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In this article, we explore the submarine channel
formation driven by the interaction of turbidity
currents with an erodible bed. The theoretical
analysis considers the three-dimensional continuity
and momentum equations of the fluid phase, and
the advection–diffusion and Exner equations of the
solid phase. The governing equations are linearized
by imposing periodic perturbations on the base flow.
We study the response of both the base flow (profiles
of velocity and suspended sediment concentration)
and perturbations (growth rate and perturbation
fields) to changes in key parameters related to
the flow and sediment transport. The growth rate
and the critical wavenumber are examined for a
given quintet formed by the gravitational parameter,
longitudinal bed slope, sediment concentration at the
edge of the driving layer, Rouse number and erosion
coefficient. The critical wavenumber reduces with
an increase in gravitational parameter, longitudinal
bed slope, sediment concentration at the edge of the
driving layer and erosion coefficient, while it increases
with the Rouse number. For the submarine channel
formation, we identify the upper threshold values for
the gravitational parameter, longitudinal bed slope,
sediment concentration at the edge of the driving layer
and erosion coefficient and the lower threshold value
for the Rouse number.
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1. Introduction
Turbidity currents are ubiquitous underflows emerging in a marine environment. A photograph
of a turbidity current in an experimental channel is shown in figure 1. The turbidity currents are
driven by the excess density owing to the presence of suspended particles [1–4]. The origin of
turbidity currents has been thought to be linked with the sediment carried by rivers, earthquakes,
slope failures and tsunamis [5,7]. Analogous to rivers, turbidity currents can travel nearly
hundreds to thousands of kilometres before their dissipation and deposition [8,9]. Extensive
studies over the years have investigated the hydrodynamic and morphodynamic aspects of
turbidity currents [7,10,11]. The subtle interaction of a turbidity current with an erodible bed
helps the formation of submarine topographical features, e.g. submarine canyons, fans, levees,
sediment waves, graded beddings and channels [12–15]. Among them, submarine channels are
frequently observed topographic patterns on continental slopes. They act as a route of sediment
transport in a submarine environment [16,17]. The flow in a submarine channel is linked with the
progradation of continental slopes [16]. Therefore, an investigation of the underlying mechanism
of the submarine channel formation is an important aspect.

A few studies have explored the process of flow stripping, migration and flow deposit in
submarine channels [18–20]. However, a handful of attempts have been made to gain an in-
depth understanding of their formation process [6,21]. Field observations have documented the
existence of nearly parallel submarine channels [22], which are generated by the fundamental
instability mechanism [21]. In this context, it is worth highlighting that the instability analysis is a
powerful analytical tool, which has been well documented to retrace the origin and formation of
various rhythmic patterns in fluvial and marine environments [21,23–26]. The instability analysis
of channel inception started with the seminal work of Smith and Bretherton [27]. They found that
under suitable conditions, small amplitude perturbations lead to the development of terrestrial
channels. Reanalyzing the problem of terrestrial channel initiation, Loewenherz [28] discovered
that during the instability process, the advection of eroded sediment dominates the diffusion.
Incorporating a threshold condition for a flatbed erosion, Izumi and Parker [29] performed
a linear stability analysis to investigate the terrestrial channel formation. Their formulation
predicted the characteristic wavelength of terrestrial channels. In addition, they discovered that
the channelization is initially triggered far down slope, and thereupon the channel head migrates
upstream through the head cutting. Revelli and Ridolfi [30] revisited the analysis of Izumi and
Parker [29] considering a non-flatbed. They observed that the consideration of bed curvature
significantly alters the characteristic wavelength of terrestrial channels. In addition, by means
of a linear stability analysis, Izumi and Parker [31] explored the process of terrestrial channel
inception on hill slopes with a smooth downward-concave profile. They found that the transverse
perturbations grow in time, reflecting the inception of channelization. They also predicted the
characteristic wavelength associated with the maximum growth rate of perturbations.

Attempts have been made to channelize a submarine environment. Izumi [6] performed a
linear stability analysis to examine the submarine gully formation due to turbidity currents.
The theoretical investigation yielded a range of characteristic wavelengths for submarine gullies,
being consistent with the field observations. The aforementioned studies on the terrestrial or
submarine channel formation employed the depth-averaged equations of fluid phase. Hence,
they could not provide an insight into the near-bed flow structure. On that account, Hall et al.
[21] performed a linear stability analysis employing the three-dimensional equations of the
fluid phase. They modelled the turbulent diffusivity as a constant throughout the flow layer.
They analyzed the two-way feedback between the transverse flow structure and the sediment
concentration in the form of counter-rotating longitudinal vortices. They found that for the
initiation of instability, the sediment concentration of the base flow in the vertical direction must
decay slowly compared to the decay of shear stress.

The brief literature survey suggests that the mechanics of the submarine channel formation
needs to be explored more thoroughly. In this study, we perform a linear stability analysis,
as an advancement of the study by Hall et al. [21], to explore the formation of parallel and
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clear water

turbidity current

Figure 1. Photograph of a turbidity current in an experimental channel. (Courtesy of Octavio E. Sequeiros, Shell Global Solutions
International B.V., The Netherlands.) (Online version in colour.)

uniformly spaced submarine channels driven by turbidity currents. We employ the three-
dimensional flow equations driven by the suspended sediment, the advection–diffusion equation
of the suspended sediment concentration and the Exner equation of sediment continuity.
Unlike the conventional analysis, we use a parabolic profile of the turbulent diffusivity to
capture the near-bed flow field. The behaviours of the base flow (e.g. profiles of velocity and
suspended sediment concentration) and the perturbations (growth rate and perturbation fields)
are explored in detail. The sensitivity of the physical system to changes in key parameters is also
examined.

This article is organized as follows. In §2, the governing equations are presented. The linear
stability analysis is performed in §3. The computational results are discussed in §4. Finally, the
conclusion is drawn in §5.

2. Governing equations
The flow field in a turbidity current can be divided into two layers: (i) the lower ‘driving layer’,
which extends up to the level of maximum longitudinal velocity, and (ii) the upper ‘driven layer’,
which exists above the driving layer. Luchi et al. [9] reported that the amount of suspended
sediment in the driving layer is larger than that in the driven layer. The flow in the driving
layer remains almost independent of that in the driven layer [9]. In addition, the driving layer
can continue endlessly at a steady state [9]. With these facts, we consider that the flow in the
driving layer triggers the instability, whereas the flow in the driven layer does not contribute
to the instability mechanism. The schematic of a turbidity current of driving layer thickness H∗
over an erodible bed making an angle θ with the horizontal is shown in figure 2. A Cartesian
coordinate system (x∗, y∗, z∗) is used, where x∗, y∗ and z∗ are the longitudinal, lateral and vertical
distances, respectively. Hereafter, a variable with a superscript ‘asterisk’ denotes a dimensional
quantity. In figure 2, E∗ and D∗ are the entrainment and deposition fluxes, respectively, and w∗

s
is the terminal fall velocity of sediment particles. In addition, the u∗(z∗) and c∗(z∗) represent the
profiles of longitudinal velocity and sediment concentration, respectively.

Turbidity currents have been observed to be driven by small density differences (figure 1).
Hence, we consider a dilute suspension of monodisperse particles with volume fraction smaller
than 0.01. The volumetric displacement effects due to the particle loading are neglected. Thus, the
velocity field remains divergence free. Moreover, owing to the small volume fraction of particles,
the interaction between particles is trivial. In addition, we consider the particle velocity to be
the sum of the local flow velocity and the terminal fall velocity. This assumption indicates that
the particle velocity field is also divergence free, i.e. the particles do not accumulate in the
flow field. The flow is purely driven by gravity acting on the sediment particles. For such a
flow with small density differences, the use of the Boussinesq approximation is legitimate [11].
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Figure 2. Schematic of the physical system. The broken line shows the edge of the driving layer. (Online version in colour.)

Excluding the body force terms, the Boussinesq approximation allows us to consider the mass
density as a constant in the momentum equations. To proceed further, we introduce the following
dimensionless variables:

(x, y, z) = (x∗, y∗, z∗)
H∗ , (u, v, w) = (u∗, v∗, w∗)

u∗
f

,

and t =
t∗u∗

f

H∗ , p = p∗

ρf u∗2
f

, υt = υ∗
t

u∗
f H∗ , c = c∗

Ca
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

where (u∗, v∗, w∗) are the velocity components in (x∗, y∗, z∗), respectively; u∗
f is the shear velocity;

t∗ is the time; p∗ is the pressure; ρf is the mass density of fluid; υ∗
t is the turbulent diffusivity; c∗ is

the volumetric sediment concentration; and Ca is the reference sediment concentration. Note that
the present formulation is solely focused on the fully developed turbidity currents. Applying the
Boussinesq approximation, the three-dimensional continuity and momentum equations for the
fluid phase are as follows [21,23]:

∂ui

∂xi
= 0 (2.1)

and
∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+ ∂

∂xj

(
υt

∂ui

∂xj

)
+ ∂υt

∂z
· ∂w
∂xi

+ GScδi1 − Gcδi3, (2.2)

where G is the gravitational parameter, S is the longitudinal bed slope (= tan θ ) and δij represents
the Kronecker delta function. The gravitational parameter G, which indicates the ratio of gravity
force to inertia, is expressed as follows:

G = �CagH∗

u∗2
f

, (2.3)

where � is submerged relative density [= (ρs − ρf )/ρf ], ρs is the mass density of sediment
particles and g is the acceleration due to gravity. It is worth mentioning that the gravitational
parameter G carries the same physical meaning as that of the bulk Richardson number Ri. In
addition, the gravitational parameter G (or the bulk Richardson number Ri) can be related to
the densimetric Froude number Fr as G (or Ri) ∝ 1/Fr2. With the assumption of insignificant
particle inertia and volume fraction, the solid phase can be mathematically described by the
advection–diffusion equation of suspended sediment motion as follows [32]:

∂c
∂t

+ (ui − βκZδi3)
∂c
∂xi

= ∂

∂xi

(
υs

∂c
∂xi

)
, (2.4)

where β is the proportionality factor, κ is the von Kármán coefficient (= 0.41), Z is the Rouse
number [= w∗

s /(βκu∗
f )], which characterizes the influence of the upward turbulent diffusion on

the terminal fall velocity of particles, and υs is the dimensionless sediment diffusivity. The
proportionality factor β depends on the centrifugal acceleration induced on the particles [32]. The
determination of β is a difficult proposition. For simplicity, we consider the sediment diffusivity
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to be identical with the turbulent diffusivity, i.e. β = 1. To proceed further, the vertical profile of
turbulent diffusivity is required. Herein, we employ a parabolic profile of turbulent diffusivity,
which is expressed in a dimensionless form in the following [32]:

υt = κz(1 − z). (2.5)

The parabolic profile can represent a realistic approximation for the turbulent diffusivity
distribution in turbidity currents compared to a constant turbulent diffusivity assumption. The
present formulation considers the suspended load as the dominant mode of sediment transport.
Hence, the evolution of the erodible bed can be modelled by balancing the entrainment and
deposition fluxes as follows [33]:

∂η

∂t
= D − E, (2.6)

where η is the bed elevation with respect to the base flow. We estimate the dimensionless sediment
deposition flux as follows:

D = βκZCac|z=η. (2.7)

For the sediment entrainment flux, several nonlinear relations are available in the literature.
However, incorporating the nonlinear relations in the linear stability analysis may not be feasible.
Herein, the sediment entrainment flux E is expressed as a linear function of velocity gradient
[21,23]. In the dimensionless form, it is

E = N
∂u
∂z

∣∣∣∣
z=η

, (2.8)

where N is the erosion coefficient (= βeυ
∗
trρf /H∗), βe is a proportionality constant and υ∗

tr is the
turbulent diffusivity at the reference level (z = 0.01). The proportionality constant βe characterizes
the sediment entrainment flux per unit area and shear stress [21,23]. The aforementioned coupled
system of governing equations needs to be supplemented by the appropriate boundary conditions
at the interface between turbidity current and erodible bed and at the edge of the driving
layer. At the interface, we impose the no-slip condition for the longitudinal and lateral velocity
components, whereas the vertical velocity component equals the rate at which the erodible bed
evolves. The sediment concentration at the interface equals the reference sediment concentration.
Moreover, at the edge of the driving layer, we consider a finite sediment concentration, denoted
by c∗

h, and a vanishing longitudinal velocity gradient. The boundary conditions in a dimensionless
form are expressed as follows:

u|z=η = 0, v|z=η = 0, c|z=η = 1, c|z=1 = ch,
∂u
∂z

∣∣∣∣
z=1

= 0 and w|z=η = ∂η

∂t
. (2.9)

3. Linear stability analysis
To study the stability of the considered physical system, we decompose the variables as follows:

(u, v, w, c, p, η) = (u0, 0, 0, c0, p0, 0) + (u1, v1, w1, c1, p1, η1), (3.1)

where subscripts ‘0’ and ‘1’ denote the base flow and perturbations, respectively. The
perturbations, which are expanded in the form of normal modes, are expressed as follows [21]:

(u1, w1, c1, p1, η1) = [U(z), W(z), C(z), P(z), K] sin(ky) exp(Ωt)

and v1 = V(z) cos(ky) exp(Ωt),

}
(3.2)

where U, V, W, C, P and K are the perturbation eigenfunctions, k is the dimensionless
wavenumber in the lateral direction and Ω is the growth rate of perturbations. It is apparent that
the perturbations are periodic in lateral direction, growing exponentially with time. The present
formulation pays attention to the instability of straight longitudinal channels. Like the subaerial
channels, submarine channels also manifest meandering in their course. It is worth mentioning
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that the instability theory can be applied to gain insights into the cause of meandering [34–
36]. However, this study does not focus on this aspect. Hence, the perturbations do not evolve
in the longitudinal direction. It has been observed that in turbidity currents, the flow and the
sediment concentration fields attain a steady state after a certain time [9]. Hence, to continue
further, we consider a unidirectional fully developed, quasi-steady base flow, where the variables
remain independent of time, and longitudinal and lateral directions. With the aforementioned
assumptions, equations (2.2) and (2.4) are simplified to obtain the vertical profiles of longitudinal
velocity and sediment concentration as follows:

d
dz

(
υt

du0

dz

)
+ GSc0 = 0 (3.3)

and
d
dz

(
υs

dc0

dz

)
+ βκZ

dc0

dz
= 0. (3.4)

The aforementioned equations are solved numerically with the following boundary
conditions:

u0 |z=0.01= 0, c0|z=0.01 = 1, c0|z=0.995 = ch and
du0

dz

∣∣∣∣
z=0.995

= 0. (3.5)

In this study, the interface between the turbidity current and the erodible bed is set at z = 0.01,
while the edge of the driving layer is considered at z = 0.995, to avoid the singularity at z = 0 and
z = 1. At the base flow, the entrainment and deposition fluxes remain balanced. Consequently, we
obtain

Ca = N
κZ

· du0

dz

∣∣∣∣
z=0.01

. (3.6)

Substituting equations (3.1) and (3.2) into equations (2.1), (2.2), (2.4) and (2.6), and
after applying linearization, we obtain the following linear perturbation equations for the
eigenfunctions:

− kV + dW
dz

= 0, (3.7)

κz(1 − z)

(
−k2U + d2U

dz2

)
+ κ(1 − 2z)

dU
dz

− W
du0

dz
+ GSC = ΩU, (3.8)

κz(1 − z)

(
−k2V + d2V

dz2

)
+ κ(1 − 2z)

dV
dz

+ κ(1 − 2z)kW − kP = ΩV, (3.9)

κz(1 − z)

(
−k2W + d2W

dz2

)
+ 2κ(1 − 2z)

dW
dz

− dP
dz

− GC = ΩW, (3.10)

κz(1 − z)

(
−k2C + d2C

dz2

)
+ κ(1 − 2z)

dC
dz

− W
dc0

dz
+ κZ

dC
dz

= ΩC, (3.11)

and κZCaC|z=0.01 − N
dU
dz

∣∣∣∣
z=0.01

+
(

κZCa
dc0

dz

∣∣∣∣
z=0.01

− N
d2u0

dz2

∣∣∣∣∣
z=0.01

)
K = ΩK. (3.12)

The aforementioned equations are associated with the following boundary conditions:

U|z=0.01 + K
du0

dz

∣∣∣∣
z=0.01

= 0, V|z=0.01 = 0,

W|z=0.01 = ΩK, C|z=0.01 + K
dc0

dz

∣∣∣∣
z=0.01

= 0,

and U|z=0.995 = V|z=0.995 = W|z=0.995 = C|z=0.995 = 0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.13)

The domain in the vertical direction is discretized by employing the Chebyshev points as
z1j = cos(jπ/n), where n is the number of grids and j ranges from 0 to n [37]. The derivatives
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are approximated using the Chebyshev differentiation matrix [37]. To employ the Chebyshev
collocation method, the vertical domain z ∈ (0, 1) is mapped onto z1 ∈ (−1, 1). The discretized
system of the equations of perturbations together with the boundary conditions constitute a
generalized eigenvalue problem, which is solved using the MATLAB R2021b routine eigs. We
observed that the results become insensitive to n when n exceeds 50. Hence, for the numerical
computations, we consider n = 70.

For numerical experiments, it is useful to estimate the typical ranges of the key parameters. The
experimental measurements of Altinakar et al. [38] and Nourmohammadi et al. [39] suggested that
G ≤ O(102). The longitudinal slope S of the natural submarine channels ranges from 0.1 to 0.001
[40]. As the major fraction of the suspended sediment belongs to the driving layer, we assume that
the dimensionless sediment concentration at the edge of the driving layer follows ch ≤ O(10−1).
Regarding the Rouse number Z, extensive experimental studies indicated Z ≤ O(1) [32]. However,
it is rather difficult to set a representative magnitude of the proportionality constant βe. Hence,
following Hall et al. [21], we consider the erosion coefficient to be N ≤ O(10−5), which offers an
estimation of βe.

4. Results and discussion
The mathematical formulation indicates that the instability depends on several key parameters,
e.g. the gravitational parameter G, longitudinal bed slope S, sediment concentration at the edge
of the driving layer ch, Rouse number Z and erosion coefficient N.

(a) Profiles of base velocity and suspended sediment concentration
First, we examine the sensitivity of the base velocity and suspended sediment concentration
profiles to the relevant physical parameters. To this end, figure 3a–d displays the base velocity
profiles u0(z) for different values of gravitational parameter G, longitudinal bed slope S, sediment
concentration at the edge of the driving layer ch and Rouse number Z, respectively. In the
numerical experiment, it is found that the base velocity remains insensitive to the erosion
coefficient N. At a given vertical distance z, the base velocity increases with an increase in G,
S and ch, whereas it reduces with Z (figure 3).

The base sediment concentration profiles c0(z) for different values of sediment concentration
at the edge of the driving layer ch and Rouse number Z are shown in figure 4a,b. It is found
that the base concentration profiles are insensitive to the gravitational parameter G, longitudinal
bed slope S and erosion coefficient N. Figure 4 shows that at a given vertical distance z, the base
concentration increases with an increase in ch but reduces with Z. At a given vertical distance, an
increase in base concentration enhances the base velocity (figures 3c and 4a). This is accredited to
the fact that the turbidity currents are driven by the gravitational force acting on the suspended
sediment.

Figure 5 offers a comparison of the computed base velocity and sediment concentration
profiles obtained from this study with the experimental data of Altinakar et al. [38],
Nourmohammadi et al. [39] and Sequeiros et al. [41]. The pertinent physical parameters are kept
constant depending on the experimental conditions. In figure 5, the velocity and concentration
are rescaled with their respective values at the edge of the driving layer. The computed profiles
of velocity and concentration agree satisfactorily with their respective experimental profiles. This
observation justifies the assumption of the parabolic profile of turbulent diffusivity.

(b) Growth rate
We now explore the growth rate of perturbations in the parameter space. Figure 6a–c depicts
the variations of the growth rate of perturbations Ω with the dimensionless wavenumber k for
different gravitational parameters G. A positive (or negative) growth rate reflects the growth (or
decay) of perturbations. To prepare figures 6–10, the gravitational parameter G = 40, longitudinal
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Figure 3. Base velocity profiles u0(z) for different values of (a) gravitational parameter G, (b) longitudinal bed slope S,
(c) sediment concentration at the edge of the driving layer ch and (d) Rouse number Z. (Online version in colour.)

bed slope S = 0.05, sediment concentration at the edge of the driving layer ch = 0.01, Rouse
number Z = 0.4 and erosion coefficient N = 5 × 10−6 are taken as reference values. For a given
combination of parameters, Ω amplifies with an increase in k attaining its peak value and then
it follows a monotonically decreasing trend with k (see figures 6–10). For a given k, an increase
in G results in an amplification of Ω (the Ω associated with kc amplifies from 0.0161 to 0.0268 as
the G increases from 30 to 50). Hence, G plays a destabilizing role. This observation is due to the
fact that an increase in G is to amplify the near-bed velocity gradient (figure 3a), which in turn
enhances the sediment entrainment flux (see equation (2.8)). We denote the wavenumber with the
maximum growth rate, called the critical wavenumber, by kc. Figure 6d shows the variation of kc

with G. The kc reduces with an increase in G. Therefore, an increase in sediment entrainment flux
tends to form channels having the longer wavelengths.

Figure 7a–c presents the variations of the growth rate Ω with the dimensionless wavenumber k
for different longitudinal bed slopes S. For a given k, Ω is amplified as the S increases owing to the
enhanced sediment entrainment rate (the Ω at kc amplifies from 0.0086 to 0.0344 as the S increases
from 0.02 to 0.08). Figure 7d shows the variation of the dimensionless critical wavenumber kc with
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Figure 4. Base suspended sediment concentration profiles c0(z) for different values of (a) sediment concentration at the edge
of the driving layer ch and (b) Rouse number Z. (Online version in colour.)
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Figure 5. Comparison of the profiles of (a) base velocity and (b) sediment concentration with the experimental data. The
gravitational parameter G = 30, longitudinal bed slope S = 0.05, sediment concentration at the edge of the driving layer
ch = 0.4 and Rouse number Z = 0.4 are considered. (Online version in colour.)

S. The kc reduces with an increase in S. Hence, an increase in S favours the channel formation with
longer wavelengths.

The sensitivity of the growth rate of perturbations Ω to sediment concentration at the edge of
the driving layer ch is shown in figure 8a–c. For a given k, the Ω enhances as the ch increases (the
Ω associated with kc amplifies from 0.0209 to 0.0226 as the ch increases from 0.005 to 0.02). This
observation is attributed to the higher sediment entrainment rate owing to an increase in near-
bed velocity gradient. Figure 8d shows the variation of the dimensionless critical wavenumber kc

with ch. The kc diminishes with an increase in ch.
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Figure 6. Growth rate of perturbationsΩ versus dimensionless wavenumber k for different gravitational parameters G: (a)
G = 30, (b)G = 40, (c)G = 50 and (d) dimensionless critical wavenumber kc versus gravitational parameterG. (Online version
in colour.)

Figure 9a–c displays the variations of the growth rate of perturbations Ω with the
dimensionless wavenumber k for different Rouse numbers Z. For a given k, an increase in Z
suppresses the growth rate (Ω at kc diminishes from 0.0313 to 0.0147 as the Z increases from
0.4 to 0.6). This is due to the fact that an increase in Z enhances the sediment deposition flux (see
equation (2.7)). The variation of the dimensionless critical wavenumber kc with Z is shown in
figure 9d, where the kc increases with Z.

Figure 10a–c shows the variations of the growth rate of perturbations Ω with the dimensionless
wavenumber k for different erosion coefficients N. For a given k, an increase in N is to enhance
the sediment entrainment flux (the Ω associated with kc amplifies from 0.0043 to 0.043 as the N
increases from 10−6 to 10−5). This strengthens the growth rate (figure 10a–c). The variation of the
dimensionless critical wavenumber kc with N is shown in figure 10d. The kc reduces as the N
increases.

The parametric study on the growth rate of perturbations reveals that the growth rate Ω

amplifies with an increase in gravitational parameter G, longitudinal bed slope S, sediment
concentration at the edge of the driving layer ch and erosion coefficient N, whereas it diminishes
with an increase in Rouse number Z.
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Figure 7. Growth rate of perturbations Ω versus dimensionless wavenumber k for different longitudinal bed slopes S:
(a) S = 0.02, (b) S = 0.05, (c) S = 0.08 and (d) dimensionless critical wavenumber kc versus longitudinal bed slope S. (Online
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Figure 11 offers a comparison of the growth rates obtained from the present study (figure 11a)
with those obtained from Hall et al. [21] (figure 11b). For the computation, we consider G = 25,
S = 5 × 10−5, ch = 0.01, Z = 0.4 and N = 10−5. Hall et al. [21] overlooked the influence of the
longitudinal bed slope. It is evident that the growth rate curves follow the similar trend. In
addition, both the curves display a similar magnitude of the maximum growth rate. However,
in this study, the maximum growth rate appears at k = 1.051 (figure 11a), whereas Hall et al. [21]
observed the maximum growth rate at k = 0.25 (figure 11b). This difference is attributed to the
different length scales used for making the wavenumber dimensionless. For the length scale,
the present formulation uses the driving layer thickness, whereas Hall et al. [21] used the ratio
of the sediment diffusivity to the terminal fall velocity. Unlike the study by Hall et al. [21], we
found that the critical wavenumber kc is sensitive to the key physical parameters.

It is worth discussing the predicted channel wavelength for different physical parameters.
The instability mechanism yields a wide range of lateral wavelength for submarine channels.
We observe that the higher magnitudes of G, S, ch and N, and a lower magnitude of Z predict
the submarine channels having an infinitely large lateral wavelength. Intuitively, a submarine
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edge of the driving layer ch: (a) ch = 0.005, (b) ch = 0.01, (c) ch = 0.02 and (d) dimensionless critical wavenumber kc versus
sediment concentrations at the edge of the driving layer ch. (Online version in colour.)

channel having a longer lateral wavelength can be deemed to be a plane bed. Hence, for the
submarine channel formation having a finite wavelength, this study sets the upper threshold
values for G, S, ch and N, and a lower threshold value for Z, as presented in table 1. In other
words, the submarine channel formation having a finite wavelength is possible if the G, S, ch and
N remain smaller than their respective upper threshold values. Similarly, the submarine channels
having a finite wavelength are formed if the Z exceeds its lower threshold value. The appearance
of the upper and lower threshold suggests that the lateral wavelength of the submarine channels
can be of the order of kilometres. However, for a turbidity current with a driving layer thickness
of O(10 m), the numerical experiments produce the submarine channels with a minimum lateral
wavelength of O(70 m). The theoretical predictions agree well with the field observations, which
suggest that the lateral wavelength of the submarine channels ranges from a few hundred metres
to a few kilometres [42,43]. The instability analyses of Hall et al. [21] and Izumi [6] predicted the
range of lateral wavelength as 250–2500 m and 150–8000 m, respectively. It is pertinent to mention
that the parallel channels on hill slopes also exhibit a range of lateral wavelength [31]. We observe
that the channel wavelength amplifies with an increase in gravitational parameter G, longitudinal
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Table 1. Upper and lower thresholds of key parameters.

parameter G S ch Z N

upper threshold 170 0.26 0.04 — 2.6 × 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lower threshold — — — 0.25 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bed slope S, sediment concentration at the edge of the driving layer ch and erosion coefficient N.
However, it reduces as the Rouse number Z increases.

It is interesting to present the favourable condition for the submarine channel formation
in terms of several dimensional variables. To this end, we consider a turbidity current with
a driving layer thickness of 10 m. The upper threshold of the gravitational parameter G gives
the shear velocity as u∗

f > 0.0762 m s−1. The upper threshold of the sediment concentration at
the edge of the driving layer ch suggests the sediment concentration to be smaller than 0.08%.
The lower threshold of the Rouse number Z produces w∗

s > 7.81 × 10−3 m s−1. In addition, the
upper threshold of the erosion coefficient makes the proportionality factor βe < 6.4 × 10−5.
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It is also interesting to explore the stability diagram. Figure 12 illustrates the stability diagram
on the G-k plane (i.e. gravitational parameter versus dimensionless wavenumber plane). For the
computation, we consider the longitudinal bed slope S = 0.05, sediment concentration at the
edge of the driving layer ch = 0.01, Rouse number Z = 0.4 and erosion coefficient N = 5 × 10−6.
The colour bar shows the growth rate of perturbations. The white line characterizes the neutral
stability curve (Ω = 0). The left and right sides of the white line represent the unstable (Ω > 0)
and stable (Ω < 0) zones, respectively. From the numerical experiment, it is found that the neutral
stability curve on the G-k plane does not vary significantly with S, ch, Z and N.

(c) Perturbation fields
To gain further insights into the mechanism of channel formation, it is necessary to explore the
perturbation fields. In this regard, figures 13–17 present the perturbation fields of the longitudinal
velocity, lateral velocity, vertical velocity, sediment concentration and pressure, respectively. The
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dimensionless wavenumber is set as unity. In figures 13–17, the gravitational parameter G = 40,
longitudinal bed slope S = 0.05, sediment concentration at the edge of the driving layer ch = 0.01,
Rouse number Z = 0.4 and erosion coefficient N = 5 × 10−6 are considered. The perturbation
fields of longitudinal velocity and concentration vary significantly in the near-bed flow region
(figures 13 and 16), indicating that the far-bed flow does not influence the instability process.
This observation reinforces the fundamental assumption, which states that the driving layer
of the turbidity currents contributes solely to the instability process. The alternate positive

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

01
 A

ug
us

t 2
02

2 



16

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20220137

..........................................................

0.15

0.10

0.05

0

–0.05

–0.10

–0.15

–2p/k 2p/k–p/k p/k0

1.0

0.8

0.6

0.4

0.2

0

z

y

Figure 13. Longitudinal velocity perturbation field on yz plane. (Online version in colour.)

0.04

0.03

0.02

0.01

0

–0.01

–0.02

–0.03

–0.04

–2p/k 2p/k–p/k p/k0

1.0

0.8

0.6

0.4

0.2

0

z

y

Figure 14. Lateral velocity perturbation field on yz plane. (Online version in colour.)

and negative concentration perturbations characterize the trough and the crest of a developing
submarine channel, respectively (figure 16). The positive concentration perturbation causes
erosion, whereas the negative concentration perturbation yields deposition. A reduction in the
suspended sediment concentration results in a decrease in the hydrostatic pressure and vice versa
(figure 17). Consequently, a pressure gradient is generated in the lateral direction. The developed
pressure gradient drives the flow from the trough to the crest, manifesting the counter-rotating
longitudinal vortices (figures 14 and 15). The longitudinal vortices cause the flow at the crest to
accelerate and to decelerate at the trough (figure 13).

It is important to mention that the perturbations of the longitudinal velocity, lateral velocity,
vertical velocity and sediment concentration vanish at the edge of the driving layer due
to the associated boundary conditions. To test the sensitivity of the perturbation fields to
the boundary conditions, we perform the numerical experiments assuming the vanishing
gradient of the perturbations of the longitudinal velocity, lateral velocity, vertical velocity and
sediment concentration at the edge of the driving layer. Note that this consideration allows the
perturbations to have finite values in the driven layer. We observe that the qualitative nature of
the instability mechanism becomes almost insensitive to the change in boundary conditions at the
edge of the driving layer.

The flow in fluvial and marine environments is driven by different mechanisms. The basic
difference is that in turbidity currents, the gravity acts on the suspended particles, whereas in
fluvial sediment transport, the gravity acts on the fluid. However, the longitudinal features in
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Figure 17. Pressure perturbation field on yz plane. (Online version in colour.)
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both the fluvial and marine environments are triggered by the instability process. Therefore, we
try to link the present observations with the seminal work of Colombini [44], who examined
the development of sand ridges in a fluvial environment. He found that the counter-rotating
longitudinal vortices play a destabilizing role. Similarly, this study reveals the appearance of
counter-rotating longitudinal vortices (figure 14), which reinforce the instability process.

5. Conclusion
We explore the submarine channel formation driven by turbidity currents interacting with an
erodible bed from the perspective of the linear stability analysis. The analysis stands on the
three-dimensional continuity and momentum equations of flow, advection–diffusion equation of
suspended sediment concentration and Exner equation of bed evolution. The flow model within
the driving layer considers a parabolic profile for the turbulent diffusivity, which yields a good
matching of the computed profiles of base velocity and suspended sediment concentration with
the experimental data. The instability process depends on several key parameters: gravitational
parameter, longitudinal bed slope, sediment concentration at the edge of the driving layer, Rouse
number and erosion coefficient. An increase in gravitational parameter, longitudinal bed slope,
concentration at the edge of the driving layer and erosion coefficient plays a destabilizing role,
whereas an increase in Rouse number plays a stabilizing role.

For a given set of pertinent parameters, the instability mechanism characterizes the maximum
growth rate for a given critical lateral wavenumber. The critical wavenumber reduces with an
increase in gravitational parameter, longitudinal bed slope, sediment concentration at the edge
of the driving layer and erosion coefficient. However, it increases with the Rouse number. The
instability process favours the development of a plane bed when the gravitational parameter,
longitudinal bed slope, concentration at the edge of the driving layer and erosion coefficient
exceed their upper threshold values, and the Rouse number remains below its lower threshold
value.

The present formulation provides an enhanced understanding of the submarine channel
formation driven by turbidity currents. However, it stands on a few assumptions. The analysis
considers the Boussinesq approximation, wherein the particle loading yields a trivial density
variation. For a moderate sediment concentration, the interaction between the particles alters the
turbulent diffusivity and the terminal fall velocity [45]. In addition, this study presumes a linear
relation between the entrainment flux and the bed shear stress. The entrainment flux is more
likely to follow a nonlinear function [46]. Despite some approximations, the present formulation
provides an insight into the description and the nature of the instability mechanism. However,
there remains scope to further extend the present model by considering the moderate sediment
concentration and the nonlinear relation between the entrainment flux and the bed shear stress.
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