up from the Internet. These images were passed
through the gender model and the confidence for ‘male’ and
‘female’ classification was observed. Our results are presented
in Figure 17. We observed that in all cases, there was a drop
of confidence in ‘male’ classification when the men wore
make-up and a smaller drop in confidence of ‘female’ classifi-
cation for women without make-up. In some cases, the drop in
confidence was large enough to flip the original classification
result. This was especially true for males of Asian origin, espe-
cially those from the far East. We conclude that eye make-up
has a significant effect on the performance of such a gender
model, which is skewed towards people of a certain ethnicity.

C. Head Pose Model Relies on the Nose

The shape of the nose changes according to the pose of
the face (Figure 19A). Generally, the nose is positioned at
the centre of the face, and its placement on the face changes
consistently with the 3D orientation of the face. The head pose
can be detected quite accurately from the shape of the nose
and the quadrant of the face in which the nose tip resides
(along with the jawline), especially when there are only nine
classes, as shown in Figure 19. The nose thus provides the

strongest cue for the head pose. This is reflected in the CMS
map shown in Figure 1D.

D. Age Model Uses the Whole Face

The CMS map for age (Figure 1F) shows that the cues
for age are present in multiple areas of the face. Some of
the distinctive features for age may be the tightness of skin
around the eyes and jaws, wrinkles and receding hairline. Pre-
deep learning methods used the geometry or texture of the
face for age prediction [32], thus corroborating our finding on
why age-related cues are found all over the face.

E. How Occlusion Size Affects Saliency Maps

We present a qualitative ablation study to explore the effect
of the size of the occluding patch on the generated CIS map.
The number of vertices provided by the dense face alignment
algorithm is very high and the time required to compute the
heatmap at each vertex is large. Hence we use a tunable ‘stride’
parameter to omit vertices at regular intervals. As the size of
the occluding patch decreases, a smaller stride is chosen so that
gaps don’t appear in the visualization. The stride can be larger
for bigger occluding patches without affecting the visualization
quality. In Figure 18, we show the result of changing the patch
size on the CIS maps generated from the same input image.
We observe that as the patch size increases, the map becomes
fuzzier but general patterns do not change. Our method pro-
vides useful information regardless of the size of the occluding
patch, although smaller patches give better resolution. We used
a patch of size 15× 15 for generating other saliency maps in
this work, as it provides a good balance between heatmap
resolution and computation time.

F. Why Align to Canonical Face?

Here we examine the need for a canonical face instead of
using keypoint-based alignment or the image pixel positions.
The main advantage of canonical face alignment is that it
ensures that the model saliency maps remain accurate while
aggregating the individual image saliency maps. If we do not
align the heatmaps precisely, the changes in position add up
to produce an inaccurate model saliency map.

We conduct an ablation study to demonstrate this effect. We
use three types of alignment and generate model saliency maps
on the LFW dataset: 1) no alignment; 2) keypoint-based align-
ment; and 3) canonical face alignment. For the first case, we
create image saliency maps by sliding an occlusion window
over the entire input image. We repeat the procedure for the
second case, but we used LFW images aligned with keypoint
alignment [33] as the input instead of the raw LFW images.
The third case used the same setting as previous CMS exper-
iments. We create the model saliency maps for each case by
averaging individual image saliency maps. We generate expla-
nation maps and calculate quantitative metrics. The results are
shown in Figure 20. Canonical alignment performs better than
keypoint-based alignment or no alignment in all cases. We
show all three model saliency maps in Figure 21.

Using canonical faces also results in lower computation
cost, as we know exactly which parts of the image we need
to occlude, as opposed to sliding the occlusion patch over the
whole image.
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Fig. 17. Make-up matters! The figure shows the classification confidence of a gender model on the same person with and without eye make-up. The top
row shows the confidence for ‘female’ classification and the bottom row shows the confidence for ‘male’ classification. The ground truth label is given below
each pair of images.

Fig. 18. Canonical Image Saliency maps generated when the size of the occluding patch is varied. We used a patch size of 15× 15 in all other experiments
in this work.

Fig. 19. Look at the close-ups of the nose tip in this figure. Can you tell the
3D orientation of the face with this information? The nose, along with jawline,
provide a good cue for the face pose. We also observe that the quadrant of
the face area in which the nose tip is found is consistent for the same 3D
orientation.

G. Robustness in Deep Models

Robustness refers to the property of a model wherein small
deviations in input images, due to noise or natural variations,

do not affect the correctness of the model. If a model relies on
a small set of cues, it is more likely to go wrong due to input
image diversity. Instead, if the model looks at many cues, small
variations are less likely to confuse the model. The CMS maps
indicate the areas from which deep models pick up cues. The
maps thus also allow us to obtain an estimate of the model’s
robustness. A model that concentrates on a few facial areas is
likely to be less robust than one that focuses on many facial
areas. Less robust models are more prone to mistakes when
presented with extreme cases of occlusion, lighting and other
deviations. We see an example with our trained gender model
(Section V-B), where the model is not robust to changes in
the face due to make-up.

VI. CONCLUSION

In this work, we showed that standardization of saliency
maps via Canonical Saliency Maps provides usable and inter-
pretable results in the face domain when compared to current
saliency methods which give trivial outputs for face images.
Canonical Saliency Maps highlight the facial areas of impor-
tance by projecting occlusion-based heatmaps onto a neutral
face. Computing model-level canonical saliency maps enable
us to perceive which facial features are important for different
face tasks, thereby revealing the strengths and weaknesses of
face models. These observations can be compared to human
perception, which can show us if the model is behaving
in unexpected ways. The maps aid in detecting problems
and biases inherent in the model. In particular, by utilizing
Canonical Model Saliency maps, we identified a bias in a gen-
der model, wherein the model was wrongly using make-up as
a cue to classify gender. We confirmed the presence of the
bias with additional studies. Such models can cause problems
when used in demographics unlike the training dataset, where
the patterns of applying make-up are different.

Nowadays, deep face models are deployed in critical appli-
cations like security and law enforcement – the proposed
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Fig. 20. Ablation study on the effect of different types of alignment. Shown are the Average Drop%, % Increase in confidence and Win % for three different
types of alignment on the LFW dataset: 1. Canonical face 2. Keypoint-based alignment 3. No alignment.

Fig. 21. Ablation study on the effect of different types of alignment.
Shown are the model saliency maps for three different types of alignment
on the LFW dataset: (a) No alignment, superimposed on the average image
of LFW; (b) Keypoint-based alignment, superimposed on the average image
of LFW-funneled; and (c) CMS superimposed on the canonical face.

Canonical Saliency Maps allow such systems to be critically
analyzed before deployment, and thus increase trust. They can
also be used to predict failures during development and help
improve the models. We hope that the tools presented in this
work, while simple, can be very effective in practical use for
deeper understanding of face models, their biases and failures.
In future work, we aim to study methods of mitigating the
problems and biases detected by our visualization methods.
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